def metric(self): totalTimer = Timer() with totalTimer: if self.method_param["kernel"] == "polynomial": if "degree" in self.method_param: degree = int(self.method_param["degree"]) else: degree = 1 kernel = mlpy.kernel_polynomial(self.data[0], self.data[0], d=degree) elif self.method_param["kernel"] == "gaussian": kernel = mlpy.kernel_gaussian(self.data[0], self.data[0], sigma=2) elif self.method_param["kernel"] == "linear": kernel = mlpy.kernel_linear(self.data[0], self.data[0]) elif self.method_param["kernel"] == "hyptan": kernel = mlpy.kernel_sigmoid(self.data[0], self.data[0]) model = mlpy.KPCA() model.learn(kernel) out = model.transform(kernel, **self.build_opts) metric = {} metric["runtime"] = totalTimer.ElapsedTime() return metric
def RunKPCAMlpy(): totalTimer = Timer() # Load input dataset. Log.Info("Loading dataset", self.verbose) data = np.genfromtxt(self.dataset, delimiter=',') try: with totalTimer: # Get the new dimensionality, if it is necessary. if "new_dimensionality" in options: d = int(options.pop("new_dimensionality")) if (d > data.shape[1]): Log.Fatal("New dimensionality (" + str(d) + ") cannot be greater " + "than existing dimensionality (" + str(data.shape[1]) + ")!") return -1 else: d = data.shape[0] # Get the kernel type and make sure it is valid. if not "kernel" in options: Log.Fatal("Choose kernel type, valid choices are 'polynomial', " + "'gaussian', 'linear' and 'hyptan'.") return -1 if options["kernel"] == "polynomial": if "degree" in options: degree = int(options.pop("degree")) else: degree = 1 kernel = mlpy.kernel_polynomial(data, data, d=degree) elif options["kernel"] == "gaussian": kernel = mlpy.kernel_gaussian(data, data, sigma=2) elif options["kernel"] == "linear": kernel = mlpy.kernel_linear(data, data) elif options["kernel"] == "hyptan": kernel = mlpy.kernel_sigmoid(data, data) else: Log.Fatal("Invalid kernel type (" + kernel.group(1) + "); valid " + "choices are 'polynomial', 'gaussian', 'linear' and 'hyptan'.") return -1 options.pop("kernel") if len(options) > 0: Log.Fatal("Unknown parameters: " + str(options)) raise Exception("unknown parameters") # Perform Kernel Principal Components Analysis. model = mlpy.KPCA() model.learn(kernel) out = model.transform(kernel, k=d) except Exception as e: Log.Fatal("Exception: " + str(e)) return -1 return totalTimer.ElapsedTime()
def RunKPCAMlpy(q): totalTimer = Timer() # Load input dataset. Log.Info("Loading dataset", self.verbose) data = np.genfromtxt(self.dataset, delimiter=',') try: with totalTimer: # Get the new dimensionality, if it is necessary. dimension = re.search('-d (\d+)', options) if not dimension: d = data.shape[0] else: d = int(dimension.group(1)) if (d > data.shape[1]): Log.Fatal("New dimensionality (" + str(d) + ") cannot be greater " + "than existing dimensionality (" + str(data.shape[1]) + ")!") q.put(-1) return -1 # Get the kernel type and make sure it is valid. kernel = re.search("-k ([^\s]+)", options) if not kernel: Log.Fatal("Choose kernel type, valid choices are 'polynomial', " + "'gaussian', 'linear' and 'hyptan'.") q.put(-1) return -1 elif kernel.group(1) == "polynomial": degree = re.search('-D (\d+)', options) degree = 1 if not degree else int(degree.group(1)) kernel = mlpy.kernel_polynomial(data, data, d=degree) elif kernel.group(1) == "gaussian": kernel = mlpy.kernel_gaussian(data, data, sigma=2) elif kernel.group(1) == "linear": kernel = mlpy.kernel_linear(data, data) elif kernel.group(1) == "hyptan": kernel = mlpy.kernel_sigmoid(data, data) else: Log.Fatal("Invalid kernel type (" + kernel.group(1) + "); valid " + "choices are 'polynomial', 'gaussian', 'linear' and 'hyptan'.") q.put(-1) return -1 # Perform Kernel Principal Components Analysis. model = mlpy.KPCA() model.learn(kernel) out = model.transform(kernel, k=d) except Exception as e: q.put(-1) return -1 time = totalTimer.ElapsedTime() q.put(time) return time
Kl = mlpy.kernel_linear(X, X) # compute the kernel matrix linear_kfda = mlpy.KFDA(lmb=0.001) linear_kfda.learn(Kl, y) # compute the tranformation vector zl = linear_kfda.transform(Kl) # embedded x into the kernel fisher space # Using Gaussian kernel sig = 1 Kg = mlpy.kernel_gaussian(X, X, sigma=sig) # compute the kernel matrix gaussian_kfda = mlpy.KFDA(lmb=0.001) gaussian_kfda.learn(Kg, y) # compute the tranformation vector zg = gaussian_kfda.transform(Kg) # embedded x into the kernel fisher space gaussian_kfda._coeff # alpha # Using sigmoid kernel gam=0.1 Ks = mlpy.kernel_sigmoid(X, X, gamma=gam, b=1.0) # compute the kernel matrix sigmoid_kfda = mlpy.KFDA(lmb=0.001) sigmoid_kfda.learn(Ks, y) # compute the tranformation vector zs = sigmoid_kfda.transform(Ks) # embedded x into the kernel fisher space sigmoid_kfda._coeff # Using polynomial kernel gam = 1.0 Kp = mlpy.kernel_polynomial(X, X, gamma=gam, b=1.0, d=2.0) # compute the kernel matrix polynomial_kfda = mlpy.KFDA(lmb=0.001) polynomial_kfda.learn(Kp, y) # compute the tranformation vector zp = polynomial_kfda.transform(Kp) # embedded x into the kernel fisher space polynomial_kfda._coeff # Step 3 of LDA: Solving the generalized eigenvalue problem for the matrix SW−1SB # Next, we will solve the generalized eigenvalue problem
def RunKPCAMlpy(q): totalTimer = Timer() # Load input dataset. Log.Info("Loading dataset", self.verbose) data = np.genfromtxt(self.dataset, delimiter=',') try: with totalTimer: # Get the new dimensionality, if it is necessary. dimension = re.search('-d (\d+)', options) if not dimension: d = data.shape[0] else: d = int(dimension.group(1)) if (d > data.shape[1]): Log.Fatal("New dimensionality (" + str(d) + ") cannot be greater " + "than existing dimensionality (" + str(data.shape[1]) + ")!") q.put(-1) return -1 # Get the kernel type and make sure it is valid. kernel = re.search("-k ([^\s]+)", options) if not kernel: Log.Fatal( "Choose kernel type, valid choices are 'polynomial', " + "'gaussian', 'linear' and 'hyptan'.") q.put(-1) return -1 elif kernel.group(1) == "polynomial": degree = re.search('-D (\d+)', options) degree = 1 if not degree else int(degree.group(1)) kernel = mlpy.kernel_polynomial(data, data, d=degree) elif kernel.group(1) == "gaussian": kernel = mlpy.kernel_gaussian(data, data, sigma=2) elif kernel.group(1) == "linear": kernel = mlpy.kernel_linear(data, data) elif kernel.group(1) == "hyptan": kernel = mlpy.kernel_sigmoid(data, data) else: Log.Fatal( "Invalid kernel type (" + kernel.group(1) + "); valid " + "choices are 'polynomial', 'gaussian', 'linear' and 'hyptan'." ) q.put(-1) return -1 # Perform Kernel Principal Components Analysis. model = mlpy.KPCA() model.learn(kernel) out = model.transform(kernel, k=d) except Exception as e: q.put(-1) return -1 time = totalTimer.ElapsedTime() q.put(time) return time