Esempio n. 1
0
    def __init__(self, args=None):
        print("INFO: - Load the pre-built tokenizer...")
        if args.tokenize_type != "bpe":
            tokenizer = Tokenizer.load(
                os.path.join(args.model_dir, "tokenizer.vocab"))
        else:
            tokenizer = BPE.load(args.vocab_file)
            tokenizer.add_tokens(sys_tokens)

        labels_list = TXT.read(args.label_file, firstline=False)
        tokenizer.tw2i = Tokenizer.list2dict(sys_tokens + labels_list)
        tokenizer.i2tw = Tokenizer.reversed_dict(tokenizer.tw2i)
        self.args = args
        self.tokenizer = tokenizer
        self.device = torch.device("cuda:0" if self.args.use_cuda else "cpu")
        self.num_labels = len(self.tokenizer.tw2i)
        # Hyper-parameters at target language
        self.target2idx = Tokenizer.lst2idx(tokenizer=Tokenizer.process_target,
                                            vocab_words=self.tokenizer.tw2i,
                                            unk_words=True,
                                            sos=self.args.ssos,
                                            eos=self.args.seos)

        if self.args.tokenize_type != "bpe":
            # Hyper-parameters at source language
            self.source2idx = Tokenizer.lst2idx(
                tokenizer=Tokenizer.process_nl,
                vocab_words=self.tokenizer.sw2i,
                unk_words=True,
                sos=self.args.ssos,
                eos=self.args.seos)

            self.pad_id = self.tokenizer.sw2i.get(PAD, PAD_id)
            self.unk_id = self.tokenizer.sw2i.get(UNK, UNK_id)
            sw_size = len(self.tokenizer.sw2i)
            # tw_size = len(self.tokenizer.tw2i)
            self.collate_fn = Tokenizer.collate_fn(self.pad_id, True)
        else:
            self.source2idx = BPE.tokens2ids(self.tokenizer,
                                             sos=self.args.ssos,
                                             eos=self.args.seos)
            self.pad_id = self.tokenizer.token_to_id(BPAD) if self.tokenizer.token_to_id(BPAD) is not None \
                else self.tokenizer.token_to_id(PAD)
            self.unk_id = self.tokenizer.token_to_id(BUNK) if self.tokenizer.token_to_id(BUNK) is not None \
                else self.tokenizer.token_to_id(UNK)
            sw_size = self.tokenizer.get_vocab_size()
            # tw_size = self.tokenizer.get_vocab_size()
            self.collate_fn = BPE.collate_fn(self.pad_id, True)
        # Hyper-parameters at word-level source language
        # [size, dim, pre_embs, drop_rate, zero_padding, requires_grad] = HPs
        nlemb_HPs = [
            sw_size, self.args.swd_dim, self.args.swd_pretrained,
            self.args.wd_dropout, self.args.wd_padding, self.args.snl_reqgrad
        ]

        # Encoder
        # [nn_mode, nn_inp_dim, nn_out_dim, nn_layers, nn_bidirect, nn_dropout] = HPs
        if self.args.enc_cnn:
            enc_HPs = [
                "cnn", self.args.swd_dim, self.args.ed_outdim,
                self.args.ed_layers, self.args.ed_bidirect,
                self.args.kernel_size
            ]
        else:
            if self.args.ed_mode == "self_attention":
                # use the maximum length 5 times larger than input length
                nlemb_HPs += [self.tokenizer.swl * 5]
                # nn_mode, ninp, nhid, nlayers, nhead, dropout, activation, norm, his_mask
                enc_HPs = [
                    self.args.ed_mode, self.args.swd_dim, self.args.ed_outdim,
                    self.args.ed_layers, self.args.ed_heads,
                    self.args.ed_dropout, self.args.ed_activation, None,
                    self.args.ed_hismask
                ]
            else:
                enc_HPs = [
                    self.args.ed_mode, self.args.swd_dim, self.args.ed_outdim,
                    self.args.ed_layers, self.args.ed_bidirect,
                    self.args.ed_dropout
                ]

        crf_HPs = [
            self.args.use_crf, self.num_labels, self.args.se_transitions
        ]
        print("INFO: - Build model...")
        self.labeler = Labeler(nlemb_HPs,
                               enc_HPs,
                               crf_HPs,
                               drop_rate=self.args.final_dropout,
                               num_labels=self.num_labels)
        if torch.cuda.device_count() > 1:
            print("Let's use", torch.cuda.device_count(), "GPUs!")
            self.labeler = nn.DataParallel(self.labeler)
        self.labeler.to(self.device)

        self.labeler_optimizer = None
        if self.args.optimizer.lower() == "adamax":
            self.init_optimizers(optim.Adamax)
        elif self.args.optimizer.lower() == "adam":
            self.init_optimizers(optim.Adam)
        elif self.args.optimizer.lower() == "radam":
            self.init_optimizers(RAdam)
        elif self.args.optimizer.lower() == "adadelta":
            self.init_optimizers(optim.Adadelta)
        elif self.args.optimizer.lower() == "adagrad":
            self.init_optimizers(optim.Adagrad)
        else:
            self.init_optimizers(optim.SGD)
Esempio n. 2
0
    def __init__(self, args=None):
        print("INFO: - Load the pre-built tokenizer...")
        if args.tokenize_type != "bpe":
            tokenizer = Tokenizer.load(os.path.join(args.model_dir, "tokenizer.vocab"))
        else:
            tokenizer = BPE.load(args.vocab_file)
            tokenizer.add_tokens(sys_tokens)
            tokenizer.tw2i = tokenizer.get_vocab()
            tokenizer.i2tw = Tokenizer.reversed_dict(tokenizer.tw2i)
        self.args = args
        self.tokenizer = tokenizer
        self.device = torch.device("cuda:0" if self.args.use_cuda else "cpu")
        # Include SOt, EOt if set set_words, else Ignore SOt, EOt
        # self.num_labels = len(self.tokenizer.tw2i)
        self.num_labels = self.tokenizer.get_vocab_size()
        if self.num_labels > 2:
            self.lossF = nn.CrossEntropyLoss().to(self.device)
        else:
            self.lossF = nn.BCEWithLogitsLoss().to(self.device)

        # Hyper-parameters at source language
        if self.args.tokenize_type != "bpe":
            self.source2idx = Tokenizer.lst2idx(tokenizer=self.tokenizer.process_nl,
                                                vocab_words=self.tokenizer.sw2i, unk_words=True,
                                                sos=self.args.ssos, eos=self.args.seos)

            # Hyper-parameters at target language
            self.target2idx = Tokenizer.lst2idx(tokenizer=self.tokenizer.process_target,
                                                vocab_words=self.tokenizer.tw2i, unk_words=True,
                                                sos=self.args.tsos, eos=self.args.teos)
            self.pad_id = self.tokenizer.sw2i.get(PAD, 0)
            self.unk_id = self.tokenizer.sw2i.get(UNK, UNK_id)
            sw_size = len(self.tokenizer.sw2i)
            # tw_size = len(self.tokenizer.tw2i)
            self.collate_fn = Tokenizer.collate_fn(self.pad_id, True)
        else:
            self.source2idx = BPE.tokens2ids(self.tokenizer, sos=self.args.ssos, eos=self.args.seos)
            self.target2idx = BPE.tokens2ids(self.tokenizer, sos=self.args.tsos, eos=self.args.teos)
            self.pad_id = self.tokenizer.token_to_id(BPAD) if self.tokenizer.token_to_id(BPAD) is not None \
                else self.tokenizer.token_to_id(PAD)
            self.unk_id = self.tokenizer.token_to_id(BUNK) if self.tokenizer.token_to_id(BUNK) is not None \
                else self.tokenizer.token_to_id(UNK)
            sw_size = self.tokenizer.get_vocab_size()
            # tw_size = self.tokenizer.get_vocab_size()
            self.collate_fn = BPE.collate_fn(self.pad_id, True)

        # Hyper-parameters at word-level source language
        # [size, dim, pre_embs, drop_rate, zero_padding, requires_grad] = HPs
        nlemb_HPs = [sw_size, self.args.swd_dim, self.args.swd_pretrained,
                     self.args.wd_dropout, self.args.wd_padding, self.args.snl_reqgrad]
        # NL inputs
        # Encoder
        # [nn_mode, nn_inp_dim, nn_out_dim, nn_layers, nn_bidirect, nn_dropout] = HPs
        if self.args.enc_cnn:
            enc_HPs = ["cnn", self.args.swd_dim, self.args.ed_outdim,
                       self.args.ed_layers, self.args.ed_bidirect, self.args.kernel_size]
        else:
            enc_HPs = [self.args.ed_mode, self.args.swd_dim, self.args.ed_outdim,
                       self.args.ed_layers, self.args.ed_bidirect, self.args.ed_dropout]

        # Decoder
        # [size, dim, pre_embs, drop_rate, zero_padding, requires_grad] = HPs

        temb_HPs = [self.num_labels, self.args.twd_dim, self.args.twd_pretrained,
                    self.args.wd_dropout, self.args.wd_padding, self.args.twd_reqgrad]

        # Hyper-parameters at word-level target language
        dec_HPs = [self.args.ed_mode, self.args.twd_dim, self.args.ed_outdim,
                   self.args.ed_layers, self.args.ed_bidirect, self.args.ed_dropout]
        dec_HPs = [temb_HPs, dec_HPs]

        print("INFO: - Build model...")
        # self.seq2seq = Seq2seq(semb_HPs, sch_HPs, enc_HPs, dec_HPs, drop_rate=self.args.final_dropout,
        #                        num_labels=self.num_labels, enc_att=self.args.enc_att).to(self.device)
        self.seq2seq = Seq2seq(nlemb_HPs, enc_HPs, dec_HPs, drop_rate=self.args.final_dropout,
                               num_labels=self.num_labels, enc_att=self.args.enc_att)
        if torch.cuda.device_count() > 1:
            print("Let's use", torch.cuda.device_count(), "GPUs!")
            # dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
            self.seq2seq = nn.DataParallel(self.seq2seq)
        self.seq2seq.to(self.device)

        self.seq2seq_optimizer = None
        if self.args.optimizer.lower() == "adamax":
            self.init_optimizers(optim.Adamax)

        elif self.args.optimizer.lower() == "adam":
            self.init_optimizers(optim.Adam)

        elif self.args.optimizer.lower() == "radam":
            self.init_optimizers(RAdam)

        elif self.args.optimizer.lower() == "adadelta":
            self.init_optimizers(optim.Adadelta)

        elif self.args.optimizer.lower() == "adagrad":
            self.init_optimizers(optim.Adagrad)

        else:
            self.init_optimizers(optim.SGD)
Esempio n. 3
0
        # Load datasets to build vocabulary
        data = Tokenizer.load_file([filename], task=1)
        s_paras = [-1, 1]
        t_paras = [-1, 1]
        tokenizer = Tokenizer(s_paras, t_paras)
        tokenizer.build(data)
        nl2ids = Tokenizer.lst2idx(tokenizer=Tokenizer.process_nl, vocab_words=tokenizer.sw2i,
                                   unk_words=True, sos=False, eos=False)
        tokenizer.tw2i = lb2id_dict
        tokenizer.i2tw = id2lb_dict
        tg2ids = Tokenizer.lst2idx(tokenizer=Tokenizer.process_target, vocab_words=tokenizer.tw2i,
                                   unk_words=False, sos=False, eos=False)
        pad_id = tokenizer.sw2i.get(PAD, 0)
        sw_size = len(tokenizer.sw2i)
        tw_size = len(tokenizer.tw2i)
        collate_fn = Tokenizer.collate_fn(pad_id, True)
    else:
        vocab_file = "/media/data/review_response/tokens/bert_level-bpe-vocab.txt"
        tokenizer = BPE.load(vocab_file)
        tokenizer.add_tokens(sys_tokens)
        nl2ids = BPE.tokens2ids(tokenizer, sos=False, eos=False, add_special_tokens=False)
        tg2ids = BPE.tokens2ids(tokenizer, sos=False, eos=False, add_special_tokens=False)

        pad_id = tokenizer.token_to_id(BPAD) if tokenizer.token_to_id(BPAD) is not None else tokenizer.token_to_id(PAD)
        sw_size = tokenizer.get_vocab_size()
        tw_size = tokenizer.get_vocab_size()
        collate_fn = BPE.collate_fn(pad_id, True)

    train_data, num_lines = Tokenizer.prepare_iter(filename, firstline=False, task=1)
    train_iterdataset = IterDataset(train_data, source2idx=nl2ids, target2idx=lb2ids, num_lines=num_lines)
    train_dataloader = DataLoader(train_iterdataset, pin_memory=True, batch_size=8, collate_fn=collate_fn)