Esempio n. 1
0
def load_dataset(
    context: MLClientCtx,
    dataset: str,
    name: str = "",
    file_ext: str = "parquet",
    params: dict = {},
) -> None:
    """Loads a scikit-learn toy dataset for classification or regression

    The following datasets are available ('name' : desription):

        'boston'          : boston house-prices dataset (regression)
        'iris'            : iris dataset (classification)
        'diabetes'        : diabetes dataset (regression)
        'digits'          : digits dataset (classification)
        'linnerud'        : linnerud dataset (multivariate regression)
        'wine'            : wine dataset (classification)
        'breast_cancer'   : breast cancer wisconsin dataset (classification)

    The scikit-learn functions return a data bunch including the following items:
    - data              the features matrix
    - target            the ground truth labels
    - DESCR             a description of the dataset
    - feature_names     header for data

    The features (and their names) are stored with the target labels in a DataFrame.

    For further details see https://scikit-learn.org/stable/datasets/index.html#toy-datasets

    :param context:    function execution context
    :param dataset:    name of the dataset to load
    :param name:       artifact name (defaults to dataset)
    :param file_ext:   output file_ext: parquet or csv
    :param params:     params of the sklearn load_data method
    """
    dataset = str(dataset)
    pkg_module = "sklearn.datasets"
    fname = f"load_{dataset}"

    pkg_module = __import__(pkg_module, fromlist=[fname])
    load_data_fn = getattr(pkg_module, fname)

    data = load_data_fn(**params)
    feature_names = data["feature_names"]

    xy = np.concatenate([data["data"], data["target"].reshape(-1, 1)], axis=1)
    if hasattr(feature_names, "append"):
        feature_names.append("labels")
    else:
        feature_names = np.append(feature_names, "labels")
    df = pd.DataFrame(data=xy, columns=feature_names)

    context.log_dataset(name or dataset, df=df, format=file_ext, index=False)
Esempio n. 2
0
def training(context: MLClientCtx, p1: int = 1, p2: int = 2) -> None:
    """Train a model.

    :param context: The runtime context object.
    :param p1: A model parameter.
    :param p2: Another model parameter.
    """
    # access input metadata, values, and inputs
    print(f"Run: {context.name} (uid={context.uid})")
    print(f"Params: p1={p1}, p2={p2}")
    context.logger.info("started training")

    # <insert training code here>

    # log the run results (scalar values)
    context.log_result("accuracy", p1 * 2)
    context.log_result("loss", p1 * 3)

    # add a lable/tag to this run
    context.set_label("category", "tests")

    # log a simple artifact + label the artifact
    # If you want to upload a local file to the artifact repo add src_path=<local-path>
    context.log_artifact("somefile",
                         body=b"abc is 123",
                         local_path="myfile.txt")

    # create a dataframe artifact
    df = pd.DataFrame([{
        "A": 10,
        "B": 100
    }, {
        "A": 11,
        "B": 110
    }, {
        "A": 12,
        "B": 120
    }])
    context.log_dataset("mydf", df=df)

    # Log an ML Model artifact, add metrics, params, and labels to it
    # and place it in a subdir ('models') under artifacts path
    context.log_model(
        "mymodel",
        body=b"abc is 123",
        model_file="model.txt",
        metrics={"accuracy": 0.85},
        parameters={"xx": "abc"},
        labels={"framework": "xgboost"},
        artifact_path=context.artifact_subpath("models"),
    )
Esempio n. 3
0
def gen_class_data(context: MLClientCtx,
                   n_samples: int,
                   m_features: int,
                   k_classes: int,
                   header: Optional[List[str]],
                   label_column: Optional[str] = "labels",
                   weight: float = 0.5,
                   random_state: int = 1,
                   key: str = "classifier-data",
                   file_ext: str = "parquet",
                   sk_params={}):
    """Create a binary classification sample dataset and save.
    If no filename is given it will default to:
    "simdata-{n_samples}X{m_features}.parquet".

    Additional scikit-learn parameters can be set using **sk_params, please see https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html for more details.

    :param context:       function context
    :param n_samples:     number of rows/samples
    :param m_features:    number of cols/features
    :param k_classes:     number of classes
    :param header:        header for features array
    :param label_column:  column name of ground-truth series
    :param weight:        fraction of sample negative value (ground-truth=0)
    :param random_state:  rng seed (see https://scikit-learn.org/stable/glossary.html#term-random-state)
    :param key:           key of data in artifact store
    :param file_ext:      (pqt) extension for parquet file
    :param sk_params:     additional parameters for `sklearn.datasets.make_classification`
    """
    features, labels = make_classification(n_samples=n_samples,
                                           n_features=m_features,
                                           weights=weight,
                                           n_classes=k_classes,
                                           random_state=random_state,
                                           **sk_params)

    # make dataframes, add column names, concatenate (X, y)
    X = pd.DataFrame(features)
    if not header:
        X.columns = ["feat_" + str(x) for x in range(m_features)]
    else:
        X.columns = header

    y = pd.DataFrame(labels, columns=[label_column])
    data = pd.concat([X, y], axis=1)

    context.log_dataset(key, df=data, format=file_ext, index=False)
Esempio n. 4
0
def sql_to_file(
    context: MLClientCtx,
    sql_query: str,
    database_url: str,
    file_ext: str = "parquet",
) -> None:
    """SQL Ingest - Ingest data using SQL query

    :param context:           the function context
    :param sql_query:         the sql query used to retrieve the data
    :param database_url:      database connection URL
    :param file_ext:          ("parquet") format for result file
    """

    engine = create_engine(database_url)
    df = pd.read_sql(sql_query, engine)

    context.log_dataset(
        "query result",
        df=df,
        format=file_ext,
        artifact_path=context.artifact_subpath("data"),
    )
Esempio n. 5
0
def fit(context: MLClientCtx,
        dataset: DataItem,
        num_boost_round: int = 10,
        evals: List[Tuple[DMatrix, str]] = [],
        obj: Union[Callable, str] = "",
        feval: Union[Callable, str] = None,
        maximize: bool = False,
        early_stopping_rounds: int = None,
        evals_result: dict = {},
        verbose_eval: bool = True,
        xgb_model: DataItem = None,
        callbacks: List[Callable] = [],
        label_column: str = "labels",
        encode_cols: dict = {},
        sample: int = -1,
        test_size: float = 0.25,
        valid_size: float = 0.75,
        random_state: int = 1994,
        models_dest: str = "models",
        plots_dest: str = "plots",
        file_ext: str = "csv",
        test_set_key: str = "test-set",
        gpus: bool = False) -> None:
    """low level xgboost train api

    for the xgboost `train` params see:
    https://xgboost.readthedocs.io/en/latest/python/python_api.html#xgboost.train

    Note:  the first parameter of xgboost's `train` method is a dict of parameters
           supplied to the booster (engine).  To modify one of those simply
           add a task parameter (when running you supply an mlrun NewTask) with the
           prefix "XGB_". So for example, to set the 'tree_method' parameter to 'approx',
           add {"XGB_tree_method":"approx"} to the task params key.

    :param context:           the function context
    :param dataset:           the full data set, train, valid and test will be extracted and
                              each converted to a DMatrix for input to xgboost's `train`
    :param label_column:      ground-truth (y) labels
    :param encode_cols:       dictionary of names and prefixes for columns that are
                              to hot be encoded.
    :param sample:            Selects the first n rows, or select a sample
                              starting from the first. If negative <-1, select
                              a random sample
    :param test_size:         (0.05) test set size
    :param valid_size:        (0.75) Once the test set has been removed the
                              training set gets this proportion.
    :param random_state:      (1) sklearn rng seed
    :param models_dest:       destination subfolder for model artifacts
    :param plots_dest:        destination subfolder for plot artifacts
    :param file_ext:          format for test_set_key hold out data
    :param test_set_key:      (test-set), key of held out data in artifact store
    :param gpus:              (False), run on gpus
    """
    raw, labels, header = get_sample(dataset, sample, label_column)

    # hot-encode
    if encode_cols:
        raw = pd.get_dummies(raw,
                             columns=list(encode_cols.keys()),
                             prefix=list(encode_cols.values()),
                             drop_first=True)

    # split the sample into train validate, test and calibration sets:
    (xtrain, ytrain), (xvalid, yvalid), (xtest, ytest) = \
        get_splits(raw, labels, 3, test_size, valid_size, random_state)

    # save test data as regular dataframe as it may be used by other process
    context.log_dataset(test_set_key,
                        df=pd.concat([xtest, ytest], axis=1),
                        format=file_ext,
                        index=False)

    # convert to xgboost DMatrix (todo - dask, gpu)
    dtrain = DMatrix(xtrain, label=ytrain)
    dvalid = DMatrix(xvalid, label=yvalid)

    boost_params = {
        "tree_method": "gpu_hist" if gpus else "hist",
        "seed": random_state,
        "disable_default_eval_metric": 1,
        "objective": "reg:squaredlogerror",
        "eval_metric": "rmsle"
    }

    # enable user to customize `booster param` parameters
    for k, v in context.parameters.items():
        if k.startswith('XGB_'):
            boost_params[k[4:]] = v

    # collect learning curves / training history
    results = dict()

    booster = train(
        boost_params,
        dtrain=dtrain,
        num_boost_round=num_boost_round,
        evals=[(dtrain, "train"), (dvalid, "valid")],
        evals_result=results,
        obj=squared_log,
        feval=rmsle,
        maximize=maximize,
        early_stopping_rounds=early_stopping_rounds,
        verbose_eval=verbose_eval,
        # xgb_model=xgb_model,
        # callbacks: List[Callable] = []
    )

    context.log_model("model",
                      body=dumps(booster),
                      model_file="model.pkl",
                      artifact_path='/User/artifacts/tttt')

    learning_curves(context, results)
Esempio n. 6
0
def train_model(
    context: MLClientCtx,
    model_pkg_class: str,
    dataset: DataItem,
    label_column: str = "labels",
    encode_cols: List[str] = [],
    sample: int = -1,
    test_size: float = 0.30,
    train_val_split: float = 0.75,
    test_set_key: str = "test_set",
    model_evaluator=None,
    models_dest: str = "",
    plots_dest: str = "plots",
    file_ext: str = "parquet",
    model_pkg_file: str = "",
    random_state: int = 1,
) -> None:
    """train a classifier
    
    An optional cutom model evaluator can be supplied that should have the signature:
    `my_custom_evaluator(context, xvalid, yvalid, model)` and return a dictionary of 
    scalar "results", a "plots" keys with a list of PlotArtifacts, and 
    and "tables" key containing a returned list of TableArtifacts.
    
    :param context:           the function context
    :param model_pkg_class:   the model to train, e.g, "sklearn.neural_networks.MLPClassifier", 
                              or json model config
    :param dataset:           ("data") name of raw data file
    :param label_column:      ground-truth (y) labels
    :param encode_cols:       dictionary of names and prefixes for columns that are
                              to hot be encoded.
    :param sample:            Selects the first n rows, or select a sample
                              starting from the first. If negative <-1, select
                              a random sample
    :param test_size:         (0.05) test set size
    :param train_val_split:   (0.75) Once the test set has been removed the
                              training set gets this proportion.
    :param test_set_key:      key of held out data in artifact store
    :param model_evaluator:   (None) a custom model evaluator can be specified
    :param models_dest:       ("") models subfolder on artifact path
    :param plots_dest:        plot subfolder on artifact path
    :param file_ext:          ("parquet") format for test_set_key hold out data
    :param random_state:      (1) sklearn rng seed

    """
    models_dest = models_dest or "model"

    raw, labels, header = get_sample(dataset, sample, label_column)

    if encode_cols:
        raw = pd.get_dummies(raw,
                             columns=list(encode_cols.keys()),
                             prefix=list(encode_cols.values()),
                             drop_first=True)

    (xtrain, ytrain), (xvalid, yvalid), (xtest, ytest) = get_splits(
        raw, labels, 3, test_size, 1 - train_val_split, random_state)

    context.log_dataset(test_set_key,
                        df=pd.concat([xtest, ytest.to_frame()], axis=1),
                        format=file_ext,
                        index=False,
                        labels={"data-type": "held-out"},
                        artifact_path=context.artifact_subpath('data'))

    model_config = gen_sklearn_model(model_pkg_class,
                                     context.parameters.items())

    model_config["FIT"].update({"X": xtrain, "y": ytrain.values})

    ClassifierClass = create_class(model_config["META"]["class"])

    model = ClassifierClass(**model_config["CLASS"])

    model.fit(**model_config["FIT"])

    artifact_path = context.artifact_subpath(models_dest)
    plots_path = context.artifact_subpath(models_dest, plots_dest)
    if model_evaluator:
        eval_metrics = model_evaluator(context,
                                       xvalid,
                                       yvalid,
                                       model,
                                       plots_artifact_path=plots_path)
    else:
        eval_metrics = eval_model_v2(context,
                                     xvalid,
                                     yvalid,
                                     model,
                                     plots_artifact_path=plots_path)

    context.set_label('class', model_pkg_class)
    context.log_model("model",
                      body=dumps(model),
                      artifact_path=artifact_path,
                      extra_data=eval_metrics,
                      model_file="model.pkl",
                      metrics=context.results,
                      labels={"class": model_pkg_class})
Esempio n. 7
0
def describe_spark(context: MLClientCtx,
                   dataset: DataItem,
                   artifact_path,
                   bins: int = 30,
                   describe_extended: bool = True):

    location = dataset.local()

    spark = SparkSession.builder.appName("Spark job").getOrCreate()

    df = spark.read.csv(location, header=True, inferSchema=True)

    kwargs = []

    float_cols = [
        item[0] for item in df.dtypes
        if item[1].startswith('float') or item[1].startswith('double')
    ]

    if describe_extended == True:

        table, variables, freq = describe(df, bins, float_cols, kwargs)

        tbl_1 = variables.reset_index()

        if len(freq) != 0:
            tbl_2 = pd.DataFrame.from_dict(
                freq, orient="index").sort_index().stack().reset_index()
            tbl_2.columns = ['col', 'key', 'val']
            tbl_2['Merged'] = [{
                key: val
            } for key, val in zip(tbl_2.key, tbl_2.val)]
            tbl_2 = tbl_2.groupby(
                'col',
                as_index=False).agg(lambda x: tuple(x))[['col', 'Merged']]

            summary = pd.merge(tbl_1,
                               tbl_2,
                               how='left',
                               left_on='index',
                               right_on='col')

        else:
            summary = tbl_1

        context.log_dataset("summary_stats",
                            df=summary,
                            format="csv",
                            index=False,
                            artifact_path=context.artifact_subpath('data'))

        context.log_results(table)

    else:
        tbl_1 = df.describe().toPandas()

        summary = tbl_1.T

        context.log_dataset("summary_stats",
                            df=summary,
                            format="csv",
                            index=False,
                            artifact_path=context.artifact_subpath('data'))

    spark.stop()
Esempio n. 8
0
def train_model(context: MLClientCtx,
                dataset: DataItem,
                model_pkg_class: str,
                label_column: str = "label",
                train_validation_size: float = 0.75,
                sample: float = 1.0,
                models_dest: str = "models",
                test_set_key: str = "test_set",
                plots_dest: str = "plots",
                dask_key: str = "dask_key",
                dask_persist: bool = False,
                scheduler_key: str = '',
                file_ext: str = "parquet",
                random_state: int = 42) -> None:
    """
    Train a sklearn classifier with Dask
    
    :param context:                 Function context.
    :param dataset:                 Raw data file.
    :param model_pkg_class:         Model to train, e.g, "sklearn.ensemble.RandomForestClassifier", 
                                    or json model config.
    :param label_column:            (label) Ground-truth y labels.
    :param train_validation_size:   (0.75) Train validation set proportion out of the full dataset.
    :param sample:                  (1.0) Select sample from dataset (n-rows/% of total), randomzie rows as default.
    :param models_dest:             (models) Models subfolder on artifact path.
    :param test_set_key:            (test_set) Mlrun db key of held out data in artifact store.
    :param plots_dest:              (plots) Plot subfolder on artifact path.
    :param dask_key:                (dask key) Key of dataframe in dask client "datasets" attribute.
    :param dask_persist:            (False) Should the data be persisted (through the `client.persist`)
    :param scheduler_key:           (scheduler) Dask scheduler configuration, json also logged as an artifact.
    :param file_ext:                (parquet) format for test_set_key hold out data
    :param random_state:            (42) sklearn seed
    """

    if scheduler_key:
        client = Client(scheduler_key)

    else:
        client = Client()

    context.logger.info("Read Data")
    df = dataset.as_df(df_module=dd)

    context.logger.info("Prep Data")
    numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']
    df = df.select_dtypes(include=numerics)

    if df.isna().any().any().compute() == True:
        raise Exception('NAs valus found')

    df_header = df.columns

    df = df.sample(frac=sample).reset_index(drop=True)
    encoder = LabelEncoder()
    encoder = encoder.fit(df[label_column])
    X = df.drop(label_column, axis=1).to_dask_array(lengths=True)
    y = encoder.transform(df[label_column])

    classes = df[label_column].drop_duplicates()  # no unique values in dask
    classes = [str(i) for i in classes]

    context.logger.info("Split and Train")
    X_train, X_test, y_train, y_test = model_selection.train_test_split(
        X, y, train_size=train_validation_size, random_state=random_state)

    scaler = StandardScaler()
    scaler = scaler.fit(X_train)
    X_train_transformed = scaler.transform(X_train)
    X_test_transformed = scaler.transform(X_test)

    model_config = gen_sklearn_model(model_pkg_class,
                                     context.parameters.items())

    model_config["FIT"].update({"X": X_train_transformed, "y": y_train})

    ClassifierClass = create_class(model_config["META"]["class"])

    model = ClassifierClass(**model_config["CLASS"])

    with joblib.parallel_backend("dask"):

        model = model.fit(**model_config["FIT"])

    artifact_path = context.artifact_subpath(models_dest)

    plots_path = context.artifact_subpath(models_dest, plots_dest)

    context.logger.info("Evaluate")
    extra_data_dict = {}
    for report in (ROCAUC, ClassificationReport, ConfusionMatrix):

        report_name = str(report.__name__)
        plt.cla()
        plt.clf()
        plt.close()

        viz = report(model, classes=classes, per_class=True, is_fitted=True)
        viz.fit(X_train_transformed,
                y_train)  # Fit the training data to the visualizer
        viz.score(X_test_transformed,
                  y_test.compute())  # Evaluate the model on the test data

        plot = context.log_artifact(PlotArtifact(report_name,
                                                 body=viz.fig,
                                                 title=report_name),
                                    db_key=False)
        extra_data_dict[str(report)] = plot

        if report_name == 'ROCAUC':
            context.log_results({
                "micro": viz.roc_auc.get("micro"),
                "macro": viz.roc_auc.get("macro")
            })

        elif report_name == 'ClassificationReport':
            for score_name in viz.scores_:
                for score_class in viz.scores_[score_name]:

                    context.log_results({
                        score_name + "-" + score_class:
                        viz.scores_[score_name].get(score_class)
                    })

    viz = FeatureImportances(model,
                             classes=classes,
                             per_class=True,
                             is_fitted=True,
                             labels=df_header.delete(
                                 df_header.get_loc(label_column)))
    viz.fit(X_train_transformed, y_train)
    viz.score(X_test_transformed, y_test)

    plot = context.log_artifact(PlotArtifact("FeatureImportances",
                                             body=viz.fig,
                                             title="FeatureImportances"),
                                db_key=False)
    extra_data_dict[str("FeatureImportances")] = plot

    plt.cla()
    plt.clf()
    plt.close()

    context.logger.info("Log artifacts")
    artifact_path = context.artifact_subpath(models_dest)

    plots_path = context.artifact_subpath(models_dest, plots_dest)

    context.set_label('class', model_pkg_class)

    context.log_model("model",
                      body=dumps(model),
                      artifact_path=artifact_path,
                      model_file="model.pkl",
                      extra_data=extra_data_dict,
                      metrics=context.results,
                      labels={"class": model_pkg_class})

    context.log_artifact("standard_scaler",
                         body=dumps(scaler),
                         artifact_path=artifact_path,
                         model_file="scaler.gz",
                         label="standard_scaler")

    context.log_artifact("label_encoder",
                         body=dumps(encoder),
                         artifact_path=artifact_path,
                         model_file="encoder.gz",
                         label="label_encoder")

    df_to_save = delayed(np.column_stack)((X_test, y_test)).compute()
    context.log_dataset(
        test_set_key,
        df=pd.DataFrame(df_to_save,
                        columns=df_header),  # improve log dataset ability
        format=file_ext,
        index=False,
        labels={"data-type": "held-out"},
        artifact_path=context.artifact_subpath('data'))

    context.logger.info("Done!")
Esempio n. 9
0
def permutation_importance(
    context: MLClientCtx,
    model: DataItem,
    dataset: DataItem,
    labels: str,
    figsz=(10, 5),
    plots_dest: str = "plots",
    fitype: str = "permute",
) -> pd.DataFrame:
    """calculate change in metric

    type 'permute' uses a pre-estimated model
    type 'dropcol' uses a re-estimates model

    :param context:     the function's execution context
    :param model:       a trained model
    :param dataset:     features and ground truths, regression targets
    :param labels       name of the ground truths column
    :param figsz:       matplotlib figure size
    :param plots_dest:  path within artifact store
    :
    """
    model_file, model_data, _ = get_model(model.url, suffix=".pkl")
    model = load(open(str(model_file), "rb"))

    X = dataset.as_df()
    y = X.pop(labels)
    header = X.columns

    metric = _oob_classifier_accuracy

    baseline = metric(model, X, y)

    imp = []
    for col in X.columns:
        if fitype is "permute":
            save = X[col].copy()
            X[col] = np.random.permutation(X[col])
            m = metric(model, X, y)
            X[col] = save
            imp.append(baseline - m)
        elif fitype is "dropcol":
            X_ = X.drop(col, axis=1)
            model_ = clone(model)
            #model_.random_state = random_state
            model_.fit(X_, y)
            o = model_.oob_score_
            imp.append(baseline - o)
        else:
            raise ValueError(
                "unknown fitype, only 'permute' or 'dropcol' permitted")

    zipped = zip(imp, header)
    feature_imp = pd.DataFrame(sorted(zipped),
                               columns=["importance", "feature"])
    feature_imp.sort_values(by="importance", ascending=False, inplace=True)

    plt.clf()
    plt.figure(figsize=figsz)
    sns.barplot(x="importance", y="feature", data=feature_imp)
    plt.title(f"feature importances-{fitype}")
    plt.tight_layout()

    context.log_artifact(
        PlotArtifact(f"feature importances-{fitype}", body=plt.gcf()),
        local_path=f"{plots_dest}/feature-permutations.html",
    )
    context.log_dataset(f"feature-importances-{fitype}-tbl",
                        df=feature_imp,
                        index=False)
Esempio n. 10
0
def data_clean(context: MLClientCtx,
               src: DataItem,
               file_ext: str = "csv",
               models_dest: str = "models/encoders",
               cleaned_key: str = "cleaned-data",
               encoded_key: str = "encoded-data"):
    df = src.as_df()

    # drop columns
    drop_cols_list = ["customerID", "TotalCharges"]
    df.drop(drop_cols_list, axis=1, inplace=True)

    # header transformations
    old_cols = df.columns
    rename_cols_map = {
        "SeniorCitizen": "senior",
        "Partner": "partner",
        "Dependents": "deps",
        "Churn": "labels"
    }
    df.rename(rename_cols_map, axis=1, inplace=True)

    # add drop column to logs:
    for col in drop_cols_list:
        rename_cols_map.update({col: "_DROPPED_"})

    # log the op
    tp = os.path.join(models_dest, "preproc-column_map.json")
    context.log_artifact("preproc-column_map.json",
                         body=json.dumps(rename_cols_map),
                         local_path=tp)
    df = df.applymap(lambda x: "No" if str(x).startswith("No ") else x)

    # encode numerical type as category bins (ordinal)
    bins = [0, 12, 24, 36, 48, 60, np.inf]
    labels = [0, 1, 2, 3, 4, 5]
    tenure = df.tenure.copy(deep=True)
    df["tenure_map"] = pd.cut(df.tenure, bins, labels=False)
    tenure_map = dict(zip(bins, labels))
    # save this transformation
    tp = os.path.join(models_dest, "preproc-numcat_map.json")
    context.log_artifact("preproc-numcat_map.json",
                         body=bytes(json.dumps(tenure_map).encode("utf-8")),
                         local_path=tp)

    context.log_dataset(cleaned_key, df=df, format=file_ext, index=False)
    fix_cols = [
        "gender", "partner", "deps", "OnlineSecurity", "OnlineBackup",
        "DeviceProtection", "TechSupport", "StreamingTV", "StreamingMovies",
        "PhoneService", "MultipleLines", "PaperlessBilling", "InternetService",
        "Contract", "PaymentMethod", "labels"
    ]

    d = defaultdict(LabelEncoder)
    df[fix_cols] = df[fix_cols].apply(
        lambda x: d[x.name].fit_transform(x.astype(str)))
    context.log_dataset(encoded_key, df=df, format=file_ext, index=False)

    model_bin = dumps(d)
    context.log_model("model",
                      body=model_bin,
                      artifact_path=os.path.join(context.artifact_path,
                                                 models_dest),
                      model_file="model.pkl")
Esempio n. 11
0
def data_clean(
    context: MLClientCtx,
    src: DataItem,
    file_ext: str = "csv",
    models_dest: str = "models/encoders",
    cleaned_key: str = "cleaned-data",
    encoded_key: str = "encoded-data",
):
    """process a raw churn data file

    Data has 3 states here: `raw`, `cleaned` and `encoded`

    * `raw` kept by default, the pipeline begins with a raw data artifact
    * `cleaned` kept for charts, presentations
    * `encoded` is input for a cross validation and training function

    steps (not necessarily in correct order, some parallel)
    * column name maps
    * deal with nans and other types of missings/junk
    * label encode binary and ordinal category columns
    * create category ranges from numerical columns
    And finally,
    * test

    Why we don't one-hot-encode here? One hot encoding isn't a necessary
    step for all algorithms. It can also generate a very large feature
    matrix that doesn't need to be serialized (even if sparse).
    So we leave one-hot-encoding for the training step.

    What about scaling numerical columns? Same as why we don't one hot
    encode here. Do we scale before train-test split?  IMHO, no.  Scaling
    before splitting introduces a type of data leakage.  In addition,
    many estimators are completely immune to the monotonic transformations
    implied by scaling, so why waste the cycles?

    TODO:
        * parallelize where possible
        * more abstraction (more parameters, chain sklearn transformers)
        * convert to marketplace function

    :param context:          the function execution context
    :param src:              an artifact or file path
    :param file_ext:         file type for artifacts
    :param models_dest:       label encoders and other preprocessing steps
                             should be saved together with other pipeline
                             models
    :param cleaned_key:      key of cleaned data table in artifact store
    :param encoded_key:      key of encoded data table in artifact store
    """
    df = src.as_df()

    # drop columns
    drop_cols_list = ["customerID", "TotalCharges"]
    df.drop(drop_cols_list, axis=1, inplace=True)

    # header transformations
    rename_cols_map = {
        "SeniorCitizen": "senior",
        "Partner": "partner",
        "Dependents": "deps",
        "Churn": "labels",
    }
    df.rename(rename_cols_map, axis=1, inplace=True)

    # add drop column to logs:
    for col in drop_cols_list:
        rename_cols_map.update({col: "_DROPPED_"})

    # log the op
    tp = os.path.join(models_dest, "preproc-column_map.json")
    context.log_artifact("preproc-column_map.json",
                         body=json.dumps(rename_cols_map),
                         local_path=tp)

    # VALUE transformations

    # clean
    # truncate reply to "No"
    df = df.applymap(lambda x: "No" if str(x).startswith("No ") else x)

    # encode numerical type as category bins (ordinal)
    bins = [0, 12, 24, 36, 48, 60, np.inf]
    labels = [0, 1, 2, 3, 4, 5]
    df["tenure_map"] = pd.cut(df.tenure, bins, labels=False)
    tenure_map = dict(zip(bins, labels))
    # save this transformation
    tp = os.path.join(models_dest, "preproc-numcat_map.json")
    context.log_artifact(
        "preproc-numcat_map.json",
        body=bytes(json.dumps(tenure_map).encode("utf-8")),
        local_path=tp,
    )

    context.log_dataset(cleaned_key, df=df, format=file_ext, index=False)

    # label encoding - generate model for each column saved in dict
    # some of these columns may be hot encoded in the training step
    fix_cols = [
        "gender",
        "partner",
        "deps",
        "OnlineSecurity",
        "OnlineBackup",
        "DeviceProtection",
        "TechSupport",
        "StreamingTV",
        "StreamingMovies",
        "PhoneService",
        "MultipleLines",
        "PaperlessBilling",
        "InternetService",
        "Contract",
        "PaymentMethod",
        "labels",
    ]

    d = defaultdict(LabelEncoder)
    df[fix_cols] = df[fix_cols].apply(
        lambda x: d[x.name].fit_transform(x.astype(str)))
    context.log_dataset(encoded_key, df=df, format=file_ext, index=False)

    model_bin = dumps(d)
    context.log_model(
        "model",
        body=model_bin,
        artifact_path=os.path.join(context.artifact_path, models_dest),
        model_file="model.pkl",
    )
Esempio n. 12
0
def arc_to_parquet(context: MLClientCtx,
                   archive_url: DataItem,
                   header: List[str] = [None],
                   chunksize: int = 0,
                   dtype=None,
                   encoding: str = "latin-1",
                   key: str = "data",
                   dataset: str = "None",
                   part_cols=[],
                   file_ext: str = "parquet",
                   index: bool = False,
                   refresh_data: bool = False,
                   stats: bool = False) -> None:
    """Open a file/object archive and save as a parquet file or dataset

    Notes
    -----
    * this function is typically for large files, please be sure to check all settings
    * partitioning requires precise specification of column types.
    * the archive_url can be any file readable by pandas read_csv, which includes tar files
    * if the `dataset` parameter is not empty, then a partitioned dataset will be created
    instead of a single file in the folder `dataset`
    * if a key exists already then it will not be re-acquired unless the `refresh_data` param
    is set to `True`.  This is in case the original file is corrupt, or a refresh is
    required.

    :param context:        the function context
    :param archive_url:    MLRun data input (DataItem object)
    :param chunksize:      (0) when > 0, row size (chunk) to retrieve
                           per iteration
    :param dtype           destination data type of specified columns
    :param encoding        ("latin-8") file encoding
    :param key:            key in artifact store (when log_data=True)
    :param dataset:        (None) if not None then "target_path/dataset"
                           is folder for partitioned files
    :param part_cols:      ([]) list of partitioning columns
    :param file_ext:       (parquet) csv/parquet file extension
    :param index:          (False) pandas save index option
    :param refresh_data:   (False) overwrite existing data at that location
    :param stats:          (None) calculate table stats when logging artifact
    """
    base_path = context.artifact_path
    os.makedirs(base_path, exist_ok=True)

    archive_url = archive_url.local()

    if dataset is not None:
        dest_path = os.path.join(base_path, dataset)
        exists = os.path.isdir(dest_path)
    else:
        dest_path = os.path.join(base_path, key + f".{file_ext}")
        exists = os.path.isfile(dest_path)

    if not exists:
        context.logger.info("destination file does not exist, downloading")
        if chunksize > 0:
            header = _chunk_readwrite(archive_url, dest_path, chunksize,
                                      encoding, dtype, dataset)
            context.log_dataset(key=key,
                                stats=stats,
                                format='parquet',
                                target_path=dest_path)
        else:
            df = pd.read_csv(archive_url)
            context.log_dataset(key, df=df, format=file_ext, index=index)
    else:
        context.logger.info("destination file already exists, nothing done")
Esempio n. 13
0
def train_model(
    context: MLClientCtx,
    dataset: DataItem,
    event_column: str = "labels",
    time_column: str = "tenure",
    encode_cols: dict = {},
    strata_cols: list = [],
    plot_cov_groups: bool = False,
    p_value: float = 0.005,
    sample: int = -1,
    test_size: float = 0.25,
    valid_size: float = 0.75,  # (after test removed)
    random_state: int = 1,
    models_dest: str = "",
    plots_dest: str = "",
    file_ext: str = "csv",
) -> None:
    """train models to predict the timing of events

    Although identical in structure to other training functions, this one
    requires generating a 'Y' that represents the age/duration/tenure of
    the obervation, designated 'tenure' here, and a binary labels columns that
    represents the event of interest, churned/not-churned.

    In addition, there is a strata_cols parameter, representing a list of
    stratification (aka grouping) variables.

    :param context:           the function context
    :param dataset:           ("data") name of raw data file
    :param event_column:      ground-truth (y) labels (considered as events in this model)
    :param time_column:       age or tenure column
    :param encode_cols:       dictionary of names and prefixes for columns that are
                              to hot be encoded.
    :param strata_cols:       columns used to stratify predictors
    :param plot_cov_groups:
    :param p_value:           (0.005) max p value for coeffcients selected
    :param sample:            Selects the first n rows, or select a sample
                              starting from the first. If negative <-1, select
                              a random sample
    :param test_size:         (0.25) test set size
    :param valid_size:        (0.75) Once the test set has been removed the
                              training set gets this proportion.
    :param random_state:      (1) sklearn rng seed
    :param models_dest:       destination subfolder for model artifacts
    :param plots_dest:        destination subfolder for plot artifacts
    :param file_ext:          format for test_set_key hold out data
    """
    from lifelines.plotting import plot_lifetimes
    import matplotlib.pyplot as plt

    models_dest = models_dest or "models"
    plots_dest = plots_dest or f"plots/{context.name}"

    raw, tenure, header = get_sample(dataset, sample, time_column)

    if encode_cols:
        raw = pd.get_dummies(
            raw,
            columns=list(encode_cols.keys()),
            prefix=list(encode_cols.values()),
            drop_first=True,
        )

    (xtrain, ytrain), (xvalid, yvalid), (xtest, ytest) = get_splits(
        raw, tenure, 3, test_size, valid_size, random_state)
    for X in [xtrain, xvalid, xtest]:
        drop_cols = X.columns.str.startswith(time_column)
        X.drop(X.columns[drop_cols], axis=1, inplace=True)
    for Y in [ytrain, yvalid, ytest]:
        Y.name = time_column

    context.log_dataset(
        "tenured-test-set",
        df=pd.concat([xtest, ytest.to_frame()], axis=1),
        format=file_ext,
        index=False,
    )

    km_model = KaplanMeierFitter().fit(ytrain, xtrain.labels)
    _kaplan_meier_log_model(context, km_model, models_dest=models_dest)

    coxdata = pd.concat([xtrain, ytrain.to_frame()], axis=1)
    cx_model = CoxPHFitter().fit(coxdata,
                                 time_column,
                                 event_column,
                                 strata=strata_cols)
    _coxph_log_model(
        context,
        cx_model,
        models_dest=models_dest,
        plot_cov_groups=plot_cov_groups,
        extra_data={"km": f"{models_dest}/km"},
    )
Esempio n. 14
0
def train_model(
    context: MLClientCtx,
    model_type: str,
    dataset: Union[DataItem, pd.core.frame.DataFrame],
    label_column: str = "labels",
    encode_cols: dict = {},
    sample: int = -1,
    imbal_vec=[],
    test_size: float = 0.25,
    valid_size: float = 0.75,
    random_state: int = 1,
    models_dest: str = "models",
    plots_dest: str = "plots",
    eval_metrics: list = ["error", "auc"],
    file_ext: str = "parquet",
    test_set: str = "test_set",
) -> None:
    """train an xgboost model.

    Note on imabalanced data:  the `imbal_vec` parameter represents the measured
    class representations in the sample and can be used as a first step in tuning
    an XGBoost model.  This isn't a hyperparamter, merely an estimate that should
    be set as 'constant' throughout tuning process.

    :param context:           the function context
    :param model_type:        the model type to train, "classifier", "regressor"...
    :param dataset:           ("data") name of raw data file
    :param label_column:      ground-truth (y) labels
    :param encode_cols:       dictionary of names and prefixes for columns that are
                              to hot be encoded.
    :param sample:            Selects the first n rows, or select a sample
                              starting from the first. If negative <-1, select
                              a random sample
    :param imbal_vec:         ([]) vector of class weights seen in sample
    :param test_size:         (0.05) test set size
    :param valid_size:        (0.75) Once the test set has been removed the
                              training set gets this proportion.
    :param random_state:      (1) sklearn rng seed
    :param models_dest:       destination subfolder for model artifacts
    :param plots_dest:        destination subfolder for plot artifacts
    :param eval_metrics:      (["error", "auc"]) learning curve metrics
    :param file_ext:          format for test_set_key hold out data
    :param test-set:          (test_set) key of held out data in artifact store
    """
    models_dest = models_dest or "models"
    plots_dest = plots_dest or f"plots/{context.name}"

    raw, labels, header = get_sample(dataset, sample, label_column)

    if encode_cols:
        raw = pd.get_dummies(
            raw,
            columns=list(encode_cols.keys()),
            prefix=list(encode_cols.values()),
            drop_first=True,
        )

    (xtrain, ytrain), (xvalid, yvalid), (xtest, ytest) = get_splits(
        raw, labels, 3, test_size, valid_size, random_state)

    context.log_dataset(test_set,
                        df=pd.concat([xtest, ytest], axis=1),
                        format=file_ext,
                        index=False)

    model_config = _gen_xgb_model(model_type, context.parameters.items())

    XGBBoostClass = create_class(model_config["META"]["class"])
    model = XGBBoostClass(**model_config["CLASS"])

    model_config["FIT"].update({
        "X": xtrain,
        "y": ytrain.values,
        "eval_set": [(xtrain, ytrain), (xvalid, yvalid)],
        "eval_metric": eval_metrics,
    })

    model.fit(**model_config["FIT"])

    eval_metrics = eval_model_v2(context, xvalid, yvalid, model)

    model_bin = dumps(model)
    context.log_model(
        "model",
        body=model_bin,
        artifact_path=os.path.join(context.artifact_path, models_dest),
        model_file="model.pkl",
    )