Esempio n. 1
0
def test_simplify():
    from mmcv.onnx.simplify import simplify

    # only support PyTorch >= 1.5.0
    if version.parse(torch.__version__) < version.parse('1.5.0'):
        pytest.skip('mmcv.onnx.simplify only support with PyTorch >= 1.5.0')

    def foo(x):
        y = x.view((x.shape[0], x.shape[1], x.shape[3], x.shape[2]))
        return y

    net = WrapFunction(foo)
    dummy_input = torch.randn(2, 3, 4, 5)
    torch.onnx.export(net, dummy_input, onnx_file, input_names=['input'])
    ori_onnx_model = onnx.load(onnx_file)

    feed_input = [{'input': dummy_input.detach().cpu().numpy()}]
    slim_onnx_model = simplify(ori_onnx_model, feed_input, onnx_file)
    numel_before = len(ori_onnx_model.graph.node)
    numel_after = len(slim_onnx_model.graph.node)
    os.remove(onnx_file)
    assert numel_before == 18 and numel_after == 1, 'Simplify failed.'
def pytorch2onnx(config_path,
                 checkpoint_path,
                 input_img,
                 input_shape,
                 opset_version=11,
                 show=False,
                 output_file='tmp.onnx',
                 verify=False,
                 normalize_cfg=None,
                 dataset='coco',
                 test_img=None,
                 do_simplify=False,
                 cfg_options=None):

    input_config = {
        'input_shape': input_shape,
        'input_path': input_img,
        'normalize_cfg': normalize_cfg
    }

    # prepare original model and meta for verifying the onnx model
    orig_model = build_model_from_cfg(config_path,
                                      checkpoint_path,
                                      cfg_options=cfg_options)
    one_img, one_meta = preprocess_example_input(input_config)
    model, tensor_data = generate_inputs_and_wrap_model(
        config_path, checkpoint_path, input_config, cfg_options=cfg_options)
    output_names = ['boxes']
    if model.with_bbox:
        output_names.append('labels')
    if model.with_mask:
        output_names.append('masks')

    torch.onnx.export(model,
                      tensor_data,
                      output_file,
                      input_names=['input'],
                      output_names=output_names,
                      export_params=True,
                      keep_initializers_as_inputs=True,
                      do_constant_folding=True,
                      verbose=show,
                      opset_version=opset_version)

    model.forward = orig_model.forward

    # simplify onnx model
    if do_simplify:
        from mmdet import digit_version
        import mmcv

        min_required_version = '1.2.5'
        assert digit_version(mmcv.__version__) >= digit_version(
            min_required_version
        ), f'Requires to install mmcv>={min_required_version}'
        from mmcv.onnx.simplify import simplify

        input_dic = {'input': one_img.detach().cpu().numpy()}
        _ = simplify(output_file, [input_dic], output_file)
    print(f'Successfully exported ONNX model: {output_file}')
    if verify:
        from mmdet.core import get_classes, bbox2result
        from mmdet.apis import show_result_pyplot

        ort_custom_op_path = ''
        try:
            from mmcv.ops import get_onnxruntime_op_path
            ort_custom_op_path = get_onnxruntime_op_path()
        except (ImportError, ModuleNotFoundError):
            warnings.warn('If input model has custom op from mmcv, \
                you may have to build mmcv with ONNXRuntime from source.')
        model.CLASSES = get_classes(dataset)
        num_classes = len(model.CLASSES)
        # check by onnx
        onnx_model = onnx.load(output_file)
        onnx.checker.check_model(onnx_model)
        if test_img is not None:
            input_config['input_path'] = test_img
            one_img, one_meta = preprocess_example_input(input_config)
            tensor_data = [one_img]
        # check the numerical value
        # get pytorch output
        pytorch_results = model(tensor_data, [[one_meta]], return_loss=False)
        pytorch_results = pytorch_results[0]
        # get onnx output
        input_all = [node.name for node in onnx_model.graph.input]
        input_initializer = [
            node.name for node in onnx_model.graph.initializer
        ]
        net_feed_input = list(set(input_all) - set(input_initializer))
        assert (len(net_feed_input) == 1)
        session_options = rt.SessionOptions()
        # register custom op for onnxruntime
        if osp.exists(ort_custom_op_path):
            session_options.register_custom_ops_library(ort_custom_op_path)
        sess = rt.InferenceSession(output_file, session_options)
        onnx_outputs = sess.run(None,
                                {net_feed_input[0]: one_img.detach().numpy()})
        output_names = [_.name for _ in sess.get_outputs()]
        output_shapes = [_.shape for _ in onnx_outputs]
        print(f'onnxruntime output names: {output_names}, \
            output shapes: {output_shapes}')
        nrof_out = len(onnx_outputs)
        assert nrof_out > 0, 'Must have output'
        with_mask = nrof_out == 3
        if nrof_out == 1:
            onnx_results = onnx_outputs[0]
        else:
            det_bboxes, det_labels = onnx_outputs[:2]
            onnx_results = bbox2result(det_bboxes, det_labels, num_classes)
            if with_mask:
                segm_results = onnx_outputs[2].squeeze(1)
                cls_segms = [[] for _ in range(num_classes)]
                for i in range(det_bboxes.shape[0]):
                    cls_segms[det_labels[i]].append(segm_results[i])
                onnx_results = (onnx_results, cls_segms)
        # visualize predictions

        if show:
            show_result_pyplot(model,
                               one_meta['show_img'],
                               pytorch_results,
                               title='Pytorch')
            show_result_pyplot(model,
                               one_meta['show_img'],
                               onnx_results,
                               title='ONNX')

        # compare a part of result

        if with_mask:
            compare_pairs = list(zip(onnx_results, pytorch_results))
        else:
            compare_pairs = [(onnx_results, pytorch_results)]
        for onnx_res, pytorch_res in compare_pairs:
            for o_res, p_res in zip(onnx_res, pytorch_res):
                np.testing.assert_allclose(
                    o_res,
                    p_res,
                    rtol=1e-03,
                    atol=1e-05,
                )
        print('The numerical values are the same between Pytorch and ONNX')