def main(): args = parse_args() if args.out is not None and not args.out.endswith(('.pkl', '.pickle')): raise ValueError('The output file must be a pkl file.') cfg = mmcv.Config.fromfile(args.config) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True cfg.model.pretrained = None cfg.data.test.test_mode = True # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) imgs_per_gpu = cfg.data.test.pop('imgs_per_gpu', 1) # build the dataloader # TODO: support multiple images per gpu (only minor changes are needed) dataset = get_dataset(cfg.data.test) data_loader = build_dataloader(dataset, imgs_per_gpu=imgs_per_gpu, workers_per_gpu=cfg.data.workers_per_gpu, dist=distributed, shuffle=False) # build the model and load checkpoint model = build_detector(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg) checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu') # old versions did not save class info in checkpoints, this walkaround is # for backward compatibility if 'CLASSES' in checkpoint['meta']: model.CLASSES = checkpoint['meta']['CLASSES'] else: model.CLASSES = dataset.CLASSES if not distributed: model = MMDataParallel(model, device_ids=[0]) outputs = single_gpu_test(model, data_loader, args.show, args.log_dir) else: model = MMDistributedDataParallel(model.cuda()) outputs = multi_gpu_test(model, data_loader, args.tmpdir) rank, _ = get_dist_info() if args.out and rank == 0: print('\nwriting results to {}'.format(args.out)) mmcv.dump(outputs, args.out) eval_types = args.eval if args.csv: csv_path = (args.out).replace('.pkl', '.csv') print('\nwriting results as csv to {}'.format(csv_path)) convert_output_to_csv(dataset, outputs, csv_path) if eval_types: print('Starting evaluate {}'.format(' and '.join(eval_types))) if eval_types == ['proposal_fast']: result_file = args.out coco_eval(result_file, eval_types, dataset.coco) else: if not isinstance(outputs[0], dict): result_file = args.out + '.json' results2json(dataset, outputs, result_file) coco_eval(result_file, eval_types, dataset.coco) else: for name in outputs[0]: print('\nEvaluating {}'.format(name)) outputs_ = [out[name] for out in outputs] result_file = args.out + '.{}.json'.format(name) results2json(dataset, outputs_, result_file) coco_eval(result_file, eval_types, dataset.coco)
def main(): args = parse_args() cfg = mmcv.Config.fromfile(args.config) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True cfg.model.pretrained = None cfg.data.test.test_mode = True # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) # build the dataloader dataset = build_dataset(cfg.data.test) data_loader = build_dataloader(dataset, samples_per_gpu=cfg.data.samples_per_gpu, workers_per_gpu=cfg.data.workers_per_gpu, dist=distributed, shuffle=False, round_up=False) # build the model and load checkpoint model = build_classifier(cfg.model) fp16_cfg = cfg.get('fp16', None) if fp16_cfg is not None: wrap_fp16_model(model) _ = load_checkpoint(model, args.checkpoint, map_location='cpu') if not distributed: model = MMDataParallel(model, device_ids=[0]) outputs = single_gpu_test(model, data_loader) else: model = MMDistributedDataParallel( model.cuda(), device_ids=[torch.cuda.current_device()], broadcast_buffers=False) outputs = multi_gpu_test(model, data_loader, args.tmpdir, args.gpu_collect) rank, _ = get_dist_info() if rank == 0: nums = [] results = {} for output in outputs: nums.append(output['num_samples'].item()) for topk, v in output['accuracy'].items(): if topk not in results: results[topk] = [] results[topk].append(v.item()) assert sum(nums) == len(dataset) for topk, accs in results.items(): avg_acc = np.average(accs, weights=nums) print(f'\n{topk} accuracy: {avg_acc:.2f}') if args.out and rank == 0: print(f'\nwriting results to {args.out}') mmcv.dump(outputs, args.out)
def main(): args = parse_args() assert args.out or args.eval or args.format_only or args.show \ or args.show_dir, \ ('Please specify at least one operation (save/eval/format/show the ' 'results / save the results) with the argument "--out", "--eval"' ', "--format-only", "--show" or "--show-dir"') if args.eval and args.format_only: raise ValueError('--eval and --format_only cannot be both specified') if args.out is not None and not args.out.endswith(('.pkl', '.pickle')): raise ValueError('The output file must be a pkl file.') cfg = Config.fromfile(args.config) if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True cfg.model.pretrained = None if cfg.model.get('neck'): if isinstance(cfg.model.neck, list): for neck_cfg in cfg.model.neck: if neck_cfg.get('rfp_backbone'): if neck_cfg.rfp_backbone.get('pretrained'): neck_cfg.rfp_backbone.pretrained = None elif cfg.model.neck.get('rfp_backbone'): if cfg.model.neck.rfp_backbone.get('pretrained'): cfg.model.neck.rfp_backbone.pretrained = None # in case the test dataset is concatenated samples_per_gpu = 1 if isinstance(cfg.data.test, dict): cfg.data.test.test_mode = True samples_per_gpu = cfg.data.test.pop('samples_per_gpu', 1) if samples_per_gpu > 1: # Replace 'ImageToTensor' to 'DefaultFormatBundle' cfg.data.test.pipeline = replace_ImageToTensor( cfg.data.test.pipeline) elif isinstance(cfg.data.test, list): for ds_cfg in cfg.data.test: ds_cfg.test_mode = True samples_per_gpu = max( [ds_cfg.pop('samples_per_gpu', 1) for ds_cfg in cfg.data.test]) if samples_per_gpu > 1: for ds_cfg in cfg.data.test: ds_cfg.pipeline = replace_ImageToTensor(ds_cfg.pipeline) # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) rank, _ = get_dist_info() # allows not to create if args.work_dir is not None and rank == 0: mmcv.mkdir_or_exist(osp.abspath(args.work_dir)) timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) json_file = osp.join(args.work_dir, f'eval_{timestamp}.json') # build the dataloader dataset = build_dataset(cfg.data.test) data_loader = build_dataloader(dataset, samples_per_gpu=samples_per_gpu, workers_per_gpu=cfg.data.workers_per_gpu, dist=distributed, shuffle=False) # build the model and load checkpoint cfg.model.train_cfg = None model = build_detector(cfg.model, test_cfg=cfg.get('test_cfg')) fp16_cfg = cfg.get('fp16', None) if fp16_cfg is not None: wrap_fp16_model(model) checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu') if args.fuse_conv_bn: model = fuse_conv_bn(model) # old versions did not save class info in checkpoints, this walkaround is # for backward compatibility if 'CLASSES' in checkpoint.get('meta', {}): model.CLASSES = checkpoint['meta']['CLASSES'] else: model.CLASSES = dataset.CLASSES if not distributed: model = MMDataParallel(model, device_ids=[0]) outputs = single_gpu_test(model, data_loader, args.show, args.show_dir, args.show_score_thr) else: model = MMDistributedDataParallel( model.cuda(), device_ids=[torch.cuda.current_device()], broadcast_buffers=False) outputs = multi_gpu_test(model, data_loader, args.tmpdir, args.gpu_collect) rank, _ = get_dist_info() if rank == 0: if args.out: print(f'\nwriting results to {args.out}') mmcv.dump(outputs, args.out) kwargs = {} if args.eval_options is None else args.eval_options if args.format_only: dataset.format_results(outputs, **kwargs) if args.eval: eval_kwargs = cfg.get('evaluation', {}).copy() # hard-code way to remove EvalHook args for key in [ 'interval', 'tmpdir', 'start', 'gpu_collect', 'save_best', 'rule' ]: eval_kwargs.pop(key, None) eval_kwargs.update(dict(metric=args.eval, **kwargs)) metric = dataset.evaluate(outputs, **eval_kwargs) print(metric) metric_dict = dict(config=args.config, metric=metric) if args.work_dir is not None and rank == 0: mmcv.dump(metric_dict, json_file)
def main(): args = parse_args() assert args.out or args.show, \ ('Please specify at least one operation (save or show the results) ' 'with the argument "--out" or "--show"') if args.out is not None and not args.out.endswith(('.pkl', '.pickle')): raise ValueError('The output file must be a pkl file.') cfg = mmcv.Config.fromfile(args.config) # import modules from string list. if cfg.get('custom_imports', None): from mmcv.utils import import_modules_from_strings import_modules_from_strings(**cfg['custom_imports']) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True cfg.model.pretrained = None cfg.data.test.test_mode = True if args.workers == 0: args.workers = cfg.data.workers_per_gpu # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) # set random seeds if args.seed is not None: set_random_seed(args.seed) if 'all' in args.corruptions: corruptions = [ 'gaussian_noise', 'shot_noise', 'impulse_noise', 'defocus_blur', 'glass_blur', 'motion_blur', 'zoom_blur', 'snow', 'frost', 'fog', 'brightness', 'contrast', 'elastic_transform', 'pixelate', 'jpeg_compression', 'speckle_noise', 'gaussian_blur', 'spatter', 'saturate' ] elif 'benchmark' in args.corruptions: corruptions = [ 'gaussian_noise', 'shot_noise', 'impulse_noise', 'defocus_blur', 'glass_blur', 'motion_blur', 'zoom_blur', 'snow', 'frost', 'fog', 'brightness', 'contrast', 'elastic_transform', 'pixelate', 'jpeg_compression' ] elif 'noise' in args.corruptions: corruptions = ['gaussian_noise', 'shot_noise', 'impulse_noise'] elif 'blur' in args.corruptions: corruptions = [ 'defocus_blur', 'glass_blur', 'motion_blur', 'zoom_blur' ] elif 'weather' in args.corruptions: corruptions = ['snow', 'frost', 'fog', 'brightness'] elif 'digital' in args.corruptions: corruptions = [ 'contrast', 'elastic_transform', 'pixelate', 'jpeg_compression' ] elif 'holdout' in args.corruptions: corruptions = ['speckle_noise', 'gaussian_blur', 'spatter', 'saturate'] elif 'None' in args.corruptions: corruptions = ['None'] args.severities = [0] else: corruptions = args.corruptions rank, _ = get_dist_info() aggregated_results = {} for corr_i, corruption in enumerate(corruptions): aggregated_results[corruption] = {} for sev_i, corruption_severity in enumerate(args.severities): # evaluate severity 0 (= no corruption) only once if corr_i > 0 and corruption_severity == 0: aggregated_results[corruption][0] = \ aggregated_results[corruptions[0]][0] continue test_data_cfg = copy.deepcopy(cfg.data.test) # assign corruption and severity if corruption_severity > 0: corruption_trans = dict(type='Corrupt', corruption=corruption, severity=corruption_severity) # TODO: hard coded "1", we assume that the first step is # loading images, which needs to be fixed in the future test_data_cfg['pipeline'].insert(1, corruption_trans) # print info print(f'\nTesting {corruption} at severity {corruption_severity}') # build the dataloader # TODO: support multiple images per gpu # (only minor changes are needed) dataset = build_dataset(test_data_cfg) data_loader = build_dataloader(dataset, samples_per_gpu=1, workers_per_gpu=args.workers, dist=distributed, shuffle=False) # build the model and load checkpoint model = build_detector(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg) fp16_cfg = cfg.get('fp16', None) if fp16_cfg is not None: wrap_fp16_model(model) checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu') # old versions did not save class info in checkpoints, # this walkaround is for backward compatibility if 'CLASSES' in checkpoint['meta']: model.CLASSES = checkpoint['meta']['CLASSES'] else: model.CLASSES = dataset.CLASSES if not distributed: model = MMDataParallel(model, device_ids=[0]) show_dir = args.show_dir if show_dir is not None: show_dir = osp.join(show_dir, corruption) show_dir = osp.join(show_dir, corruption_severity) if not osp.exists(show_dir): osp.makedirs(show_dir) outputs = single_gpu_test(model, data_loader, args.show, show_dir, args.show_score_thr) else: model = MMDistributedDataParallel( model.cuda(), device_ids=[torch.cuda.current_device()], broadcast_buffers=False) outputs = multi_gpu_test(model, data_loader, args.tmpdir) if args.out and rank == 0: eval_results_filename = (osp.splitext(args.out)[0] + '_results' + osp.splitext(args.out)[1]) mmcv.dump(outputs, args.out) eval_types = args.eval if cfg.dataset_type == 'VOCDataset': if eval_types: for eval_type in eval_types: if eval_type == 'bbox': test_dataset = mmcv.runner.obj_from_dict( cfg.data.test, datasets) logger = 'print' if args.summaries else None mean_ap, eval_results = \ voc_eval_with_return( args.out, test_dataset, args.iou_thr, logger) aggregated_results[corruption][ corruption_severity] = eval_results else: print('\nOnly "bbox" evaluation \ is supported for pascal voc') else: if eval_types: print(f'Starting evaluate {" and ".join(eval_types)}') if eval_types == ['proposal_fast']: result_file = args.out else: if not isinstance(outputs[0], dict): result_files = dataset.results2json( outputs, args.out) else: for name in outputs[0]: print(f'\nEvaluating {name}') outputs_ = [out[name] for out in outputs] result_file = args.out + f'.{name}' result_files = dataset.results2json( outputs_, result_file) eval_results = coco_eval_with_return( result_files, eval_types, dataset.coco) aggregated_results[corruption][ corruption_severity] = eval_results else: print('\nNo task was selected for evaluation;' '\nUse --eval to select a task') # save results after each evaluation mmcv.dump(aggregated_results, eval_results_filename) if rank == 0: # print filan results print('\nAggregated results:') prints = args.final_prints aggregate = args.final_prints_aggregate if cfg.dataset_type == 'VOCDataset': get_results(eval_results_filename, dataset='voc', prints=prints, aggregate=aggregate) else: get_results(eval_results_filename, dataset='coco', prints=prints, aggregate=aggregate)
def main(): args = parse_args() cfg = Config.fromfile(args.config) if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) # import modules from string list. if cfg.get('custom_imports', None): from mmcv.utils import import_modules_from_strings import_modules_from_strings(**cfg['custom_imports']) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True # work_dir is determined in this priority: CLI > segment in file > filename if args.work_dir is not None: # update configs according to CLI args if args.work_dir is not None cfg.work_dir = args.work_dir elif cfg.get('work_dir', None) is None: # use config filename as default work_dir if cfg.work_dir is None cfg.work_dir = osp.join('./work_dirs', osp.splitext(osp.basename(args.config))[0]) if args.resume_from is not None: cfg.resume_from = args.resume_from if args.gpu_ids is not None: cfg.gpu_ids = args.gpu_ids else: cfg.gpu_ids = range(1) if args.gpus is None else range(args.gpus) # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) # re-set gpu_ids with distributed training mode _, world_size = get_dist_info() cfg.gpu_ids = range(world_size) # create work_dir mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir)) # dump config cfg.dump(osp.join(cfg.work_dir, osp.basename(args.config))) # init the logger before other steps timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) log_file = osp.join(cfg.work_dir, f'{timestamp}.log') logger = get_root_logger(log_file=log_file, log_level=cfg.log_level) # init the meta dict to record some important information such as # environment info and seed, which will be logged meta = dict() # log env info env_info_dict = collect_env() env_info = '\n'.join([(f'{k}: {v}') for k, v in env_info_dict.items()]) dash_line = '-' * 60 + '\n' logger.info('Environment info:\n' + dash_line + env_info + '\n' + dash_line) meta['env_info'] = env_info meta['config'] = cfg.pretty_text # log some basic info logger.info(f'Distributed training: {distributed}') logger.info(f'Config:\n{cfg.pretty_text}') # set random seeds if args.seed is not None: logger.info(f'Set random seed to {args.seed}, ' f'deterministic: {args.deterministic}') set_random_seed(args.seed, deterministic=args.deterministic) cfg.seed = args.seed meta['seed'] = args.seed meta['exp_name'] = osp.basename(args.config) model = build_detector( cfg.model, train_cfg=cfg.get('train_cfg'), test_cfg=cfg.get('test_cfg')) datasets = [build_dataset(cfg.data.train)] if len(cfg.workflow) == 2: val_dataset = copy.deepcopy(cfg.data.val) val_dataset.pipeline = cfg.data.train.pipeline datasets.append(build_dataset(val_dataset)) if cfg.checkpoint_config is not None: # save mmdet version, config file content and class names in # checkpoints as meta data cfg.checkpoint_config.meta = dict( mmdet_version=__version__ + get_git_hash()[:7], CLASSES=datasets[0].CLASSES) # add an attribute for visualization convenience model.CLASSES = datasets[0].CLASSES train_detector( model, datasets, cfg, distributed=distributed, validate=(not args.no_validate), timestamp=timestamp, meta=meta)
def main(): args = parse_args() cfg = Config.fromfile(args.config) cfg.merge_from_dict(args.cfg_options) # Load output_config from cfg output_config = cfg.get('output_config', {}) if args.out: # Overwrite output_config from args.out output_config = Config._merge_a_into_b(dict(out=args.out), output_config) # Load eval_config from cfg eval_config = cfg.get('eval_config', {}) if args.eval: # Overwrite eval_config from args.eval eval_config = Config._merge_a_into_b(dict(metrics=args.eval), eval_config) if args.eval_options: # Add options from args.eval_options eval_config = Config._merge_a_into_b(args.eval_options, eval_config) assert output_config or eval_config, \ ('Please specify at least one operation (save or eval the ' 'results) with the argument "--out" or "--eval"') dataset_type = cfg.data.test.type if output_config.get('out', None): out = output_config['out'] # make sure the dirname of the output path exists mmcv.mkdir_or_exist(osp.dirname(out)) _, suffix = osp.splitext(out) if dataset_type == 'AVADataset': assert suffix[1:] == 'csv', ('For AVADataset, the format of the ' 'output file should be csv') else: assert suffix[1:] in file_handlers, ( 'The format of the output ' 'file should be json, pickle or yaml') # set cudnn benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True cfg.data.test.test_mode = True if cfg.test_cfg is None: cfg.test_cfg = dict(average_clips=args.average_clips) else: # You can set average_clips during testing, it will override the # original settting if args.average_clips is not None: cfg.test_cfg.average_clips = args.average_clips # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) # The flag is used to register module's hooks cfg.setdefault('module_hooks', []) # build the dataloader dataset = build_dataset(cfg.data.test, dict(test_mode=True)) dataloader_setting = dict(videos_per_gpu=cfg.data.get('videos_per_gpu', 1), workers_per_gpu=cfg.data.get( 'workers_per_gpu', 1), dist=distributed, shuffle=False) dataloader_setting = dict(dataloader_setting, **cfg.data.get('test_dataloader', {})) data_loader = build_dataloader(dataset, **dataloader_setting) # build the model and load checkpoint model = build_model(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg) register_module_hooks(model.backbone, cfg.module_hooks) fp16_cfg = cfg.get('fp16', None) if fp16_cfg is not None: wrap_fp16_model(model) load_checkpoint(model, args.checkpoint, map_location='cpu') if args.fuse_conv_bn: model = fuse_conv_bn(model) if not distributed: model = MMDataParallel(model, device_ids=[0]) outputs = single_gpu_test(model, data_loader) else: model = MMDistributedDataParallel( model.cuda(), device_ids=[torch.cuda.current_device()], broadcast_buffers=False) outputs = multi_gpu_test(model, data_loader, args.tmpdir, args.gpu_collect) rank, _ = get_dist_info() if rank == 0: if output_config.get('out', None): out = output_config['out'] print(f'\nwriting results to {out}') dataset.dump_results(outputs, **output_config) if eval_config: eval_res = dataset.evaluate(outputs, **eval_config) for name, val in eval_res.items(): print(f'{name}: {val:.04f}')
def main(): args = parse_args() cfg = Config.fromfile(args.config) if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) # import modules from string list. if cfg.get('custom_imports', None): from mmcv.utils import import_modules_from_strings import_modules_from_strings(**cfg['custom_imports']) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True # work_dir is determined in this priority: CLI > segment in file > filename if args.work_dir is not None: # update configs according to CLI args if args.work_dir is not None cfg.work_dir = args.work_dir elif cfg.get('work_dir', None) is None: # use config filename as default work_dir if cfg.work_dir is None cfg.work_dir = osp.join('./work_dirs', osp.splitext(osp.basename(args.config))[0]) if args.resume_from is not None: cfg.resume_from = args.resume_from if args.gpu_ids is not None: cfg.gpu_ids = args.gpu_ids else: cfg.gpu_ids = range(1) if args.gpus is None else range(args.gpus) if args.autoscale_lr: # apply the linear scaling rule (https://arxiv.org/abs/1706.02677) cfg.optimizer['lr'] = cfg.optimizer['lr'] * len(cfg.gpu_ids) / 8 # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) # re-set gpu_ids with distributed training mode _, world_size = get_dist_info() cfg.gpu_ids = range(world_size) # create work_dir mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir)) # dump config cfg.dump(osp.join(cfg.work_dir, osp.basename(args.config))) # init the logger before other steps timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) log_file = osp.join(cfg.work_dir, f'{timestamp}.log') # specify logger name, if we still use 'mmdet', the output info will be # filtered and won't be saved in the log_file # TODO: ugly workaround to judge whether we are training det or seg model if cfg.model.type in ['EncoderDecoder3D']: logger_name = 'mmseg' else: logger_name = 'mmdet' logger = get_root_logger(log_file=log_file, log_level=cfg.log_level, name=logger_name) # init the meta dict to record some important information such as # environment info and seed, which will be logged meta = dict() # log env info env_info_dict = collect_env() env_info = '\n'.join([(f'{k}: {v}') for k, v in env_info_dict.items()]) dash_line = '-' * 60 + '\n' logger.info('Environment info:\n' + dash_line + env_info + '\n' + dash_line) meta['env_info'] = env_info meta['config'] = cfg.pretty_text # log some basic info logger.info(f'Distributed training: {distributed}') logger.info(f'Config:\n{cfg.pretty_text}') # set random seeds if args.seed is not None: logger.info(f'Set random seed to {args.seed}, ' f'deterministic: {args.deterministic}') set_random_seed(args.seed, deterministic=args.deterministic) cfg.seed = args.seed meta['seed'] = args.seed meta['exp_name'] = osp.basename(args.config) model = build_model(cfg.model, train_cfg=cfg.get('train_cfg'), test_cfg=cfg.get('test_cfg')) logger.info(f'Model:\n{model}') datasets = [build_dataset(cfg.data.train)] if len(cfg.workflow) == 2: val_dataset = copy.deepcopy(cfg.data.val) # in case we use a dataset wrapper if 'dataset' in cfg.data.train: val_dataset.pipeline = cfg.data.train.dataset.pipeline else: val_dataset.pipeline = cfg.data.train.pipeline # set test_mode=False here in deep copied config # which do not affect AP/AR calculation later # refer to https://mmdetection3d.readthedocs.io/en/latest/tutorials/customize_runtime.html#customize-workflow # noqa val_dataset.test_mode = False datasets.append(build_dataset(val_dataset)) if cfg.checkpoint_config is not None: # save mmdet version, config file content and class names in # checkpoints as meta data cfg.checkpoint_config.meta = dict( mmdet_version=mmdet_version, mmseg_version=mmseg_version, mmdet3d_version=mmdet3d_version, config=cfg.pretty_text, CLASSES=datasets[0].CLASSES, PALETTE=datasets[0].PALETTE # for segmentors if hasattr(datasets[0], 'PALETTE') else None) # add an attribute for visualization convenience model.CLASSES = datasets[0].CLASSES train_model(model, datasets, cfg, distributed=distributed, validate=(not args.no_validate), timestamp=timestamp, meta=meta)
def main(): args = parse_args() assert args.out or args.eval or args.format_only or args.show, \ ('Please specify at least one operation (save/eval/format/show the ' 'results) with the argument "--out", "--eval", "--format_only" ' 'or "--show"') if args.eval and args.format_only: raise ValueError('--eval and --format_only cannot be both specified') if args.out is not None and not args.out.endswith(('.pkl', '.pickle')): raise ValueError('The output file must be a pkl file.') cfg = mmcv.Config.fromfile(args.config) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True cfg.model.pretrained = None cfg.data.test.test_mode = True # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) # build the dataloader # TODO: support multiple images per gpu (only minor changes are needed) dataset = build_dataset(cfg.data.test) data_loader = build_dataloader(dataset, samples_per_gpu=1, workers_per_gpu=cfg.data.workers_per_gpu, dist=distributed, shuffle=False) # build the model and load checkpoint model = build_detector(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg) fp16_cfg = cfg.get('fp16', None) if fp16_cfg is not None: wrap_fp16_model(model) while not osp.isfile(args.checkpoint): print('Waiting for {} to exist...'.format(args.checkpoint)) time.sleep(60) checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu') # old versions did not save class info in checkpoints, this walkaround is # for backward compatibility if 'CLASSES' in checkpoint['meta']: model.CLASSES = checkpoint['meta']['CLASSES'] else: model.CLASSES = dataset.CLASSES if not distributed: model = MMDataParallel(model, device_ids=[0]) outputs = single_gpu_test(model, data_loader, args.show) else: model = MMDistributedDataParallel( model.cuda(), device_ids=[torch.cuda.current_device()], broadcast_buffers=False) outputs = multi_gpu_test(model, data_loader, args.tmpdir, args.gpu_collect) rank, _ = get_dist_info() if rank == 0: if args.out: print('\nwriting results to {}'.format(args.out)) mmcv.dump(outputs, args.out) kwargs = {} if args.options is None else args.options if args.format_only: dataset.format_results(outputs, **kwargs) if args.eval: dataset.evaluate(outputs, args.eval, **kwargs)
def main(): args = parse_args() if args.tensorrt and args.onnx: raise ValueError( 'Cannot set onnx mode and tensorrt mode at the same time.') cfg = Config.fromfile(args.config) cfg.merge_from_dict(args.cfg_options) # Load output_config from cfg output_config = cfg.get('output_config', {}) if args.out: # Overwrite output_config from args.out output_config = Config._merge_a_into_b(dict(out=args.out), output_config) # Load eval_config from cfg eval_config = cfg.get('eval_config', {}) if args.eval: # Overwrite eval_config from args.eval eval_config = Config._merge_a_into_b(dict(metrics=args.eval), eval_config) if args.eval_options: # Add options from args.eval_options eval_config = Config._merge_a_into_b(args.eval_options, eval_config) assert output_config or eval_config, \ ('Please specify at least one operation (save or eval the ' 'results) with the argument "--out" or "--eval"') dataset_type = cfg.data.test.type if output_config.get('out', None): if 'output_format' in output_config: # ugly workround to make recognition and localization the same warnings.warn( 'Skip checking `output_format` in localization task.') else: out = output_config['out'] # make sure the dirname of the output path exists mmcv.mkdir_or_exist(osp.dirname(out)) _, suffix = osp.splitext(out) if dataset_type == 'AVADataset': assert suffix[1:] == 'csv', ('For AVADataset, the format of ' 'the output file should be csv') else: assert suffix[1:] in file_handlers, ( 'The format of the output ' 'file should be json, pickle or yaml') # set cudnn benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True cfg.data.test.test_mode = True # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) # The flag is used to register module's hooks cfg.setdefault('module_hooks', []) # build the dataloader dataset = build_dataset(cfg.data.test, dict(test_mode=True)) dataloader_setting = dict(videos_per_gpu=cfg.data.get('videos_per_gpu', 1), workers_per_gpu=cfg.data.get( 'workers_per_gpu', 1), dist=distributed, shuffle=False) dataloader_setting = dict(dataloader_setting, **cfg.data.get('test_dataloader', {})) data_loader = build_dataloader(dataset, **dataloader_setting) if args.tensorrt: outputs = inference_tensorrt(args.checkpoint, distributed, data_loader, dataloader_setting['videos_per_gpu']) elif args.onnx: outputs = inference_onnx(args.checkpoint, distributed, data_loader, dataloader_setting['videos_per_gpu']) else: outputs = inference_pytorch(args, cfg, distributed, data_loader) rank, _ = get_dist_info() if rank == 0: if output_config.get('out', None): out = output_config['out'] print(f'\nwriting results to {out}') dataset.dump_results(outputs, **output_config) if eval_config: eval_res = dataset.evaluate(outputs, **eval_config) for name, val in eval_res.items(): print(f'{name}: {val:.04f}')
def main(): args = parse_args() if args.out is not None and not args.out.endswith(('.pkl', '.pickle')): raise ValueError('The output file must be a pkl file.') cfg = mmcv.Config.fromfile(args.config) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True cfg.model.pretrained = None cfg.data.test.test_mode = True if args.ann_file is not None: cfg.data.test.ann_file = args.ann_file if args.img_prefix is not None: cfg.data.test.img_prefix = args.img_prefix # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) # build the dataloader # TODO: support multiple images per gpu (only minor changes are needed) dataset = get_dataset(cfg.data.test) data_loader = build_dataloader(dataset, imgs_per_gpu=1, workers_per_gpu=cfg.data.workers_per_gpu, dist=distributed, shuffle=False) # build the model and load checkpoint models = [] print(f"checkpoints: {args.checkpoint}") for checkpoint in args.checkpoint: model = build_detector(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg) load_checkpoint(model, checkpoint, map_location='cpu') models.append(model) model = EnsembleHTC(models) if not distributed: model = MMDataParallel(model, device_ids=[0]) outputs = single_gpu_test(model, data_loader, args.show) else: model = MMDistributedDataParallel(model.cuda()) outputs = multi_gpu_test(model, data_loader, args.tmpdir) rank, _ = get_dist_info() if args.out and rank == 0: print('\nwriting results to {}'.format(args.out)) mmcv.dump(outputs, args.out) eval_types = args.eval if eval_types: print('Starting evaluate {}'.format(' and '.join(eval_types))) if eval_types == ['proposal_fast']: result_file = args.out coco_eval(result_file, eval_types, dataset.coco) else: if not isinstance(outputs[0], dict): result_file = args.out + '.json' results2json(dataset, outputs, result_file) coco_eval(result_file, eval_types, dataset.coco) else: for name in outputs[0]: print('\nEvaluating {}'.format(name)) outputs_ = [out[name] for out in outputs] result_file = args.out + '.{}.json'.format(name) results2json(dataset, outputs_, result_file) coco_eval(result_file, eval_types, dataset.coco)
def main(): args = parse_args() assert args.out or args.eval or args.format_only or args.show \ or args.show_dir, \ ('Please specify at least one operation (save/eval/format/show the ' 'results / save the results) with the argument "--out", "--eval"' ', "--format-only", "--show" or "--show-dir"') if args.eval and args.format_only: raise ValueError('--eval and --format_only cannot be both specified') if args.out is not None and not args.out.endswith(('.pkl', '.pickle')): raise ValueError('The output file must be a pkl file.') assert len(args.configs) == len(args.checkpoints) config_list = list() for config_path in args.configs: cfg = Config.fromfile(config_path) if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) # import modules from string list. if cfg.get('custom_imports', None): from mmcv.utils import import_modules_from_strings import_modules_from_strings(**cfg['custom_imports']) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True cfg.model.pretrained = None if cfg.model.get('neck'): if isinstance(cfg.model.neck, list): for neck_cfg in cfg.model.neck: if neck_cfg.get('rfp_backbone'): if neck_cfg.rfp_backbone.get('pretrained'): neck_cfg.rfp_backbone.pretrained = None elif cfg.model.neck.get('rfp_backbone'): if cfg.model.neck.rfp_backbone.get('pretrained'): cfg.model.neck.rfp_backbone.pretrained = None if args.data_phase != 'test': cfg.data.test = cfg.data.get(args.data_phase) # in case the test dataset is concatenated if isinstance(cfg.data.test, dict): cfg.data.test.test_mode = True elif isinstance(cfg.data.test, list): for ds_cfg in cfg.data.test: ds_cfg.test_mode = True config_list.append(cfg) primary_cfg = config_list[0] # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **primary_cfg.dist_params) # build the dataloader samples_per_gpu = primary_cfg.data.test.pop('samples_per_gpu', 1) if samples_per_gpu > 1: # Replace 'ImageToTensor' to 'DefaultFormatBundle' primary_cfg.data.test.pipeline = replace_ImageToTensor( primary_cfg.data.test.pipeline) dataset = build_dataset(primary_cfg.data.test) data_loader = build_dataloader( dataset, samples_per_gpu=samples_per_gpu, workers_per_gpu=primary_cfg.data.workers_per_gpu, dist=distributed, shuffle=False) models = list() for i, cfg in enumerate(config_list): # build the model and load checkpoint model = build_detector(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg) fp16_cfg = cfg.get('fp16', None) if fp16_cfg is not None: wrap_fp16_model(model) checkpoint = load_checkpoint(model, args.checkpoints[i], map_location='cpu') if args.fuse_conv_bn: model = fuse_conv_bn(model) # old versions did not save class info in checkpoints, this walkaround is # for backward compatibility if 'CLASSES' in checkpoint['meta']: model.CLASSES = checkpoint['meta']['CLASSES'] else: model.CLASSES = dataset.CLASSES models.append(model) model = HybridTaskCascadeEnsemble2(models) if not distributed: model = MMDataParallel(model, device_ids=[0]) os.makedirs(args.show_dir, exist_ok=True) outputs = single_gpu_test(model, data_loader, args.show, args.show_dir, args.show_score_thr) else: model = MMDistributedDataParallel( model.cuda(), device_ids=[torch.cuda.current_device()], broadcast_buffers=False) outputs = multi_gpu_test(model, data_loader, args.tmpdir, args.gpu_collect) rank, _ = get_dist_info() if rank == 0: if args.out: print(f'\nwriting results to {args.out}') os.makedirs(os.path.dirname(args.out), exist_ok=True) mmcv.dump(outputs, args.out) kwargs = {} if args.eval_options is None else args.eval_options if args.format_only: dataset.format_results(outputs, **kwargs) if args.eval: eval_kwargs = cfg.get('evaluation', {}).copy() # hard-code way to remove EvalHook args for key in ['interval', 'tmpdir', 'start', 'gpu_collect']: eval_kwargs.pop(key, None) eval_kwargs.update(dict(metric=args.eval, **kwargs)) print(dataset.evaluate(outputs, **eval_kwargs))
def main(): args = parse_args() cfg = mmcv.Config.fromfile(args.config) # Load output_config from cfg output_config = cfg.get('output_config', {}) # Overwrite output_config from args.out output_config = merge_configs(output_config, dict(out=args.out)) # Load eval_config from cfg eval_config = cfg.get('eval_config', {}) # Overwrite eval_config from args.eval eval_config = merge_configs(eval_config, dict(metrics=args.eval)) # Add options from args.option eval_config = merge_configs(eval_config, args.options) assert output_config or eval_config, \ ('Please specify at least one operation (save or eval the ' 'results) with the argument "--out" or "--eval"') # set cudnn benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True cfg.data.test.test_mode = True if cfg.test_cfg is None: cfg.test_cfg = dict(average_clips=args.average_clips) else: cfg.test_cfg.average_clips = args.average_clips # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) # build the dataloader dataset = build_dataset(cfg.data.test, dict(test_mode=True)) data_loader = build_dataloader(dataset, videos_per_gpu=1, workers_per_gpu=cfg.data.workers_per_gpu, dist=distributed, shuffle=False) # map lable from txt to csv file df = pd.read_csv('/data2/phap/datasets/dataset3_test.txt', header=None) df.columns = ['full_name'] df['file_name'] = df['full_name'].apply(lambda x: x.rsplit(' ')[0]) df['true_label'] = df['full_name'].apply(lambda x: x.rsplit(' ')[-1]) # build the model and load checkpoint model = build_model(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg) load_checkpoint(model, args.checkpoint, map_location='cpu') if not distributed: model = MMDataParallel(model, device_ids=[0]) outputs = single_gpu_test(model, data_loader) else: model = MMDistributedDataParallel( model.cuda(), device_ids=[torch.cuda.current_device()], broadcast_buffers=False) outputs = multi_gpu_test(model, data_loader, args.tmpdir, args.gpu_collect) # convert softmax output to one hot pred_arr = [] for i in outputs: pred = np.argmax(i) pred_arr.append(pred) # import output into csv df['pred_label_orig'] = outputs df['pred_label'] = pred_arr # save csv file df.to_csv('dataset3_test_pred_w_rwf_model.csv') print('\nSuccess, csv file saved') rank, _ = get_dist_info() if rank == 0: if output_config: out = output_config['out'] print(f'\nwriting results to {out}') dataset.dump_results(outputs, **output_config) if eval_config: eval_res = dataset.evaluate(outputs, **eval_config) for name, val in eval_res.items(): print(f'{name}: {val:.04f}')
def main(): args = parse_args() cfg = mmcv.Config.fromfile(args.config) if args.update_config is not None: cfg.merge_from_dict(args.update_config) cfg = update_config(cfg, args) cfg = propagate_root_dir(cfg, args.data_dir) # Load output_config from cfg output_config = cfg.get('output_config', {}) # Overwrite output_config from args.out output_config = merge_configs(output_config, dict(out=args.out)) # Load eval_config from cfg eval_config = cfg.get('eval_config', {}) # Overwrite eval_config from args.eval eval_config = merge_configs(eval_config, dict(metrics=args.eval)) # Add options from args.option eval_config = merge_configs(eval_config, args.options) assert output_config or eval_config, \ ('Please specify at least one operation (save or eval the ' 'results) with the argument "--out" or "--eval"') # init distributed env first, since logger depends on the dist info. distributed = args.launcher != 'none' if distributed: init_dist(args.launcher, **cfg.dist_params) # get rank rank, _ = get_dist_info() if cfg.get('seed'): print(f'Set random seed to {cfg.seed}') set_random_seed(cfg.seed) # build the dataset dataset = build_dataset(cfg.data, 'test', dict(test_mode=True)) if cfg.get('classes'): dataset = dataset.filter(cfg.classes) if rank == 0: print(f'Test datasets:\n{str(dataset)}') # build the dataloader data_loader = build_dataloader(dataset, videos_per_gpu=1, workers_per_gpu=cfg.data.workers_per_gpu, dist=distributed, shuffle=False) # build the model and load checkpoint model = build_model(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg, class_sizes=dataset.class_sizes, class_maps=dataset.class_maps) # nncf model wrapper if is_checkpoint_nncf(args.checkpoint) and not cfg.get('nncf_config'): # reading NNCF config from checkpoint nncf_part = get_nncf_config_from_meta(args.checkpoint) for k, v in nncf_part.items(): cfg[k] = v if cfg.get('nncf_config'): check_nncf_is_enabled() if not is_checkpoint_nncf(args.checkpoint): raise RuntimeError( 'Trying to make testing with NNCF compression a model snapshot that was NOT trained with NNCF' ) cfg.load_from = args.checkpoint cfg.resume_from = None if torch.cuda.is_available(): model = model.cuda() _, model = wrap_nncf_model(model, cfg, None, get_fake_input) else: fp16_cfg = cfg.get('fp16', None) if fp16_cfg is not None: wrap_fp16_model(model) # load model weights load_checkpoint(model, args.checkpoint, map_location='cpu', force_matching=True) if args.fuse_conv_bn: model = fuse_conv_bn(model) if not distributed: model = MMDataParallel(model, device_ids=[0]) outputs = single_gpu_test(model, data_loader) else: model = MMDistributedDataParallel( model.cuda(), device_ids=[torch.cuda.current_device()], broadcast_buffers=False) outputs = multi_gpu_test(model, data_loader, args.tmpdir, args.gpu_collect) if rank == 0: if output_config: out = output_config['out'] print(f'\nwriting results to {out}') dataset.dump_results(outputs, **output_config) if eval_config: eval_res = dataset.evaluate(outputs, **eval_config) print('\nFinal metrics:') for name, val in eval_res.items(): if 'invalid_info' in name: continue if isinstance(val, float): print(f'{name}: {val:.04f}') elif isinstance(val, str): print(f'{name}:\n{val}') else: print(f'{name}: {val}') invalid_info = { name: val for name, val in eval_res.items() if 'invalid_info' in name } if len(invalid_info) > 0: assert args.out_invalid is not None and args.out_invalid != '' if os.path.exists(args.out_invalid): shutil.rmtree(args.out_invalid) if not os.path.exists(args.out_invalid): os.makedirs(args.out_invalid) for name, invalid_record in invalid_info.items(): out_invalid_dir = os.path.join(args.out_invalid, name) item_gen = zip(invalid_record['ids'], invalid_record['conf'], invalid_record['pred']) for invalid_idx, pred_conf, pred_label in item_gen: record_info = dataset.get_info(invalid_idx) gt_label = record_info['label'] if 'filename' in record_info: src_data_path = record_info['filename'] in_record_name, record_extension = os.path.basename( src_data_path).split('.') out_record_name = f'{in_record_name}_gt{gt_label}_pred{pred_label}_conf{pred_conf:.3f}' trg_data_path = os.path.join( out_invalid_dir, f'{out_record_name}.{record_extension}') shutil.copyfile(src_data_path, trg_data_path) else: src_data_path = record_info['frame_dir'] in_record_name = os.path.basename(src_data_path) out_record_name = f'{in_record_name}_gt{gt_label}_pred{pred_label}_conf{pred_conf:.3f}' trg_data_path = os.path.join( out_invalid_dir, out_record_name) os.makedirs(trg_data_path) start_frame_id = record_info[ 'clip_start'] + dataset.start_index end_frame_id = record_info[ 'clip_end'] + dataset.start_index for frame_id in range(start_frame_id, end_frame_id): img_name = f'{frame_id:05}.jpg' shutil.copyfile( os.path.join(src_data_path, img_name), os.path.join(trg_data_path, img_name))
def main(): args = parse_args() assert args.out or args.eval or args.format_only or args.show \ or args.show_dir, \ ('Please specify at least one operation (save/eval/format/show the ' 'results / save the results) with the argument "--out", "--eval"' ', "--format-only", "--show" or "--show-dir"') if args.eval and args.format_only: raise ValueError('--eval and --format_only cannot be both specified') if args.out is not None and not args.out.endswith(('.pkl', '.pickle')): raise ValueError('The output file must be a pkl file.') cfg = Config.fromfile(args.config) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True cfg.model.pretrained = None cfg.data.test.test_mode = True if args.city == 'shanghai_xian': data_root = './data/BONAI/' cfg.data.test.ann_file = data_root + 'coco/bonai_shanghai_xian_test.json' cfg.data.test.img_prefix = data_root + 'test/images/' else: raise(RuntimeError("do not support the input city: ", len(args.city))) if cfg.test_cfg.get('rcnn', False): cfg.test_cfg.rcnn.nms.iou_threshold = args.nms_score print("NMS config for testing: {}".format(cfg.test_cfg.rcnn.nms)) print("Dataset for evaluation: ", cfg.data.test.ann_file) # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) # build the dataloader # TODO: support multiple images per gpu (only minor changes are needed) dataset = build_dataset(cfg.data.test) data_loader = build_dataloader( dataset, samples_per_gpu=1, workers_per_gpu=cfg.data.workers_per_gpu, dist=distributed, shuffle=False) # build the model and load checkpoint model = build_detector(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg) fp16_cfg = cfg.get('fp16', None) if fp16_cfg is not None: wrap_fp16_model(model) checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu') if args.fuse_conv_bn: model = fuse_module(model) # old versions did not save class info in checkpoints, this walkaround is # for backward compatibility if 'CLASSES' in checkpoint['meta']: model.CLASSES = checkpoint['meta']['CLASSES'] else: model.CLASSES = dataset.CLASSES if not distributed: model = MMDataParallel(model, device_ids=[0]) outputs = single_gpu_test(model, data_loader, args.show, args.show_dir, args.show_score_thr) else: model = MMDistributedDataParallel( model.cuda(), device_ids=[torch.cuda.current_device()], broadcast_buffers=False) outputs = multi_gpu_test(model, data_loader, args.tmpdir, args.gpu_collect) rank, _ = get_dist_info() if rank == 0: if args.out: print(f'\nwriting results to {args.out}') mmcv.dump(outputs, args.out) kwargs = {} if args.options is None else args.options if args.format_only: dataset.format_results(outputs, **kwargs) if args.eval: dataset.evaluate(outputs, args.eval, **kwargs)
def main(): # args = ['./DOTA_configs/DOTA_hbb/retinanet_r50_fpn_2x_dota.py', # '--gpus', '1', # '--no-validate', # '--work-dir', './results/retinanet_hbb_tv' # ] args = [ './DOTA_configs/DOTA_obb/retinanet_r50_fpn_2x_dota.py', '--gpus', '1', '--no-validate', '--work-dir', './results/retinanet_obb_tv_ver1_cv2_no_trick' ] # # args = ['./DOTA_configs/DOTA_obb/faster_rcnn_r50_fpn_1x_dota.py', # '--gpus', '4', # '--no-validate', # '--work-dir', './results/faster_obb_tv_ver1_cv2_no_trick' # ] # args = ['./DOTA_configs/DOTA_obb/faster_rcnn_InLD_r50_fpn_2x_dota.py', # '--gpus', '8', # '--no-validate', # '--work-dir', './results/faster_obb_tv_ver1_cv2_InLD' # ] # args = ['./DOTA_configs/DOTA_obb/s2anet_r50_fpn_1x_dota.py', # './results/DOTA_s2anet_obb_tv/epoch_24.pth', # '--out', './results/DOTA_s2anet_obb_tv/results.pkl', # '--eval', 'bbox' # ] # # # args = ['./DOTA_configs/DIOR/retinanet_r50_fpn_2x.py', # '--gpus', '2', # '--no-validate', # '--work-dir', './results/retina_test' # ] # # args = ['./configs/detr/detr_r50_8x2_150e_coco.py', # '--gpus', '4', # # '--no-validate', # '--work-dir', './results/detr_baseline' # ] # args = ['./DOTA_configs/General_RS_hbb/detr_r50_8x2_150e.py', # '--gpus', '4', # '--no-validate', # '--work-dir', './results/DIOR_detr_full' # ] # # args = ['./DOTA_configs/DOTA_obb/s2anet_r50_fpn_1x_dota.py', # '--gpus', '1', # '--no-validate', # '--work-dir', './results/DOTA_s2anet_obb_tv' # ] # args = ['./DOTA_configs/DOTA_obb/faster_rcnn_r50_fpn_1x_dota.py', # '--gpus', '1', # '--no-validate', # '--work-dir', './results/DOTA_faster_obb_tv_1GPU_cv2_no_trick' # ] args = [ './DOTA_configs/DOTA_obb/faster_rcnn_RoITrans_r50_fpn_1x_dota.py', '--gpus', '1', '--no-validate', '--work-dir', './results/DOTA_faster_rcnn_RoITrans_tv' ] # args = ['./DOTA_configs/DOTA_obb/faster_rcnn_r50_fpn_1x_dota.py', # '--gpus', '1', # '--no-validate', # '--work-dir', './results/DOTA_faster_obb_tv_1GPU_cv2_no_trick' # ] args = parse_args(args) print(args) cfg = Config.fromfile(args.config) if args.options is not None: cfg.merge_from_dict(args.options) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True # work_dir is determined in this priority: CLI > segment in file > filename if args.work_dir is not None: # update configs according to CLI args if args.work_dir is not None cfg.work_dir = args.work_dir elif cfg.get('work_dir', None) is None: # use config filename as default work_dir if cfg.work_dir is None cfg.work_dir = osp.join('./work_dirs', osp.splitext(osp.basename(args.config))[0]) if args.resume_from is not None: cfg.resume_from = args.resume_from if args.gpu_ids is not None: cfg.gpu_ids = args.gpu_ids else: cfg.gpu_ids = range(1) if args.gpus is None else range(args.gpus) if args.autoscale_lr: # apply the linear scaling rule (https://arxiv.org/abs/1706.02677) cfg.optimizer['lr'] = cfg.optimizer['lr'] * len(cfg.gpu_ids) / 8 # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) # create work_dir mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir)) # dump config cfg.dump(osp.join(cfg.work_dir, osp.basename(args.config))) # init the logger before other steps timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) log_file = osp.join(cfg.work_dir, f'{timestamp}.log') logger = get_root_logger(log_file=log_file, log_level=cfg.log_level) # init the meta dict to record some important information such as # environment info and seed, which will be logged meta = dict() # log env info env_info_dict = collect_env() env_info = '\n'.join([(f'{k}: {v}') for k, v in env_info_dict.items()]) dash_line = '-' * 60 + '\n' logger.info('Environment info:\n' + dash_line + env_info + '\n' + dash_line) meta['env_info'] = env_info # log some basic info logger.info(f'Distributed training: {distributed}') logger.info(f'Config:\n{cfg.pretty_text}') # set random seeds if args.seed is not None: logger.info(f'Set random seed to {args.seed}, ' f'deterministic: {args.deterministic}') set_random_seed(args.seed, deterministic=args.deterministic) cfg.seed = args.seed meta['seed'] = args.seed model = build_detector(cfg.model, train_cfg=cfg.train_cfg, test_cfg=cfg.test_cfg) datasets = [build_dataset(cfg.data.train)] print(len(datasets[0])) if len(cfg.workflow) == 2: val_dataset = copy.deepcopy(cfg.data.val) val_dataset.pipeline = cfg.data.train.pipeline datasets.append(build_dataset(val_dataset)) if cfg.checkpoint_config is not None: # save mmdet version, config file content and class names in # checkpoints as meta data cfg.checkpoint_config.meta = dict(mmdet_version=__version__, config=cfg.pretty_text, CLASSES=datasets[0].CLASSES) # add an attribute for visualization convenience model.CLASSES = datasets[0].CLASSES train_detector_ad(model, datasets, cfg, distributed=False, validate=(not args.no_validate), timestamp=timestamp, meta=meta)
def __init__(self, mode): self.config = patch_config.patch_configs[mode]() self.args = parse_args() cfg = Config.fromfile(self.args.config) cfg.data.samples_per_gpu = 1 if self.args.options is not None: cfg.merge_from_dict(self.args.options) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True # work_dir is determined in this priority: CLI > segment in file > filename if self.args.work_dir is not None: if os.path.exists(self.args.work_dir) is False: os.makedirs(self.args.work_dir) if self.args.clear_work_dir: file_list = os.listdir(self.args.work_dir) for f in file_list: if os.path.isdir(os.path.join(self.args.work_dir, f)): shutil.rmtree(os.path.join(self.args.work_dir, f)) else: os.remove(os.path.join(self.args.work_dir, f)) # update configs according to CLI args if args.work_dir is not None cfg.work_dir = self.args.work_dir elif cfg.get('work_dir', None) is None: # use config filename as default work_dir if cfg.work_dir is None cfg.work_dir = osp.join('./work_dirs', osp.splitext(osp.basename(args.config))[0]) if self.args.resume_from is not None: cfg.resume_from = self.args.resume_from if self.args.gpu_ids is not None: cfg.gpu_ids = self.args.gpu_ids else: cfg.gpu_ids = range(1) if self.args.gpus is None else range( args.gpus) if self.args.autoscale_lr: # apply the linear scaling rule (https://arxiv.org/abs/1706.02677) cfg.optimizer['lr'] = cfg.optimizer['lr'] * len(cfg.gpu_ids) / 8 # init distributed env first, since logger depends on the dist info. if self.args.launcher == 'none': distributed = False else: distributed = True init_dist(self.args.launcher, **cfg.dist_params) # create work_dir mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir)) # dump config cfg.dump(osp.join(cfg.work_dir, osp.basename(self.args.config))) # init the logger before other steps timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) log_file = osp.join(cfg.work_dir, f'{timestamp}.log') logger = get_root_logger(log_file=log_file, log_level=cfg.log_level) # init the meta dict to record some important information such as # environment info and seed, which will be logged meta = dict() # log env info env_info_dict = collect_env() env_info = '\n'.join([(f'{k}: {v}') for k, v in env_info_dict.items()]) dash_line = '-' * 60 + '\n' logger.info('Environment info:\n' + dash_line + env_info + '\n' + dash_line) meta['env_info'] = env_info # log some basic info logger.info(f'Distributed training: {distributed}') logger.info(f'Config:\n{cfg.pretty_text}') # set random seeds if self.args.seed is not None: logger.info(f'Set random seed to {args.seed}, ' f'deterministic: {args.deterministic}') set_random_seed(self.args.seed, deterministic=args.deterministic) cfg.seed = self.args.seed meta['seed'] = self.args.seed self.model = build_detector(cfg.model, train_cfg=cfg.train_cfg, test_cfg=cfg.test_cfg) self.model = MMDataParallel(self.model.cuda(cfg.gpu_ids[0]), device_ids=cfg.gpu_ids) # YOLOv4 # zzj self.darknet_model = Darknet(self.config.cfgfile) self.darknet_model.load_weights(self.config.weightfile) self.darknet_model = self.darknet_model.eval().cuda( ) # TODO: Why eval? self.datasets = [build_dataset(cfg.data.train)] self.data_loaders = [ build_dataloader( ds, cfg.data.samples_per_gpu, cfg.data.workers_per_gpu, # cfg.gpus will be ignored if distributed len(cfg.gpu_ids), dist=distributed, seed=cfg.seed) for ds in self.datasets ] if len(cfg.workflow) == 2: val_dataset = copy.deepcopy(cfg.data.val) val_dataset.pipeline = cfg.data.train.pipeline self.datasets.append(build_dataset(val_dataset)) if cfg.checkpoint_config is not None: # save mmdet version, config file content and class names in # checkpoints as meta data cfg.checkpoint_config.meta = dict(mmdet_version=__version__, config=cfg.pretty_text, CLASSES=self.datasets[0].CLASSES) # add an attribute for visualization convenience self.model.CLASSES = self.datasets[0].CLASSES self.patch_applier = PatchApplier().cuda() self.patch_transformer = PatchTransformer().cuda() self.prob_extractor = MaxProbExtractor(0, 80, self.config).cuda() self.nps_calculator = NPSCalculator(self.config.printfile, self.config.patch_size).cuda() self.total_variation = TotalVariation().cuda() self.writer = self.init_tensorboard(mode)
def main(): args = parse_args() assert args.out or args.show or args.json_out, \ ('Please specify at least one operation (save or show the results) ' 'with the argument "--out" or "--show" or "--json_out"') if args.out is not None and not args.out.endswith(('.pkl', '.pickle')): raise ValueError('The output file must be a pkl file.') if args.json_out is not None and args.json_out.endswith('.json'): args.json_out = args.json_out[:-5] cfg = mmcv.Config.fromfile(args.config) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True cfg.model.pretrained = None cfg.data.test.test_mode = True # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) # build the dataloader # TODO: support multiple images per gpu (only minor changes are needed) dataset = build_dataset(cfg.data.test) data_loader = build_dataloader(dataset, imgs_per_gpu=1, workers_per_gpu=cfg.data.workers_per_gpu, dist=distributed, shuffle=False) # build the model and load checkpoint model = build_detector(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg) fp16_cfg = cfg.get('fp16', None) if fp16_cfg is not None: wrap_fp16_model(model) while not osp.isfile(args.checkpoint): print('Waiting for {} to exist...'.format(args.checkpoint)) time.sleep(60) checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu') # old versions did not save class info in checkpoints, this walkaround is # for backward compatibility if 'CLASSES' in checkpoint['meta']: model.CLASSES = checkpoint['meta']['CLASSES'] else: model.CLASSES = dataset.CLASSES if not distributed: model = MMDataParallel(model, device_ids=[0]) outputs = single_gpu_test(model, data_loader) else: model = MMDistributedDataParallel(model.cuda()) outputs = multi_gpu_test(model, data_loader, args.tmpdir) rank, _ = get_dist_info() if args.out and rank == 0: print('\nwriting results to {}'.format(args.out)) mmcv.dump(outputs, args.out) eval_types = args.eval if eval_types: print('Starting evaluate {}'.format(' and '.join(eval_types))) if eval_types == ['proposal_fast']: result_file = args.out coco_eval(result_file, eval_types, dataset.coco) else: if not isinstance(outputs[0], dict): result_files = results2json_segm(dataset, outputs, args.out) coco_eval(result_files, eval_types, dataset.coco) else: for name in outputs[0]: print('\nEvaluating {}'.format(name)) outputs_ = [out[name] for out in outputs] result_file = args.out + '.{}'.format(name) result_files = results2json(dataset, outputs_, result_file) coco_eval(result_files, eval_types, dataset.coco) # Save predictions in the COCO json format if args.json_out and rank == 0: if not isinstance(outputs[0], dict): results2json(dataset, outputs, args.json_out) else: for name in outputs[0]: outputs_ = [out[name] for out in outputs] result_file = args.json_out + '.{}'.format(name) results2json(dataset, outputs_, result_file)
def main(): args = parse_args() cfg = Config.fromfile(args.config) if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) # import modules from plguin/xx, registry will be updated if hasattr(cfg, 'plugin') & cfg.plugin: import importlib if hasattr(cfg, 'plugin_dir'): plugin_dir = cfg.plugin_dir _module_dir = os.path.dirname(plugin_dir) _module_dir = _module_dir.split('/') _module_path = _module_dir[0] for m in _module_dir[1:]: _module_path = _module_path + '.' + m print(_module_path) plg_lib = importlib.import_module(_module_path) else: # import dir is the dirpath for the config file _module_dir = os.path.dirname(args.config) _module_dir = _module_dir.split('/') _module_path = _module_dir[0] for m in _module_dir[1:]: _module_path = _module_path + '.' + m print(_module_path) plg_lib = importlib.import_module(_module_path) # import modules from string list. # if cfg.get('custom_imports', None): # from mmcv.utils import import_modules_from_strings # import_modules_from_strings(**cfg['custom_imports']) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True cfg.model.pretrained = None # in case the test dataset is concatenated samples_per_gpu = 1 if isinstance(cfg.data.test, dict): cfg.data.test.test_mode = True samples_per_gpu = cfg.data.test.pop('samples_per_gpu', 1) if samples_per_gpu > 1: # Replace 'ImageToTensor' to 'DefaultFormatBundle' cfg.data.test.pipeline = replace_ImageToTensor( cfg.data.test.pipeline) elif isinstance(cfg.data.test, list): for ds_cfg in cfg.data.test: ds_cfg.test_mode = True samples_per_gpu = max( [ds_cfg.pop('samples_per_gpu', 1) for ds_cfg in cfg.data.test]) if samples_per_gpu > 1: for ds_cfg in cfg.data.test: ds_cfg.pipeline = replace_ImageToTensor(ds_cfg.pipeline) # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) # set random seeds if args.seed is not None: set_random_seed(args.seed, deterministic=args.deterministic) # build the dataloader dataset = build_dataset(cfg.data.test) data_loader = build_dataloader(dataset, samples_per_gpu=samples_per_gpu, workers_per_gpu=cfg.data.workers_per_gpu, dist=distributed, shuffle=False) if not os.path.exists(args.out_dir): os.mkdir(args.out_dir) # build the model and load checkpoint cfg.model.train_cfg = None model = build_detector(cfg.model, test_cfg=cfg.get('test_cfg')) #from IPython import embed #embed() fp16_cfg = cfg.get('fp16', None) if fp16_cfg is not None: wrap_fp16_model(model) #if args.checkpoint is not None: # checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu') if args.fuse_conv_bn: model = fuse_conv_bn(model) if not distributed: model = MMDataParallel(model, device_ids=[0]) else: model = MMDistributedDataParallel( model.cuda(), device_ids=[torch.cuda.current_device()], broadcast_buffers=False) model.eval() meta_json = {} print('len of data loader: ', len(data_loader)) for i, data in tqdm(enumerate(data_loader)): with torch.no_grad(): data = scatter(data, [-1])[0] for k, v in data.items(): if isinstance(v, torch.Tensor): data[k] = v.cuda() key_img_path = data['img_metas'][0]['filename'] key_img_name = os.path.join(*key_img_path.split('/')[2:]) key_img_filename = key_img_path.split('/')[-1] save_path = os.path.join(args.out_dir, key_img_filename) outputs = model.module.preprocess_forward(data) outputs = outputs.detach().cpu().numpy() np.save(save_path, outputs) meta_json[key_img_name] = save_path + '.npy' with open( os.path.join(args.out_dir, 'sf_inp_val_meta_{}.json'.format(args.local_rank)), 'w') as f: json.dump(meta_json, f)
def main(): args = parse_args() cfg = Config.fromfile(args.config) cfg.merge_from_dict(args.cfg_options) if cfg.model['test_cfg'] is None: cfg.model['test_cfg'] = dict(feature_extraction=True) else: cfg.model['test_cfg']['feature_extraction'] = True # Load output_config from cfg output_config = cfg.get('output_config', {}) if args.out: # Overwrite output_config from args.out output_config = Config._merge_a_into_b(dict(out=args.out), output_config) assert output_config, 'Please specify output filename with --out.' dataset_type = cfg.data.test.type if output_config.get('out', None): if 'output_format' in output_config: # ugly workround to make recognition and localization the same warnings.warn( 'Skip checking `output_format` in localization task.') else: out = output_config['out'] # make sure the dirname of the output path exists mmcv.mkdir_or_exist(osp.dirname(out)) _, suffix = osp.splitext(out) assert dataset_type == 'VideoDataset' assert suffix[1:] in file_handlers, ( 'The format of the output ' 'file should be json, pickle or yaml') # set cudnn benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True cfg.data.test.test_mode = True cfg.data.test.data_prefix = args.video_root # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) rank, _ = get_dist_info() size = 256 fname_tensor = torch.zeros(size, dtype=torch.uint8).cuda() if rank == 0: videos = open(args.video_list).readlines() videos = [x.strip() for x in videos] timestamp = datetime.now().strftime('%Y%m%d_%H%M%S') fake_anno = f'fake_anno_{timestamp}.txt' with open(fake_anno, 'w') as fout: lines = [x + ' 0' for x in videos] fout.write('\n'.join(lines)) fname_tensor = text2tensor(fake_anno, size).cuda() if distributed: dist.broadcast(fname_tensor.cuda(), src=0) fname = tensor2text(fname_tensor) cfg.data.test.ann_file = fname # The flag is used to register module's hooks cfg.setdefault('module_hooks', []) # build the dataloader dataset = build_dataset(cfg.data.test, dict(test_mode=True)) dataloader_setting = dict(videos_per_gpu=cfg.data.get('videos_per_gpu', 1), workers_per_gpu=cfg.data.get( 'workers_per_gpu', 1), dist=distributed, shuffle=False) dataloader_setting = dict(dataloader_setting, **cfg.data.get('test_dataloader', {})) data_loader = build_dataloader(dataset, **dataloader_setting) outputs = inference_pytorch(args, cfg, distributed, data_loader) if rank == 0: if output_config.get('out', None): out = output_config['out'] print(f'\nwriting results to {out}') dataset.dump_results(outputs, **output_config) # remove the temporary file os.remove(fake_anno)
def main(): args = parse_args() cfg = Config.fromfile(args.config) cfg.merge_from_dict(args.cfg_options) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True # work_dir is determined in this priority: # CLI > config file > default (base filename) if args.work_dir is not None: # update configs according to CLI args if args.work_dir is not None cfg.work_dir = args.work_dir elif cfg.get('work_dir', None) is None: # use config filename as default work_dir if cfg.work_dir is None cfg.work_dir = osp.join('./work_dirs', osp.splitext(osp.basename(args.config))[0]) if args.resume_from is not None: cfg.resume_from = args.resume_from if args.gpu_ids is not None: cfg.gpu_ids = args.gpu_ids else: cfg.gpu_ids = range(1) if args.gpus is None else range(args.gpus) # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) # The flag is used to determine whether it is omnisource training cfg.setdefault('omnisource', False) # The flag is used to register module's hooks cfg.setdefault('module_hooks', []) # create work_dir mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir)) # dump config cfg.dump(osp.join(cfg.work_dir, osp.basename(args.config))) # init logger before other steps timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) log_file = osp.join(cfg.work_dir, f'{timestamp}.log') logger = get_root_logger(log_file=log_file, log_level=cfg.log_level) # init the meta dict to record some important information such as # environment info and seed, which will be logged meta = dict() # log env info env_info_dict = collect_env() env_info = '\n'.join([f'{k}: {v}' for k, v in env_info_dict.items()]) dash_line = '-' * 60 + '\n' logger.info('Environment info:\n' + dash_line + env_info + '\n' + dash_line) meta['env_info'] = env_info # log some basic info logger.info(f'Distributed training: {distributed}') logger.info(f'Config: {cfg.pretty_text}') # set random seeds if args.seed is not None: logger.info(f'Set random seed to {args.seed}, ' f'deterministic: {args.deterministic}') set_random_seed(args.seed, deterministic=args.deterministic) cfg.seed = args.seed meta['seed'] = args.seed meta['config_name'] = osp.basename(args.config) meta['work_dir'] = osp.basename(cfg.work_dir.rstrip('/\\')) model = build_model( cfg.model, train_cfg=cfg.get('train_cfg'), test_cfg=cfg.get('test_cfg')) if len(cfg.module_hooks) > 0: register_module_hooks(model, cfg.module_hooks) if cfg.omnisource: # If omnisource flag is set, cfg.data.train should be a list assert type(cfg.data.train) is list datasets = [build_dataset(dataset) for dataset in cfg.data.train] else: datasets = [build_dataset(cfg.data.train)] if len(cfg.workflow) == 2: # For simplicity, omnisource is not compatiable with val workflow, # we recommend you to use `--validate` assert not cfg.omnisource if args.validate: warnings.warn('val workflow is duplicated with `--validate`, ' 'it is recommended to use `--validate`. see ' 'https://github.com/open-mmlab/mmaction2/pull/123') val_dataset = copy.deepcopy(cfg.data.val) datasets.append(build_dataset(val_dataset)) if cfg.checkpoint_config is not None: # save mmaction version, config file content and class names in # checkpoints as meta data cfg.checkpoint_config.meta = dict( mmaction_version=__version__ + get_git_hash(digits=7), config=cfg.text) test_option = dict(test_last=args.test_last, test_best=args.test_best) train_model( model, datasets, cfg, distributed=distributed, validate=args.validate, test=test_option, timestamp=timestamp, meta=meta)
def main(): # options parser = argparse.ArgumentParser() parser.add_argument('-opt', type=str, required=True, help='Path to option YAML file.') parser.add_argument('--launcher', choices=['none', 'pytorch', 'slurm'], default='none', help='job launcher') parser.add_argument('--local_rank', type=int, default=0) args = parser.parse_args() opt = parse(args.opt, is_train=False) # distributed testing settings if args.launcher == 'none': # non-distributed testing opt['dist'] = False print('Disable distributed testing.', flush=True) else: opt['dist'] = True if args.launcher == 'slurm' and 'dist_params' in opt: init_dist(args.launcher, **opt['dist_params']) else: init_dist(args.launcher) rank, world_size = get_dist_info() opt['rank'] = rank opt['world_size'] = world_size make_exp_dirs(opt) log_file = osp.join(opt['path']['log'], f"test_{opt['name']}_{get_time_str()}.log") logger = get_root_logger(logger_name='basicsr', log_level=logging.INFO, log_file=log_file) logger.info(get_env_info()) logger.info(dict2str(opt)) # random seed seed = opt['manual_seed'] if seed is None: seed = random.randint(1, 10000) opt['manual_seed'] = seed logger.info(f'Random seed: {seed}') set_random_seed(seed + rank) torch.backends.cudnn.benchmark = True # torch.backends.cudnn.deterministic = True # create test dataset and dataloader test_loaders = [] for phase, dataset_opt in sorted(opt['datasets'].items()): test_set = create_dataset(dataset_opt) test_loader = create_dataloader(test_set, dataset_opt, num_gpu=opt['num_gpu'], dist=opt['dist'], sampler=None, seed=seed) logger.info( f"Number of test images in {dataset_opt['name']}: {len(test_set)}") test_loaders.append(test_loader) # create model model = create_model(opt) for test_loader in test_loaders: test_set_name = test_loader.dataset.opt['name'] logger.info(f'Testing {test_set_name}...') model.validation(test_loader, current_iter=opt['name'], tb_logger=None, save_img=True) dummy_input = torch.randn(1, 7, 3, 144, 176, device='cuda') input_names = ['input'] output_names = ['output'] torch.onnx.export( model.net_g.module, dummy_input, "trt_onnx/edvr.onnx", verbose=True, opset_version=11, operator_export_type=torch.onnx.OperatorExportTypes.ONNX_FALLTHROUGH, input_names=input_names, output_names=output_names)
def main(): args = parse_args() cfg = Config.fromfile(args.config) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True # update configs according to CLI args if args.work_dir is not None: cfg.work_dir = args.work_dir if args.resume_from is not None: cfg.resume_from = args.resume_from cfg.gpus = args.gpus if args.autoscale_lr: # apply the linear scaling rule (https://arxiv.org/abs/1706.02677) cfg.optimizer['lr'] = cfg.optimizer['lr'] * cfg.gpus / 8 # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) # create work_dir mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir)) # init the logger before other steps timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) log_file = osp.join(cfg.work_dir, '{}.log'.format(timestamp)) logger = get_root_logger(log_file=log_file, log_level=cfg.log_level) # init the meta dict to record some important information such as # environment info and seed, which will be logged meta = dict() # log env info env_info_dict = collect_env() env_info = '\n'.join([('{}: {}'.format(k, v)) for k, v in env_info_dict.items()]) dash_line = '-' * 60 + '\n' logger.info('Environment info:\n' + dash_line + env_info + '\n' + dash_line) meta['env_info'] = env_info # log some basic info logger.info('Distributed training: {}'.format(distributed)) logger.info('Config:\n{}'.format(cfg.text)) # set random seeds if args.seed is not None: logger.info('Set random seed to {}, deterministic: {}'.format( args.seed, args.deterministic)) set_random_seed(args.seed, deterministic=args.deterministic) cfg.seed = args.seed meta['seed'] = args.seed model = build_detector(cfg.model, train_cfg=cfg.train_cfg, test_cfg=cfg.test_cfg) datasets = [build_dataset(cfg.data.train)] if len(cfg.workflow) == 2: val_dataset = copy.deepcopy(cfg.data.val) val_dataset.pipeline = cfg.data.train.pipeline datasets.append(build_dataset(val_dataset)) if cfg.checkpoint_config is not None: # save mmdet version, config file content and class names in # checkpoints as meta data cfg.checkpoint_config.meta = dict(mmdet_version=__version__, config=cfg.text, CLASSES=datasets[0].CLASSES) # add an attribute for visualization convenience model.CLASSES = datasets[0].CLASSES train_detector(model, datasets, cfg, distributed=distributed, validate=args.validate, timestamp=timestamp, meta=meta)
def main(): # options parser = argparse.ArgumentParser() parser.add_argument('-opt', type=str, required=True, help='Path to option YAML file.') parser.add_argument('--launcher', choices=['none', 'pytorch', 'slurm'], default='none', help='job launcher') parser.add_argument('--local_rank', type=int, default=0) args = parser.parse_args() opt = parse(args.opt, is_train=True) # distributed training settings if args.launcher == 'none': # non-distributed training opt['dist'] = False print('Disable distributed training.') else: opt['dist'] = True if args.launcher == 'slurm' and 'dist_params' in opt: init_dist(args.launcher, **opt['dist_params']) else: init_dist(args.launcher) rank, world_size = get_dist_info() opt['rank'] = rank opt['world_size'] = world_size # load resume states if exists if opt['path'].get('resume_state'): device_id = torch.cuda.current_device() resume_state = torch.load( opt['path']['resume_state'], map_location=lambda storage, loc: storage.cuda(device_id)) else: resume_state = None # mkdir and loggers if resume_state is None: make_exp_dirs(opt) log_file = './first_xavier_L_40.log' logger = get_root_logger(logger_name='basicsr', log_level=logging.INFO, log_file=log_file) logger.info(get_env_info()) logger.info(dict2str(opt)) # initialize tensorboard logger and wandb logger tb_logger = None if opt['logger'].get('use_tb_logger') and 'debug' not in opt['name']: log_dir = './tb_logger/' + opt['name'] if resume_state is None and opt['rank'] == 0: mkdir_and_rename(log_dir) tb_logger = init_tb_logger(log_dir=log_dir) if (opt['logger'].get('wandb') is not None) and (opt['logger']['wandb'].get('project') is not None) and ('debug' not in opt['name']): assert opt['logger'].get('use_tb_logger') is True, ( 'should turn on tensorboard when using wandb') init_wandb_logger(opt) # random seed print('1') seed = opt['manual_seed'] # if seed is None: # seed = random.randint(1, 10000) # opt['manual_seed'] = seed set_random_seed(seed + rank) torch.backends.cudnn.benchmark = True # torch.backends.cudnn.deterministic = True # create train and val dataloaders train_loader, val_loader = None, None for phase, dataset_opt in opt['datasets'].items(): if phase == 'train': dataset_enlarge_ratio = dataset_opt.get('dataset_enlarge_ratio', 1) train_set = create_dataset(dataset_opt) train_sampler = EnlargedSampler(train_set, world_size, rank, dataset_enlarge_ratio) train_loader = create_dataloader(train_set, dataset_opt, num_gpu=opt['num_gpu'], dist=opt['dist'], sampler=train_sampler, seed=seed) num_iter_per_epoch = math.ceil( len(train_set) * dataset_enlarge_ratio / (dataset_opt['batch_size_per_gpu'] * opt['world_size'])) total_iters = int(opt['train']['total_iter']) total_epochs = math.ceil(total_iters / (num_iter_per_epoch)) logger.info( 'Training statistics:' f'\n\tNumber of train images: {len(train_set)}' f'\n\tDataset enlarge ratio: {dataset_enlarge_ratio}' f'\n\tBatch size per gpu: {dataset_opt["batch_size_per_gpu"]}' f'\n\tWorld size (gpu number): {opt["world_size"]}' f'\n\tRequire iter number per epoch: {num_iter_per_epoch}' f'\n\tTotal epochs: {total_epochs}; iters: {total_iters}.') elif phase == 'val': val_set = create_dataset(dataset_opt) val_loader = create_dataloader(val_set, dataset_opt, num_gpu=opt['num_gpu'], dist=opt['dist'], sampler=None, seed=seed) logger.info( f'Number of val images/folders in {dataset_opt["name"]}: ' f'{len(val_set)}') else: raise ValueError(f'Dataset phase {phase} is not recognized.') assert train_loader is not None # create model if resume_state: check_resume(opt, resume_state['iter']) # modify pretrain_model paths model = create_model(opt) # resume training if resume_state: logger.info(f"Resuming training from epoch: {resume_state['epoch']}, " f"iter: {resume_state['iter']}.") start_epoch = resume_state['epoch'] current_iter = resume_state['iter'] model.resume_training(resume_state) # handle optimizers and schedulers else: start_epoch = 0 current_iter = 0 # create message logger (formatted outputs) msg_logger = MessageLogger(opt, current_iter, tb_logger) # dataloader prefetcher prefetch_mode = opt['datasets']['train'].get('prefetch_mode') if prefetch_mode is None or prefetch_mode == 'cpu': prefetcher = CPUPrefetcher(train_loader) elif prefetch_mode == 'cuda': prefetcher = CUDAPrefetcher(train_loader, opt) logger.info(f'Use {prefetch_mode} prefetch dataloader') if opt['datasets']['train'].get('pin_memory') is not True: raise ValueError('Please set pin_memory=True for CUDAPrefetcher.') else: raise ValueError(f'Wrong prefetch_mode {prefetch_mode}.' "Supported ones are: None, 'cuda', 'cpu'.") # training logger.info( f'Start training from epoch: {start_epoch}, iter: {current_iter}') data_time, iter_time = time.time(), time.time() start_time = time.time() for epoch in range(start_epoch, total_epochs + 1): train_sampler.set_epoch(epoch) prefetcher.reset() train_data = prefetcher.next() while train_data is not None: data_time = time.time() - data_time current_iter += 1 if current_iter > total_iters: break # update learning rate model.update_learning_rate(current_iter, warmup_iter=opt['train'].get( 'warmup_iter', -1)) # training model.feed_data(train_data) model.optimize_parameters(current_iter) iter_time = time.time() - iter_time # log if current_iter % opt['logger']['print_freq'] == 0: log_vars = {'epoch': epoch, 'iter': current_iter} log_vars.update({'lrs': model.get_current_learning_rate()}) log_vars.update({'time': iter_time, 'data_time': data_time}) log_vars.update(model.get_current_log()) msg_logger(log_vars) # save models and training states if current_iter % opt['logger']['save_checkpoint_freq'] == 0: logger.info('Saving models and training states.') model.save(epoch, current_iter) # validation if opt['val']['val_freq'] is not None and current_iter % opt[ 'val']['val_freq'] == 0: model.validation(val_loader, current_iter, tb_logger, opt['val']['save_img']) data_time = time.time() iter_time = time.time() train_data = prefetcher.next() # end of iter # end of epoch consumed_time = str( datetime.timedelta(seconds=int(time.time() - start_time))) logger.info(f'End of training. Time consumed: {consumed_time}') logger.info('Save the latest model.') model.save(epoch=-1, current_iter=-1) # -1 stands for the latest if opt['val']['val_freq'] is not None: model.validation(val_loader, current_iter, tb_logger, opt['val']['save_img']) if tb_logger: tb_logger.close()
def main(): global cfg, rank, world_size cfg = Config.fromfile(args.config) # Set seed np.random.seed(cfg.seed) cudnn.benchmark = True torch.manual_seed(cfg.seed) cudnn.enabled = True torch.cuda.manual_seed(cfg.seed) # Model print('==> Building model..') arch_code = eval('architecture_code.{}'.format(cfg.model)) net = models.model_entry(cfg, arch_code) rank = 0 # for non-distributed world_size = 1 # for non-distributed if args.distributed: print('==> Initializing distributed training..') init_dist( launcher='slurm', backend='nccl' ) # Only support slurm for now, if you would like to personalize your launcher, please refer to https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/dist_utils.py rank, world_size = get_dist_info() net = net.cuda() cfg.netpara = sum(p.numel() for p in net.parameters()) / 1e6 start_epoch = 0 best_acc = 0 # Load checkpoint. if cfg.get('resume_path', False): print('==> Resuming from {}checkpoint {}..'.format( ('original ' if cfg.resume_path.origin_ckpt else ''), cfg.resume_path.path)) if cfg.resume_path.origin_ckpt: utils.load_state(cfg.resume_path.path, net, rank=rank) else: if args.distributed: net = torch.nn.parallel.DistributedDataParallel( net, device_ids=[torch.cuda.current_device()], output_device=torch.cuda.current_device()) utils.load_state(cfg.resume_path.path, net, rank=rank) # Data print('==> Preparing data..') trainloader, testloader, train_sampler, test_sampler = dataset_entry( cfg, args.distributed) criterion = nn.CrossEntropyLoss() if not args.eval_only: cfg.attack_param.num_steps = 7 net_adv = AttackPGD(net, cfg.attack_param) # Train params print('==> Setting train parameters..') train_param = cfg.train_param epochs = train_param.epochs init_lr = train_param.learning_rate if train_param.get('warm_up_param', False): warm_up_param = train_param.warm_up_param init_lr = warm_up_param.warm_up_base_lr epochs += warm_up_param.warm_up_epochs if train_param.get('no_wd', False): param_group, type2num, _, _ = utils.param_group_no_wd(net) cfg.param_group_no_wd = type2num optimizer = torch.optim.SGD(param_group, lr=init_lr, momentum=train_param.momentum, weight_decay=train_param.weight_decay) else: optimizer = torch.optim.SGD(net.parameters(), lr=init_lr, momentum=train_param.momentum, weight_decay=train_param.weight_decay) scheduler = lr_scheduler.CosineLRScheduler( optimizer, epochs, train_param.learning_rate_min, init_lr, train_param.learning_rate, (warm_up_param.warm_up_epochs if train_param.get( 'warm_up_param', False) else 0)) # Log print('==> Writing log..') if rank == 0: cfg.save = '{}/{}-{}-{}'.format(cfg.save_path, cfg.model, cfg.dataset, time.strftime("%Y%m%d-%H%M%S")) utils.create_exp_dir(cfg.save) logger = utils.create_logger('global_logger', cfg.save + '/log.txt') logger.info('config: {}'.format(pprint.pformat(cfg))) # Evaluation only if args.eval_only: assert cfg.get( 'resume_path', False), 'Should set the resume path for the eval_only mode' print('==> Testing on Clean Data..') test(net, testloader, criterion) print('==> Testing on Adversarial Data..') test(net_adv, testloader, criterion, adv=True) return # Training process for epoch in range(start_epoch, epochs): train_sampler.set_epoch(epoch) test_sampler.set_epoch(epoch) scheduler.step() if rank == 0: logger.info('Epoch %d learning rate %e', epoch, scheduler.get_lr()[0]) # Train for one epoch train(net_adv, trainloader, criterion, optimizer) # Validate for one epoch valid_acc = test(net_adv, testloader, criterion, adv=True) if rank == 0: logger.info('Validation Accuracy: {}'.format(valid_acc)) is_best = valid_acc > best_acc best_acc = max(valid_acc, best_acc) print('==> Saving') state = { 'epoch': epoch, 'best_acc': best_acc, 'optimizer': optimizer.state_dict(), 'state_dict': net.state_dict(), 'scheduler': scheduler } utils.save_checkpoint(state, is_best, os.path.join(cfg.save))
def main(): args = parse_args() cfg = Config.fromfile(args.config) if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True if args.gpu_ids is not None: cfg.gpu_ids = args.gpu_ids[0:1] warnings.warn('`--gpu-ids` is deprecated, please use `--gpu-id`. ' 'Because we only support single GPU mode in ' 'non-distributed testing. Use the first GPU ' 'in `gpu_ids` now.') else: cfg.gpu_ids = [args.gpu_id] # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False rank = 0 else: distributed = True init_dist(args.launcher, **cfg.dist_params) rank, world_size = get_dist_info() cfg.gpu_ids = range(world_size) assert args.online or world_size == 1, ( 'We only support online mode for distrbuted evaluation.') dirname = os.path.dirname(args.checkpoint) ckpt = os.path.basename(args.checkpoint) if 'http' in args.checkpoint: log_path = None else: log_name = ckpt.split('.')[0] + '_eval_log' + '.txt' log_path = os.path.join(dirname, log_name) logger = get_root_logger(log_file=log_path, log_level=cfg.log_level, file_mode='a') logger.info('evaluation') # set random seeds if args.seed is not None: if rank == 0: mmcv.print_log(f'set random seed to {args.seed}', 'mmgen') set_random_seed(args.seed, deterministic=args.deterministic) # build the model and load checkpoint model = build_model(cfg.model, train_cfg=cfg.train_cfg, test_cfg=cfg.test_cfg) # sanity check for models without ema if not model.use_ema: args.sample_model = 'orig' mmcv.print_log(f'Sampling model: {args.sample_model}', 'mmgen') model.eval() if args.eval: if args.eval[0] == 'none': # only sample images metrics = [] assert args.num_samples is not None and args.num_samples > 0 else: metrics = [ build_metric(cfg.metrics[metric]) for metric in args.eval ] else: metrics = [build_metric(cfg.metrics[metric]) for metric in cfg.metrics] # check metrics for dist evaluation if distributed and metrics: for metric in metrics: assert metric.name in _distributed_metrics, ( f'We only support {_distributed_metrics} for multi gpu ' f'evaluation, but receive {args.eval}.') _ = load_checkpoint(model, args.checkpoint, map_location='cpu') basic_table_info = dict(train_cfg=os.path.basename(cfg._filename), ckpt=ckpt, sample_model=args.sample_model) if len(metrics) == 0: basic_table_info['num_samples'] = args.num_samples data_loader = None else: basic_table_info['num_samples'] = -1 # build the dataloader if cfg.data.get('test', None) and cfg.data.test.get('imgs_root', None): dataset = build_dataset(cfg.data.test) elif cfg.data.get('val', None) and cfg.data.val.get('imgs_root', None): dataset = build_dataset(cfg.data.val) elif cfg.data.get('train', None): # we assume that the train part should work well dataset = build_dataset(cfg.data.train) else: raise RuntimeError('There is no valid dataset config to run, ' 'please check your dataset configs.') # The default loader config loader_cfg = dict(samples_per_gpu=args.batch_size, workers_per_gpu=cfg.data.get( 'val_workers_per_gpu', cfg.data.workers_per_gpu), num_gpus=len(cfg.gpu_ids), dist=distributed, shuffle=True) # The overall dataloader settings loader_cfg.update({ k: v for k, v in cfg.data.items() if k not in [ 'train', 'val', 'test', 'train_dataloader', 'val_dataloader', 'test_dataloader' ] }) # specific config for test loader test_loader_cfg = {**loader_cfg, **cfg.data.get('test_dataloader', {})} data_loader = build_dataloader(dataset, **test_loader_cfg) if args.sample_cfg is None: args.sample_cfg = dict() if not distributed: model = MMDataParallel(model, device_ids=[0]) else: find_unused_parameters = cfg.get('find_unused_parameters', False) model = MMDistributedDataParallel( model.cuda(), device_ids=[torch.cuda.current_device()], broadcast_buffers=False, find_unused_parameters=find_unused_parameters) # online mode will not save samples if args.online and len(metrics) > 0: online_evaluation(model, data_loader, metrics, logger, basic_table_info, args.batch_size, **args.sample_cfg) else: offline_evaluation(model, data_loader, metrics, logger, basic_table_info, args.batch_size, args.samples_path, **args.sample_cfg)
type=str, help='Specify a config file path') parser.add_argument('--launcher', default=None, type=str, help='Launcher') parser.add_argument( '--num_workers', default=4, type=int, help='Specify the number of worker threads for data loaders') parser.add_argument('--local_rank', type=int, default=0) parser.add_argument('--seed', default=0, type=int, help='Specify a random seed') args = parser.parse_args() ## set up cfgs = setup_runtime(args) if args.launcher is None or args.launcher == 'none': cfgs['distributed'] = False else: cfgs['distributed'] = True init_dist(args.launcher, backend='nccl') # important: use different random seed for different process torch.manual_seed(args.seed + dist.get_rank()) print(cfgs) trainer = Trainer(cfgs, GAN2Shape) ## run trainer.train()
def main(): args = parse_args() cfg = Config.fromfile(args.config) if args.options is not None: cfg.merge_from_dict(args.options) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True # work_dir is determined in this priority: CLI > segment in file > filename if args.work_dir is not None: # update configs according to CLI args if args.work_dir is not None cfg.work_dir = args.work_dir elif cfg.get('work_dir', None) is None: # use config filename as default work_dir if cfg.work_dir is None cfg.work_dir = osp.join('./work_dirs', osp.splitext(osp.basename(args.config))[0]) if args.load_from is not None: cfg.load_from = args.load_from if args.resume_from is not None: cfg.resume_from = args.resume_from if args.gpu_ids is not None: cfg.gpu_ids = args.gpu_ids else: cfg.gpu_ids = range(1) if args.gpus is None else range(args.gpus) # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) # create work_dir mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir)) # dump config cfg.dump(osp.join(cfg.work_dir, osp.basename(args.config))) # init the logger before other steps timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) log_file = osp.join(cfg.work_dir, f'{timestamp}.log') logger = get_root_logger(log_file=log_file, log_level=cfg.log_level) # init the meta dict to record some important information such as # environment info and seed, which will be logged meta = dict() # log env info env_info_dict = collect_env() env_info = '\n'.join([f'{k}: {v}' for k, v in env_info_dict.items()]) dash_line = '-' * 60 + '\n' logger.info('Environment info:\n' + dash_line + env_info + '\n' + dash_line) meta['env_info'] = env_info # log some basic info logger.info(f'Distributed training: {distributed}') logger.info(f'Config:\n{cfg.pretty_text}') # set random seeds if args.seed is not None: logger.info(f'Set random seed to {args.seed}, deterministic: ' f'{args.deterministic}') set_random_seed(args.seed, deterministic=args.deterministic) cfg.seed = args.seed meta['seed'] = args.seed meta['exp_name'] = osp.basename(args.config) # T_config = 'configs/pspnet/pspnet_r18-d8_512x512_nophoto_40k_cityscapes.py' # T_cfg = Config.fromfile(T_config) # # print(T_cfg) # Teacher = build_segmentor(T_cfg.model, train_cfg=T_cfg.train_cfg, test_cfg=T_cfg.test_cfg) # # cfg.model.teacher = Teacher # print('===========================================') # # print(type(cfg)) # print(type(Teacher)) # model = build_segmentor_kd( # cfg.model, train_cfg=cfg.train_cfg, test_cfg=cfg.test_cfg, teacher=Teacher) model = build_segmentor(cfg.model, train_cfg=cfg.train_cfg, test_cfg=cfg.test_cfg) logger.info(model) datasets = [build_dataset(cfg.data.train)] if len(cfg.workflow) == 2: val_dataset = copy.deepcopy(cfg.data.val) val_dataset.pipeline = cfg.data.train.pipeline datasets.append(build_dataset(val_dataset)) if cfg.checkpoint_config is not None: # save mmseg version, config file content and class names in # checkpoints as meta data cfg.checkpoint_config.meta = dict( mmseg_version=f'{__version__}+{get_git_hash()[:7]}', config=cfg.pretty_text, CLASSES=datasets[0].CLASSES, PALETTE=datasets[0].PALETTE) # add an attribute for visualization convenience model.CLASSES = datasets[0].CLASSES train_segmentor(model, datasets, cfg, distributed=distributed, validate=(not args.no_validate), timestamp=timestamp, meta=meta)
def main(): args = parse_args() cfg = mmcv.Config.fromfile(args.config) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True # update configs according to CLI args if args.work_dir is not None: cfg.work_dir = args.work_dir layer_ind = [int(idx) for idx in args.layer_ind.split(',')] cfg.model.backbone.out_indices = layer_ind if args.checkpoint is None: assert cfg.model.pretrained is not None, \ "Must have pretrain if no checkpoint is given." # check memcached package exists if importlib.util.find_spec('mc') is None: for field in ['train', 'val', 'test']: if hasattr(cfg.data, field): getattr(cfg.data, field).data_source.memcached = False # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) # logger timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) log_file = osp.join(cfg.work_dir, 'extract_{}.log'.format(timestamp)) logger = get_root_logger(log_file=log_file, log_level=cfg.log_level) # build the dataloader dataset_cfg = mmcv.Config.fromfile(args.dataset_config) dataset = build_dataset(dataset_cfg.data.extract) data_loader = build_dataloader( dataset, imgs_per_gpu=dataset_cfg.data.imgs_per_gpu, workers_per_gpu=dataset_cfg.data.workers_per_gpu, dist=distributed, shuffle=False) # build the model and load checkpoint model = build_model(cfg.model) if args.checkpoint is not None: load_checkpoint(model, args.checkpoint, map_location='cpu') if not distributed: model = MMDataParallel(model, device_ids=[0]) else: model = MMDistributedDataParallel( model.cuda(), device_ids=[torch.cuda.current_device()], broadcast_buffers=False) # build extraction processor extractor = ExtractProcess(pool_type='specified', backbone='resnet50', layer_indices=layer_ind) # run outputs = extractor.extract(model, data_loader, distributed=distributed) rank, _ = get_dist_info() mmcv.mkdir_or_exist("{}/features/".format(args.work_dir)) if rank == 0: for key, val in outputs.items(): split_num = len(dataset_cfg.split_name) split_at = dataset_cfg.split_at for ss in range(split_num): output_file = "{}/features/{}_{}.npy".format( args.work_dir, dataset_cfg.split_name[ss], key) if ss == 0: np.save(output_file, val[:split_at[0]]) elif ss == split_num - 1: np.save(output_file, val[split_at[-1]:]) else: np.save(output_file, val[split_at[ss - 1]:split_at[ss]])
def main(): args = parse_args() cfg = Config.fromfile(args.config) if args.options is not None: cfg.merge_from_dict(args.options) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True # work_dir is determined in this priority: CLI > segment in file > filename if args.work_dir is not None: # update configs according to CLI args if args.work_dir is not None cfg.work_dir = args.work_dir elif cfg.get('work_dir', None) is None: # use config filename as default work_dir if cfg.work_dir is None cfg.work_dir = osp.join('./work_dirs', osp.splitext(osp.basename(args.config))[0]) if args.resume_from is not None: cfg.resume_from = args.resume_from if args.gpu_ids is not None: cfg.gpu_ids = args.gpu_ids else: cfg.gpu_ids = range(1) if args.gpus is None else range(args.gpus) if args.autoscale_lr: # apply the linear scaling rule (https://arxiv.org/abs/1706.02677) cfg.optimizer['lr'] = cfg.optimizer['lr'] * len(cfg.gpu_ids) / 8 # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) # create work_dir mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir)) # init the logger before other steps timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) log_file = osp.join(cfg.work_dir, f'{timestamp}.log') logger = get_root_logger(log_file=log_file, log_level=cfg.log_level) # add a logging filter logging_filter = logging.Filter('mmdet') logging_filter.filter = lambda record: record.find('mmdet') != -1 # init the meta dict to record some important information such as # environment info and seed, which will be logged meta = dict() # log env info env_info_dict = collect_env() env_info = '\n'.join([(f'{k}: {v}') for k, v in env_info_dict.items()]) dash_line = '-' * 60 + '\n' logger.info('Environment info:\n' + dash_line + env_info + '\n' + dash_line) meta['env_info'] = env_info # log some basic info logger.info(f'Distributed training: {distributed}') logger.info(f'Config:\n{cfg.pretty_text}') # set random seeds if args.seed is not None: logger.info(f'Set random seed to {args.seed}, ' f'deterministic: {args.deterministic}') set_random_seed(args.seed, deterministic=args.deterministic) cfg.seed = args.seed meta['seed'] = args.seed model = build_detector(cfg.model, train_cfg=cfg.train_cfg, test_cfg=cfg.test_cfg) logger.info(f'Model:\n{model}') # datasets = [build_dataset(cfg.data.train)] datasets = [build_dataset(cfg.data.source_train)] if len(cfg.workflow) == 2: val_dataset = copy.deepcopy(cfg.data.val) val_dataset.pipeline = cfg.data.train.pipeline datasets.append(build_dataset(val_dataset)) if cfg.checkpoint_config is not None: # save mmdet version, config file content and class names in # checkpoints as meta data cfg.checkpoint_config.meta = dict(mmdet_version=__version__, config=cfg.pretty_text, CLASSES=datasets[0].CLASSES) # add an attribute for visualization convenience model.CLASSES = datasets[0].CLASSES train_source_detector(model, datasets, cfg, distributed=distributed, timestamp=timestamp, meta=meta)
def main(): data_length = 2000 args = parse_args() cfg = Config.fromfile(args.config) cfg.seed = args.seed cfg.data.samples_per_gpu = 2 # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True cfg.model.pretrained = None cfg.data.test.test_mode = True # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) if args.gpu_ids is not None: cfg.gpu_ids = args.gpu_ids else: cfg.gpu_ids = range(1) if args.gpus is None else range(args.gpus) # build the dataloader # TODO: support multiple images per gpu (only minor changes are needed) datasets = [build_dataset(cfg.data.train)] data_loaders = [ build_dataloader( ds, cfg.data.samples_per_gpu, cfg.data.workers_per_gpu, # cfg.gpus will be ignored if distributed len(cfg.gpu_ids), dist=distributed, seed=cfg.seed) for ds in datasets ] data_loader = data_loaders[0] output = [] ia = 0 for i_batch, data in tqdm(enumerate(data_loader), total=len(data_loader)): if len(output) >= data_length: break imgs = data['img'].data[0] img_metas = data['img_metas'].data[0] img_tensor = imgs.detach() imgs = tensor2imgs(img_tensor, **img_metas[0]['img_norm_cfg']) for i in range(len(imgs)): h, w, _ = img_metas[i]['img_shape'] img = imgs[i][:h, :w, :] gt_bboxes = data['gt_bboxes'].data[0][i] area = torch.mul((gt_bboxes[:, 2] - gt_bboxes[:, 0]), (gt_bboxes[:, 3] - gt_bboxes[:, 1])) if torch.min(area / (h * w)) < 0.05: continue if 4 <= gt_bboxes.size()[0] <= 15: # output.append(cv2.resize(img, (1000, 1000), interpolation=cv2.INTER_CUBIC)) img_o = cv2.resize(img, (1000, 1000), interpolation=cv2.INTER_CUBIC) mmcv.imwrite(img_o, args.save_dir + '/' + str(ia) + '.png') print(ia) ia += 1 print('finish')