Esempio n. 1
0
def get_param_grids():
    lrs = [10**i for i in range(-4, -2)]
    gd_params = {'learning_rate': [0.0001], 'max_iters': [2000]}
    rhc_params = {
        'learning_rate': [0.1],
        'restarts': [100],  #[10] 
        'max_iters': [2000]
    }
    sa_params = {
        'learning_rate': [0.0001, 0.001, 0.01, 0.1],
        'schedule': [
            ExpDecay(),
            ExpDecay(exp_const=0.002),
            ExpDecay(exp_const=1 / 2000),
            GeomDecay(),
            GeomDecay(decay=.999),
            ArithDecay(),
            ArithDecay(decay=1 / 2000),
        ],
        'max_iters': [2000]
    }
    ga_params = {
        'learning_rate': [0.0001, 0.001, 0.01, 0.1],
        'pop_size': [400],  #[200, 400], #[200]
        'mutation_prob': [0.1, .2, .5, .9],
        'max_iters': [500]
    }

    params = {
        'gradient_descent': gd_params,
        'random_hill_climb': rhc_params,
        'simulated_annealing': sa_params,
        'genetic_alg': ga_params
    }
    return params
Esempio n. 2
0
    def test_arith_below_min():
        """Test arithmetic decay evaluation function for case where result is
        below the minimum"""

        schedule = ArithDecay(init_temp=10, decay=0.95, min_temp=1)
        x = schedule.evaluate(50)

        assert x == 1
Esempio n. 3
0
def get_param_grids():
    lrs = [10**i for i in range(-4, -2)]
    gd_params = {'learning_rate': lrs, 'max_iters': [2000]}
    rhc_params = {
        'learning_rate': lrs,
        'restarts': [10, 30],  #[10] 
        'max_iters': [2000]
    }
    sa_params = {
        'learning_rate': lrs,
        'schedule': [GeomDecay(), ArithDecay(),
                     ExpDecay()],
        'max_iters': [2000]
    }
    ga_params = {
        'learning_rate': lrs,
        'pop_size': [200],  #[200]
        'mutation_prob': [0.05, 0.1, 0.2],  #[0.1]
        'max_iters': [500]
    }

    params = {
        'gradient_descent': gd_params,
        'random_hill_climb': rhc_params,
        'simulated_annealing': sa_params,
        'genetic_alg': ga_params
    }
    return params
Esempio n. 4
0
def get_optimizers():
    return {
        'RHC': {
            'function': random_hill_climb,
            'kwargs': [{}],
        },
        'SA': {
            'function':
            simulated_annealing,
            'kwargs': [
                {
                    'schedule': ExpDecay()
                },
                {
                    'schedule': ExpDecay(exp_const=0.01)
                },
                {
                    'schedule': ExpDecay(exp_const=0.002)
                },
                {
                    'schedule': GeomDecay()
                },
                {
                    'schedule': GeomDecay(decay=.98)
                },
                {
                    'schedule': GeomDecay(decay=.96)
                },
                {
                    'schedule': ArithDecay()
                },
                {
                    'schedule': ArithDecay(decay=0.001)
                },
                {
                    'schedule': ArithDecay(decay=1 / 5000)
                },
                {
                    'schedule': ExpDecay(exp_const=0.002)
                },
            ]
        },
        'GA': {
            'function':
            genetic_alg,
            'kwargs': [
                {
                    'pop_size': 200,
                    'mutation_prob': 0.1
                },
                {
                    'pop_size': 200,
                    'mutation_prob': 0.2
                },
                {
                    'pop_size': 200,
                    'mutation_prob': 0.05
                },
                {
                    'pop_size': 800,
                    'mutation_prob': 0.1
                },
            ]
        },
        'MIMIC': {
            'function':
            mimic,
            'kwargs': [
                {
                    'pop_size': 200,
                    'keep_pct': 0.2,
                    #'fast_mimic': True
                },
                {
                    'pop_size': 200,
                    'keep_pct': 0.4,
                    #'fast_mimic': True
                },
                {
                    'pop_size': 400,
                    'keep_pct': 0.2,
                },
            ]
        }
    }
def get_optimizers():
    return {
        #'RHC': {
        #    'function': random_hill_climb,
        #    'kwargs': [
        #        {}
        #    ],
        #},
        'SA': {
            'function':
            simulated_annealing,
            'kwargs': [
                {
                    'schedule': ExpDecay()
                },
                #{'schedule': ExpDecay(exp_const=0.01)},
                {
                    'schedule': ExpDecay(exp_const=0.002)
                },
                {
                    'schedule': ExpDecay(exp_const=1 / 5000)
                },
                {
                    'schedule': GeomDecay()
                },
                #{'schedule': GeomDecay(decay=.98)},
                {
                    'schedule': GeomDecay(decay=.9993)
                },
                {
                    'schedule': ArithDecay()
                },
                #{'schedule': ArithDecay(decay=0.001)},
                {
                    'schedule': ArithDecay(decay=1 / 5000)
                },
            ]
        },
        #'GA': {
        #    'function': genetic_alg,
        #    'kwargs': [
        #        #{'pop_size': 200,
        #        # 'mutation_prob': 0.1
        #        #},
        #        #{'pop_size': 200,
        #        # 'mutation_prob': 0.2
        #        #},
        #        #{'pop_size': 200,
        #        # 'mutation_prob': 0.05
        #        #},
        #        #{'pop_size': 400,
        #        # 'mutation_prob': 0.4
        #        #},
        #        #{'pop_size': 400,
        #        # 'mutation_prob': 0.2
        #        #},
        #        #{'pop_size': 400,
        #        # 'mutation_prob': 0.1
        #        #},
        #        {'pop_size': 800,
        #         'mutation_prob': 0.1
        #        },
        #   ]
        #},
        #'MIMIC': {
        #    'function': mimic,
        #    'kwargs': [
        #        {'pop_size': 400,
        #         'keep_pct': 0.2,
        #        },
        #        {'pop_size': 400,
        #         'keep_pct': 0.1,
        #        },
        #        {'pop_size': 400,
        #         'keep_pct': 0.05,
        #        },
        #        #{'pop_size': 800,
        #        # 'keep_pct': 0.2,
        #        #},
        #        #{'pop_size': 800,
        #        # 'keep_pct': 0.1,
        #        #},
        #     ]

        #}
    }