Esempio n. 1
0
    def prepare_test_img(self, idx):
        sample_id = self.sample_ids[idx]
        # load image
        img = mmcv.imread(self.img_filenames[idx])
        img, img_shape, pad_shape, scale_factor = self.img_transform(
            img, 1, False)

        data = dict(img=DC(to_tensor(img), stack=True),
                    img_shape=DC(img_shape, cpu_only=True),
                    sample_idx=DC(sample_id, cpu_only=True),
                    calib=DC(self.calib, cpu_only=True))

        if self.with_mask:
            NotImplemented

        if self.with_point:
            points = read_lidar(self.lidar_filenames[idx])
            points = get_lidar_in_image_fov(points,
                                            self.calib,
                                            0,
                                            0,
                                            img_shape[1],
                                            img_shape[0],
                                            clip_distance=0.1)

        if self.generator is not None:
            voxels, coordinates, num_points = self.generator.generate(points)
            data['voxels'] = DC(to_tensor(voxels))
            data['coordinates'] = DC(to_tensor(coordinates))
            data['num_points'] = DC(to_tensor(num_points))
            data['anchors'] = DC(to_tensor(self.anchors))

        return data
Esempio n. 2
0
    def prepare_test_img(self, idx):
        """Prepare an image for testing (multi-scale and flipping)"""
        sample_id = self.sample_ids[idx]

        # load image
        img = mmcv.imread(osp.join(self.img_prefix, '%06d.png' % sample_id))
        img, img_shape, pad_shape, scale_factor = self.img_transform(
            img, 1, False)

        calib = Calibration(osp.join(self.calib_prefix,
                                     '%06d.txt' % sample_id))

        if self.with_label:
            objects = read_label(
                osp.join(self.label_prefix, '%06d.txt' % sample_id))
            gt_bboxes = [
                object.box3d for object in objects
                if object.type in self.class_name
            ]

            if len(gt_bboxes) != 0:
                gt_bboxes = np.array(gt_bboxes, dtype=np.float32)
                gt_labels = np.ones(len(gt_bboxes), dtype=np.int64)
                # transfer from cam to lidar coordinates
                gt_bboxes[:, :3] = project_rect_to_velo(
                    gt_bboxes[:, :3], calib)
            else:
                gt_bboxes = None
                gt_labels = None

        img_meta = dict(img_shape=img_shape, sample_idx=sample_id, calib=calib)

        data = dict(img=to_tensor(img), img_meta=DC(img_meta, cpu_only=True))

        if self.anchors is not None:
            data['anchors'] = DC(to_tensor(self.anchors.astype(np.float32)))

        if self.with_mask:
            NotImplemented

        if self.with_point:
            points = read_lidar(
                osp.join(self.lidar_prefix, '%06d.bin' % sample_id))

        if isinstance(self.generator, VoxelGenerator):
            #voxels, coordinates, num_points = self.generator.generate(points)

            voxel_size = self.generator.voxel_size
            pc_range = self.generator.point_cloud_range
            grid_size = self.generator.grid_size

            keep = points_op_cpu.points_bound_kernel(points, pc_range[:3],
                                                     pc_range[3:])
            voxels = points[keep, :]
            coordinates = (
                (voxels[:, [2, 1, 0]] -
                 np.array(pc_range[[2, 1, 0]], dtype=np.float32)) /
                np.array(voxel_size[::-1], dtype=np.float32)).astype(np.int32)
            num_points = np.ones(len(keep)).astype(np.int32)

            data['voxels'] = DC(to_tensor(voxels.astype(np.float32)))
            data['coordinates'] = DC(to_tensor(coordinates))
            data['num_points'] = DC(to_tensor(num_points))

            if self.anchor_area_threshold >= 0 and self.anchors is not None:
                dense_voxel_map = sparse_sum_for_anchors_mask(
                    coordinates, tuple(grid_size[::-1][1:]))
                dense_voxel_map = dense_voxel_map.cumsum(0)
                dense_voxel_map = dense_voxel_map.cumsum(1)
                anchors_area = fused_get_anchors_area(dense_voxel_map,
                                                      self.anchors_bv,
                                                      voxel_size, pc_range,
                                                      grid_size)
                anchors_mask = anchors_area > self.anchor_area_threshold
                data['anchors_mask'] = DC(
                    to_tensor(anchors_mask.astype(np.uint8)))

        if self.with_label:
            data['gt_labels'] = DC(to_tensor(gt_labels), cpu_only=True)
            data['gt_bboxes'] = DC(to_tensor(gt_bboxes), cpu_only=True)
        else:
            data['gt_labels'] = DC(None, cpu_only=True)
            data['gt_bboxes'] = DC(None, cpu_only=True)

        return data
Esempio n. 3
0
    def prepare_train_img(self, idx):
        sample_id = self.sample_ids[idx]

        # load image
        img = mmcv.imread(osp.join(self.img_prefix, '%06d.png' % sample_id))

        img, img_shape, pad_shape, scale_factor = self.img_transform(
            img, 1, False)

        objects = read_label(
            osp.join(self.label_prefix, '%06d.txt' % sample_id))
        calib = Calibration(osp.join(self.calib_prefix,
                                     '%06d.txt' % sample_id))

        gt_bboxes = [
            object.box3d for object in objects
            if object.type not in ["DontCare"]
        ]
        gt_bboxes = np.array(gt_bboxes, dtype=np.float32)
        gt_types = [
            object.type for object in objects
            if object.type not in ["DontCare"]
        ]

        # transfer from cam to lidar coordinates
        if len(gt_bboxes) != 0:
            gt_bboxes[:, :3] = project_rect_to_velo(gt_bboxes[:, :3], calib)

        img_meta = dict(img_shape=img_shape, sample_idx=sample_id, calib=calib)

        data = dict(img=to_tensor(img), img_meta=DC(img_meta, cpu_only=True))

        if self.anchors is not None:
            data['anchors'] = DC(to_tensor(self.anchors.astype(np.float32)))

        if self.with_mask:
            NotImplemented

        if self.with_point:
            points = read_lidar(
                osp.join(self.lidar_prefix, '%06d.bin' % sample_id))

        if self.augmentor is not None and self.test_mode is False:
            sampled_gt_boxes, sampled_gt_types, sampled_points = self.augmentor.sample_all(
                gt_bboxes, gt_types)
            assert sampled_points.dtype == np.float32
            gt_bboxes = np.concatenate([gt_bboxes, sampled_gt_boxes])
            gt_types = gt_types + sampled_gt_types
            assert len(gt_types) == len(gt_bboxes)

            # to avoid overlapping point (option)
            masks = points_in_rbbox(points, sampled_gt_boxes)
            #masks = points_op_cpu.points_in_bbox3d_np(points[:,:3], sampled_gt_boxes)

            points = points[np.logical_not(masks.any(-1))]

            # paste sampled points to the scene
            points = np.concatenate([sampled_points, points], axis=0)

            # select the interest classes
            selected = [
                i for i in range(len(gt_types))
                if gt_types[i] in self.class_names
            ]
            gt_bboxes = gt_bboxes[selected, :]
            gt_types = [
                gt_types[i] for i in range(len(gt_types))
                if gt_types[i] in self.class_names
            ]

            # force van to have same label as car
            gt_types = ['Car' if n == 'Van' else n for n in gt_types]
            gt_labels = np.array(
                [self.class_names.index(n) + 1 for n in gt_types],
                dtype=np.int64)

            self.augmentor.noise_per_object_(gt_bboxes, points, num_try=100)
            gt_bboxes, points = self.augmentor.random_flip(gt_bboxes, points)
            gt_bboxes, points = self.augmentor.global_rotation(
                gt_bboxes, points)
            gt_bboxes, points = self.augmentor.global_scaling(
                gt_bboxes, points)

        if isinstance(self.generator, VoxelGenerator):
            #voxels, coordinates, num_points = self.generator.generate(points)
            voxel_size = self.generator.voxel_size
            pc_range = self.generator.point_cloud_range
            grid_size = self.generator.grid_size

            keep = points_op_cpu.points_bound_kernel(points, pc_range[:3],
                                                     pc_range[3:])
            voxels = points[keep, :]
            coordinates = (
                (voxels[:, [2, 1, 0]] -
                 np.array(pc_range[[2, 1, 0]], dtype=np.float32)) /
                np.array(voxel_size[::-1], dtype=np.float32)).astype(np.int32)
            num_points = np.ones(len(keep)).astype(np.int32)

            data['voxels'] = DC(to_tensor(voxels.astype(np.float32)))
            data['coordinates'] = DC(to_tensor(coordinates))
            data['num_points'] = DC(to_tensor(num_points))

            if self.anchor_area_threshold >= 0 and self.anchors is not None:
                dense_voxel_map = sparse_sum_for_anchors_mask(
                    coordinates, tuple(grid_size[::-1][1:]))
                dense_voxel_map = dense_voxel_map.cumsum(0)
                dense_voxel_map = dense_voxel_map.cumsum(1)
                anchors_area = fused_get_anchors_area(dense_voxel_map,
                                                      self.anchors_bv,
                                                      voxel_size, pc_range,
                                                      grid_size)
                anchors_mask = anchors_area > self.anchor_area_threshold
                data['anchors_mask'] = DC(
                    to_tensor(anchors_mask.astype(np.uint8)))

            # filter gt_bbox out of range
            bv_range = self.generator.point_cloud_range[[0, 1, 3, 4]]
            mask = filter_gt_box_outside_range(gt_bboxes, bv_range)
            gt_bboxes = gt_bboxes[mask]
            gt_labels = gt_labels[mask]

        else:
            NotImplementedError

        # skip the image if there is no valid gt bbox
        if len(gt_bboxes) == 0:
            return None

        # limit rad to [-pi, pi]
        gt_bboxes[:, 6] = limit_period(gt_bboxes[:, 6],
                                       offset=0.5,
                                       period=2 * np.pi)

        if self.with_label:
            data['gt_labels'] = DC(to_tensor(gt_labels))
            data['gt_bboxes'] = DC(to_tensor(gt_bboxes))

        return data