def test_USVDAMatrix(): da_matrix = URVDAMatrix(n_datasets=200, n_algos=20, normalized=True, name='USV-0_1-200-20') da_matrix.save() inspect_da_matrix(da_matrix)
def test_TransposeDirichletDistributionDAMatrix(): n_datasets = 200 mu = 100 alpha = mu * (np.arange(n_datasets) + 1) da_matrix = TransposeDirichletDistributionDAMatrix(alpha) da_matrix.save() inspect_da_matrix(da_matrix)
def test_BetaDistributionDAMatrix(): n_algos = 20 delta = np.random.rand(n_algos) * 2 # U[0, 2] s = 10 # alpha + beta alpha = (s + delta) / 2 alpha = np.sort(alpha) # Ascending alpha beta = s - alpha alpha_beta_pairs = [(alpha[i], beta[i]) for i in range(n_algos)] da_matrix = BetaDistributionDAMatrix(alpha_beta_pairs, name='IndepBetaDist') da_matrix.save() inspect_da_matrix(da_matrix)
def test_DirichletDistributionDAMatrix(): alpha = np.arange(20) + 1 da_matrix = DirichletDistributionDAMatrix(alpha) da_matrix.save() inspect_da_matrix(da_matrix)
def test_NFLBetaDist(): n_algos = 20 alpha_beta_pairs = [(5, 5)] * n_algos da_matrix = BetaDistributionDAMatrix(alpha_beta_pairs, name='NFLBetaDist') da_matrix.save() inspect_da_matrix(da_matrix)
def test_parse_cepairs_data(): da_matrix = parse_cepairs_data() inspect_da_matrix(da_matrix)
def test_TrigonometricPolynomialDAMatrix(): da_matrix = TrigonometricPolynomialDAMatrix(n_datasets=2000, n_algos=20) da_matrix.save() inspect_da_matrix(da_matrix)