def get_dataset(data_pars=None, out_pars=None, **kwargs): device = _get_device() dataset = data_pars['data_info'].get('dataset', None) batch_size = data_pars['data_info'].get('batch_size', 64) from mlmodels.dataloader import DataLoader loader = DataLoader(data_pars) if dataset: loader.compute() try: dataset, internal_states = loader.get_data() trainset, validset, vocab = dataset train_iter, valid_iter = create_data_iterator( batch_size, trainset, validset, device) except: raise Exception( "the last Preprocessor have to return (trainset, validset, vocab), internal_states." ) return train_iter, valid_iter, vocab else: raise Exception("dataset not provided ") return 0
def get_dataset(_model, preprocessor, _preprocessor_pars, data_pars): from mlmodels.dataloader import DataLoader dataset = data_pars['data_info'].get('dataset', None) loader = DataLoader(data_pars) if dataset: loader.compute() try: dataset, internal_states = loader.get_data() trainset, validset = dataset trainloader = get_data_loader(_model, preprocessor, _preprocessor_pars["train"], trainset) testloader = get_data_loader(_model, preprocessor, _preprocessor_pars["test"], validset) except: raise Exception( "the last Preprocessor have to return (trainset, validset), internal_states." ) return trainloader, testloader else: raise Exception("Please add dataset in datainfo") return 0
def get_dataset(data_pars=None, **kw): """ JSON data_pars to get dataset "data_pars": { "data_path": "dataset/GOOG-year.csv", "data_type": "pandas", "size": [0, 0, 6], "output_size": [0, 6] }, """ from mlmodels.dataloader import DataLoader loader = DataLoader(data_pars) loader.compute() return loader.get_data()
def get_dataset(data_pars=None, **kw): """ JSON data_pars to get dataset "data_pars": { "data_path": "dataset/GOOG-year.csv", "data_type": "pandas", "size": [0, 0, 6], "output_size": [0, 6] }, """ print('Loading data...') maxlen = data_pars['data_info']['maxlen'] loader = DataLoader(data_pars) loader.compute() dataset, internal_states = loader.get_data() # return dataset Xtrain, ytrain, Xtest, ytest = dataset Xtrain = sequence.pad_sequences(Xtrain, maxlen=maxlen) Xtest = sequence.pad_sequences(Xtest, maxlen=maxlen) return Xtrain, Xtest, ytrain, ytest
def get_dataset(data_pars=None, **kw): #if data_pars['dataset'] == 'MNIST': # train_loader, valid_loader = get_dataset_mnist_torch(data_pars) # return train_loader, valid_loader from mlmodels.dataloader import DataLoader loader = DataLoader(data_pars) if data_pars['data_info']['dataset'] : loader.compute() try: (train_loader, valid_loader), internal_states = loader.get_data() except: raise Exception("the last Preprocessor have to return (train_loader, valid_loader), internal_states.") return train_loader, valid_loader else: raise Exception("dataset not provided ") return 0
def get_dataset(data_pars): loader = DataLoader(data_pars) loader.compute() return loader.get_data()