Esempio n. 1
0
    def test_pipeline_add(self):
        iris = load_iris()
        X, y = iris.data, iris.target
        pca = PCA(n_components=2)
        pca.fit(X)

        add = OnnxAdd('X',
                      numpy.full((1, X.shape[1]), 1, dtype=numpy.float32),
                      output_names=['Yadd'])
        onx = add.to_onnx(inputs=[('X', FloatTensorType((None, X.shape[1])))],
                          outputs=[('Yadd', FloatTensorType(
                              (None, X.shape[1])))])

        tr = OnnxTransformer(onx)
        tr.fit()

        pipe = make_pipeline(tr, LogisticRegression())
        pipe.fit(X, y)
        pred = pipe.predict(X)
        self.assertEqual(pred.shape, (150, ))
        model_onnx = to_onnx(pipe, X.astype(numpy.float32))

        oinf = OnnxInference(model_onnx)
        y1 = pipe.predict(X)
        y2 = oinf.run({'X': X.astype(numpy.float32)})
        self.assertEqual(list(y2), ['output_label', 'output_probability'])
        self.assertEqualArray(y1, y2['output_label'])
        y1 = pipe.predict_proba(X)
        probas = DataFrame(list(y2['output_probability'])).values
        self.assertEqualArray(y1, probas, decimal=5)
Esempio n. 2
0
 def test_transform_dict(self):
     x = {'X': np.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])}
     content = self.get_onnx_mul()
     tr = OnnxTransformer(content)
     tr.fit()
     res = tr.transform(x)
     exp = np.array([[1., 4.], [9., 16.], [25., 36.]], dtype=np.float32)
     self.assertEqual(list(res.ravel()), list(exp.ravel()))
Esempio n. 3
0
    def test_transform_numpy(self):
        x = np.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]], dtype=np.float32)
        content = self.get_onnx_mul()

        tr = OnnxTransformer(content)
        tr.fit()
        res = tr.transform(x)
        exp = np.array([[1., 4.], [9., 16.], [25., 36.]], dtype=np.float32)
        self.assertEqual(list(res.ravel()), list(exp.ravel()))
        rp = repr(tr)
        self.assertStartsWith("OnnxTransformer(onnx_bytes=b'\\", rp)
        self.assertEndsWith("')", rp)
 def test_pipeline_iris_intermediate(self):
     iris = load_iris()
     X, y = iris.data, iris.target
     pipe = make_pipeline(PCA(n_components=2), LogisticRegression())
     pipe.fit(X, y)
     onx = convert_sklearn(pipe, initial_types=[
                           ('input', FloatTensorType((None, X.shape[1])))])
     tr = OnnxTransformer(onx, output_name="probabilities", reshape=True)
     tr.fit(X)
     y = tr.transform(X[:2])
     self.assertEqual(len(y.shape), 2)
     self.assertEqual(y.shape[0], 2)
Esempio n. 5
0
 def test_multiple_transform(self):
     x = pandas.DataFrame(data=[[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])
     x.columns = "X1 X2".split()
     content = self.get_onnx_mul()
     res = list(OnnxTransformer.enumerate_create(content))
     self.assertNotEmpty(res)
     for _, tr in res:
         tr.fit()
         self.assertRaise(lambda tr=tr: tr.transform(x), RuntimeError)
Esempio n. 6
0
 def test_transform_dataframe(self):
     x = pandas.DataFrame(data=[[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])
     x.columns = "X1 X2".split()
     content = self.get_onnx_mul()
     tr = OnnxTransformer(content)
     tr.fit()
     try:
         tr.transform(x)
     except RuntimeError:
         pass
Esempio n. 7
0
    def test_pipeline(self):
        iris = load_iris()
        X, y = iris.data, iris.target
        pca = PCA(n_components=2)
        pca.fit(X)

        onx = convert_sklearn(pca, initial_types=[
                              ('input', FloatTensorType((None, X.shape[1])))])
        onx_bytes = onx.SerializeToString()
        tr = OnnxTransformer(onx_bytes)

        pipe = make_pipeline(tr, LogisticRegression())
        pipe.fit(X, y)
        pred = pipe.predict(X)
        self.assertEqual(pred.shape, (150, ))
        skl_pred = pca.transform(X)
        skl_onx = pipe.steps[0][1].transform(X)
        self.assertEqualArray(skl_pred, skl_onx, decimal=5)
 def test_pipeline_iris_change_dim(self):
     iris = load_iris()
     X, y = iris.data, iris.target
     pipe = make_pipeline(PCA(n_components=2), LogisticRegression())
     pipe.fit(X, y)
     onx = convert_sklearn(pipe, initial_types=[
                           ('input', FloatTensorType((None, X.shape[1])))])
     tr = OnnxTransformer(onx, change_batch_size=2,
                          runtime='onnxruntime1')
     tr.fit(X)
     self.assertRaise(lambda: tr.transform(X), OrtInvalidArgument)
     y = tr.transform(X[:2])
     self.assertEqual(len(y.shape), 2)
     self.assertEqual(y.shape[0], 2)
 def test_pipeline_iris(self):
     iris = load_iris()
     X, y = iris.data, iris.target
     pipe = make_pipeline(PCA(n_components=2), LogisticRegression())
     pipe.fit(X, y)
     onx = convert_sklearn(pipe, initial_types=[
                           ('input', FloatTensorType((None, X.shape[1])))])
     onx_bytes = onx.SerializeToString()
     res = list(OnnxTransformer.enumerate_create(onx_bytes))
     outputs = []
     shapes = []
     for k, tr in res:
         outputs.append(k)
         tr.fit()
         y = tr.transform(X)
         self.assertEqual(y.shape[0], X.shape[0])
         shapes.append(y.shape)
     self.assertEqual(len(set(outputs)), len(outputs))
     shapes = set(shapes)
     self.assertEqual(shapes, {(150, 3), (150, 4), (150, 2), (150,)})
    def test_grid_search_onnx(self):
        iris = load_iris()
        X, y = iris.data, iris.target
        X_train, X_test, y_train, y_test = train_test_split(X, y)

        pca = PCA(n_components=2)
        pca.fit(X_train)
        onx = convert_sklearn(pca,
                              initial_types=[('input',
                                              FloatTensorType(
                                                  (1, X.shape[1])))])
        onx_bytes2 = onx.SerializeToString()

        pca = PCA(n_components=3)
        pca.fit(X_train)
        onx = convert_sklearn(pca,
                              initial_types=[('input',
                                              FloatTensorType(
                                                  (1, X.shape[1])))])
        onx_bytes3 = onx.SerializeToString()

        pipe = make_pipeline(OnnxTransformer(onx_bytes2), LogisticRegression())

        param_grid = [{
            'onnxtransformer__onnx_bytes': [onx_bytes2, onx_bytes3]
        }]

        clf = GridSearchCV(pipe, param_grid, cv=3)
        clf.fit(X_train, y_train)
        bp = clf.best_params_
        self.assertIn("onnxtransformer__onnx_bytes", bp)

        y_true, y_pred = y_test, clf.predict(X_test)
        cl = classification_report(y_true, y_pred)
        self.assertIn('precision', cl)
        sc = clf.score(X_test, y_test)
        self.assertGreater(sc, 0.70)
Esempio n. 11
0
    def __init__(self,
                 fixed_dim=None,
                 skl_model=None,
                 model_onnx=None,
                 **kwargs):
        BenchPerfTest.__init__(self, **kwargs)
        if fixed_dim is None:
            raise RuntimeError("fixed_dim cannot be None.")
        if skl_model is None:
            raise RuntimeError("skl_model cannot be None.")
        if model_onnx is None:
            raise RuntimeError("model_onnx cannot be None.")
        self.fixed_dim = fixed_dim
        self.skl_model = skl_model
        self.model_onnx = model_onnx

        output_names = list(enumerate_model_node_outputs(model_onnx))
        self.onnx_bytes = model_onnx.SerializeToString()

        models = OrderedDict()
        for name in output_names:
            models[name] = OnnxTransformer(self.onnx_bytes, name)
            models[name].fit()
        self.onnx_models = models
    def test_grid_search(self):
        iris = load_iris()
        X, y = iris.data, iris.target
        X_train, X_test, y_train, y_test = train_test_split(X, y)

        pca = PCA(n_components=2)
        pca.fit(X_train)
        onx = convert_sklearn(pca,
                              initial_types=[('input',
                                              FloatTensorType(
                                                  (1, X.shape[1])))])
        onx_bytes = onx.SerializeToString()
        tr = OnnxTransformer(onx_bytes)

        pipe = make_pipeline(tr, LogisticRegression(solver='liblinear'))

        param_grid = [{'logisticregression__penalty': ['l2', 'l1']}]

        clf = GridSearchCV(pipe, param_grid, cv=3)
        clf.fit(X_train, y_train)
        bp = clf.best_params_
        self.assertIn(bp, ({
            'logisticregression__penalty': 'l1'
        }, {
            'logisticregression__penalty': 'l2'
        }))

        tr2 = OnnxTransformer(onx_bytes)
        tr2.fit()
        self.assertEqualArray(
            tr2.transform(X_test),
            clf.best_estimator_.steps[0][1].transform(X_test))
        y_true, y_pred = y_test, clf.predict(X_test)
        cl = classification_report(y_true, y_pred)
        self.assertIn('precision', cl)
        sc = clf.score(X_test, y_test)
        self.assertGreater(sc, 0.70)
Esempio n. 13
0
                    [img[1][0][1][:15] for img in climgs])

#########################################
# Transfer learning in a pipeline
# +++++++++++++++++++++++++++++++
#
# The proposed transfer learning consists
# using a PCA to projet the probabilities
# on a graph.

with open(model_name, 'rb') as f:
    model_bytes = f.read()

pipe = Pipeline(steps=[(
    'deep',
    OnnxTransformer(model_bytes, runtime='onnxruntime1', change_batch_size=0)
), ('pca', PCA(2))])

X_train = numpy.vstack([im2array(img)
                        for _, img in imgs]).astype(numpy.float32)
pipe.fit(X_train)

proj = pipe.transform(X_train)
print(proj)

###########################################
# Graph for the PCA
# -----------------

fig, ax = plt.subplots(1, 1, figsize=(5, 5))
ax.plot(proj[:, 0], proj[:, 1], 'o')
Esempio n. 14
0
onx_bytes = []

for model in dec_models:
    model.fit(X_train)
    onx = convert_sklearn(model,
                          initial_types=[('X',
                                          FloatTensorType(
                                              (None, X.shape[1])))])
    onx_bytes.append(onx.SerializeToString())

##############################
# Pipeline with OnnxTransformer
# +++++++++++++++++++++++++++++++

pipe = make_pipeline(OnnxTransformer(onx_bytes[0]),
                     LogisticRegression(multi_class='ovr'))

################################
# Grid Search
# +++++++++++
#
# The serialized models are now used as a parameter
# in the grid search.

param_grid = [{
    'onnxtransformer__onnx_bytes': onx_bytes,
    'logisticregression__penalty': ['l2', 'l1'],
    'logisticregression__solver': ['liblinear', 'saga']
}]