Esempio n. 1
0
import mlsql_model
import mlsql
from sklearn.svm import SVC

clf = SVC()

mlsql.sklearn_configure_params(clf)

X, y = mlsql.sklearn_all_data()

clf.fit(X, y)

X_test, y_test = mlsql.get_validate_data()
if len(X_test) > 0:
    testset_score = clf.score(X_test, y_test)
    print("mlsql_validation_score:%f" % testset_score)

mlsql_model.sk_save_model(clf)
    accurate = tf.reduce_mean(tf.cast(correct_prediction, tf.float32),
                              name="accuracy")
    tf.summary.scalar("accuracy", accurate)

summ = tf.summary.merge_all()

sess.run(tf.global_variables_initializer())
# writer = tf.summary.FileWriter(TENSOR_BORAD_DIR)
# writer.add_graph(sess.graph)
#
# writer0 = tf.summary.FileWriter(TENSOR_BORAD_DIR + "/0")
# writer0.add_graph(sess.graph)

saver = tf.train.Saver()

TEST_X, TEST_Y = mlsql.get_validate_data()
TEST_Y = [item.toArray() for item in TEST_Y]
for ep in range(epochs):
    for items in rd(max_records=batch_size):
        X = [item[input_col].toArray() for item in items]
        Y = [item[label_col].toArray() for item in items]
        _, gs = sess.run([train_step, global_step],
                         feed_dict={
                             input_x: X,
                             input_y: Y
                         })
        if gs % print_interval == 0:
            [train_accuracy, s, loss] = sess.run([accurate, summ, xent],
                                                 feed_dict={
                                                     input_x: X,
                                                     input_y: Y
Esempio n. 3
0
    )
    tf.summary.scalar("xent", xent)

with tf.name_scope("train"):
    train_step = tf.train.AdamOptimizer(0.001).minimize(xent, global_step=global_step)

with tf.name_scope("accuracy"):
    correct_prediction = tf.equal(tf.argmax(_logits, 1), tf.argmax(input_y, 1))
    accurate = tf.reduce_mean(tf.cast(correct_prediction, tf.float32), name="accuracy")
    tf.summary.scalar("accuracy", accurate)

summ = tf.summary.merge_all()

sess.run(tf.global_variables_initializer())

TEST_X, TEST_Y = mlsql.get_validate_data()
TEST_Y = [item.toArray() for item in TEST_Y]

for ep in range(epochs):
    for items in rd(max_records=batch_size):
        X = [item[input_col].toArray() for item in items]
        Y = [item[label_col].toArray() for item in items]
        if len(X) == 0:
            print("bad news , this round no message fetched")
        if len(X) > 0:
            _, gs = sess.run([train_step, global_step],
                             feed_dict={input_x: X, input_y: Y})
            if gs % print_interval == 0:
                [train_accuracy, s, loss] = sess.run([accurate, summ, xent],
                                                     feed_dict={input_x: X, input_y: Y})
                [test_accuracy, test_s, test_lost] = sess.run([accurate, summ, xent],
Esempio n. 4
0
with tf.name_scope("train"):
    train_step = tf.train.AdamOptimizer(0.001).minimize(
        xent, global_step=global_step)

with tf.name_scope("accuracy"):
    correct_prediction = tf.equal(tf.argmax(_logits, 1), tf.argmax(input_y, 1))
    accurate = tf.reduce_mean(tf.cast(correct_prediction, tf.float32),
                              name="accuracy")
    tf.summary.scalar("accuracy", accurate)

summ = tf.summary.merge_all()

sess.run(tf.global_variables_initializer())

test_items = mlsql.get_validate_data()
TEST_X = [item[input_col].toArray() for item in test_items]
TEST_Y = [item[label_col].toArray() for item in test_items]

for ep in range(epochs):
    for items in rd(max_records=batch_size):
        X = [item[input_col].toArray() for item in items]
        Y = [item[label_col].toArray() for item in items]
        if len(X) == 0:
            print("bad news , this round no message fetched")
        if len(X) > 0:
            _, gs = sess.run([train_step, global_step],
                             feed_dict={
                                 input_x: X,
                                 input_y: Y
                             })