tf.summary.scalar("accuracy", accurate) summ = tf.summary.merge_all() sess.run(tf.global_variables_initializer()) def trans(i): if i == 0: return [0, 1] if i == 1: return [1, 0] for items in rd(max_records=2): X = [item["features"].toArray() for item in items] Y = [trans(item["label"]) for item in items] if len(X) > 0: _, gs = sess.run([train_step, global_step], feed_dict={input_x: X, input_y: Y}) [train_accuracy, s, loss] = sess.run([accurate, summ, xent], feed_dict={input_x: X, input_y: Y}) print('train_accuracy %g, loss: %g, global step: %d' % ( train_accuracy, loss, gs)) sys.stdout.flush() p = mlsql.params() mlsql_model.save_model(p["internalSystemParam"]["tempModelLocalPath"], sess, input_x, input_y, True) sess.close()
TEST_X, TEST_Y = mlsql.get_validate_data() TEST_Y = [item.toArray() for item in TEST_Y] for ep in range(epochs): for items in rd(max_records=batch_size): X = [item[input_col].toArray() for item in items] Y = [item[label_col].toArray() for item in items] _, gs = sess.run([train_step, global_step], feed_dict={ input_x: X, input_y: Y }) if gs % print_interval == 0: [train_accuracy, s, loss] = sess.run([accurate, summ, xent], feed_dict={ input_x: X, input_y: Y }) [test_accuracy, test_s, test_lost] = sess.run([accurate, summ, xent], feed_dict={ input_x: TEST_X, input_y: TEST_Y }) print( 'train_accuracy %g,test_accuracy %g, loss: %g,test_lost: %g, global step: %d, ep:%d' % (train_accuracy, test_accuracy, loss, test_lost, gs, ep)) sys.stdout.flush() mlsql_model.save_model(tempModelLocalPath, sess, input_x, _logits, True) sess.close()
sess.run(tf.global_variables_initializer()) TEST_X, TEST_Y = mlsql.get_validate_data() TEST_Y = [item.toArray() for item in TEST_Y] for ep in range(epochs): for items in rd(max_records=batch_size): X = [item[input_col].toArray() for item in items] Y = [item[label_col].toArray() for item in items] if len(X) == 0: print("bad news , this round no message fetched") if len(X) > 0: _, gs = sess.run([train_step, global_step], feed_dict={input_x: X, input_y: Y}) if gs % print_interval == 0: [train_accuracy, s, loss] = sess.run([accurate, summ, xent], feed_dict={input_x: X, input_y: Y}) [test_accuracy, test_s, test_lost] = sess.run([accurate, summ, xent], feed_dict={input_x: TEST_X, input_y: TEST_Y}) print('train_accuracy %g,test_accuracy %g, loss: %g, test_lost: %g,global step: %d, ep:%d' % ( train_accuracy, test_accuracy, loss, test_lost, gs, ep)) sys.stdout.flush() mlsql_model.save_model(tempModelLocalPath, sess, input_x, _logits, True) sess.close()
def trans(i): if i == 0: return [0, 1] if i == 1: return [1, 0] for items in rd(max_records=2): X = [item["features"].toArray() for item in items] Y = [trans(item["label"]) for item in items] if len(X) > 0: _, gs = sess.run([train_step, global_step], feed_dict={ input_x: X, input_y: Y }) [train_accuracy, s, loss] = sess.run([accurate, summ, xent], feed_dict={ input_x: X, input_y: Y }) print('train_accuracy %g, loss: %g, global step: %d' % (train_accuracy, loss, gs)) sys.stdout.flush() p = mlsql.params() mlsql_model.save_model(p["internalSystemParam"]["tempModelLocalPath"], sess, input_x, input_y, True) sess.close()