Esempio n. 1
0
 def __init__(self,
              voxel_layer,
              voxel_encoder,
              middle_encoder,
              backbone,
              neck=None,
              bbox_head=None,
              train_cfg=None,
              test_cfg=None,
              pretrained=None):
     super(VoxelNet, self).__init__(
         backbone=backbone,
         neck=neck,
         bbox_head=bbox_head,
         train_cfg=train_cfg,
         test_cfg=test_cfg,
         pretrained=pretrained,
     )
     self.voxel_layer = Voxelization(**voxel_layer)
     self.voxel_encoder = builder.build_voxel_encoder(voxel_encoder)
     self.middle_encoder = builder.build_middle_encoder(middle_encoder)
     self.img_encoder = ImgFeatExtractor()
     self.refmap_encoder = nn.Sequential(
         nn.Conv2d(1, 64, kernel_size=3, padding=1, stride=1),
         nn.BatchNorm2d(64), nn.ReLU(),
         nn.Conv2d(64, 64, kernel_size=3, padding=1, stride=2),
         nn.BatchNorm2d(64), nn.ReLU())
     self.ref_to_cls = nn.Sequential(nn.Conv2d(64, 18, kernel_size=1),
                                     nn.BatchNorm2d(18), nn.ReLU())
Esempio n. 2
0
    def __init__(self,
                 pts_voxel_layer=None,
                 pts_voxel_encoder=None,
                 pts_middle_encoder=None,
                 img_backbone=None,
                 img_seg_head=None,
                 pts_backbone=None,
                 pts_neck=None,
                 pts_bbox_head=None,
                 train_cfg=None,
                 test_cfg=None,
                 pretrained=None,
                 pts_fc=[],
                 contrast_criterion=None,
                 max_pts=4096,
                 lambda_contrast=0.1):
        super(FusionContrastV2, self).__init__()

        if img_backbone:
            self.img_backbone = builder.build_backbone(img_backbone)
        if img_seg_head:
            self.img_seg_head = builder.build_head(img_seg_head)

        if pts_voxel_layer:
            self.pts_voxel_layer = Voxelization(**pts_voxel_layer)
        if pts_voxel_encoder:
            self.pts_voxel_encoder = builder.build_voxel_encoder(
                pts_voxel_encoder)
        if pts_middle_encoder:
            self.pts_middle_encoder = builder.build_middle_encoder(
                pts_middle_encoder)
        if pts_backbone:
            self.pts_backbone = builder.build_backbone(pts_backbone)
        if pts_neck:
            self.pts_neck = builder.build_neck(pts_neck)
        if pts_bbox_head:
            pts_train_cfg = train_cfg.pts if train_cfg else None
            pts_bbox_head.update(train_cfg=pts_train_cfg)
            pts_test_cfg = test_cfg.pts if test_cfg else None
            pts_bbox_head.update(test_cfg=pts_test_cfg)
            self.pts_bbox_head = builder.build_head(pts_bbox_head)
        if contrast_criterion:
            self.contrast_criterion = builder.build_loss(contrast_criterion)
            self.max_pts = max_pts
            self.lambda_contrast = lambda_contrast

        fc_layers = []
        for i, (in_c, out_c) in enumerate(zip(pts_fc[:-1], pts_fc[1:])):
            fc_layers.append(nn.Linear(in_c, out_c))
            if i == len(pts_fc) - 2:
                break
            fc_layers.append(nn.ReLU(inplace=True))
        self.fc_layers = nn.Sequential(*fc_layers)

        self.train_cfg = train_cfg
        self.test_cfg = test_cfg
        self.init_weights(pretrained=pretrained)
Esempio n. 3
0
    def __init__(self,
                 pts_voxel_layer=None,
                 pts_voxel_encoder=None,
                 pts_middle_encoder=None,
                 pts_fusion_layer=None,
                 img_backbone=None,
                 pts_backbone=None,
                 img_neck=None,
                 pts_neck=None,
                 pts_bbox_head=None,
                 img_roi_head=None,
                 img_rpn_head=None,
                 train_cfg=None,
                 test_cfg=None,
                 pretrained=None):
        super(MVXTwoStageDetector, self).__init__()

        if 'type' in pts_voxel_layer:
            self.pts_voxel_cfg = pts_voxel_layer
        else:
            self.pts_voxel_layer = Voxelization(**pts_voxel_layer)
        #if pts_voxel_encoder:
        #    self.pts_voxel_encoder = builder.build_voxel_encoder(
        #        pts_voxel_encoder)
        if pts_middle_encoder:
            self.pts_middle_encoder = builder.build_middle_encoder(
                pts_middle_encoder)
        if pts_backbone:
            self.pts_backbone = builder.build_backbone(pts_backbone)
        if pts_fusion_layer:
            self.pts_fusion_layer = builder.build_fusion_layer(
                pts_fusion_layer)
        if pts_neck is not None:
            self.pts_neck = builder.build_neck(pts_neck)
        if pts_bbox_head:
            pts_train_cfg = train_cfg.pts if train_cfg else None
            pts_bbox_head.update(train_cfg=pts_train_cfg)
            pts_test_cfg = test_cfg.pts if test_cfg else None
            pts_bbox_head.update(test_cfg=pts_test_cfg)
            self.pts_bbox_head = builder.build_head(pts_bbox_head)

        if img_backbone:
            self.img_backbone = builder.build_backbone(img_backbone)
        if img_neck is not None:
            self.img_neck = builder.build_neck(img_neck)
        if img_rpn_head is not None:
            self.img_rpn_head = builder.build_head(img_rpn_head)
        if img_roi_head is not None:
            self.img_roi_head = builder.build_head(img_roi_head)

        self.train_cfg = train_cfg
        self.test_cfg = test_cfg
        self.init_weights(pretrained=pretrained)
    def __init__(self,
                 model_cfg,
                 num_point_features,
                 voxel_size,
                 point_cloud_range,
                 mode='max',
                 norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.01)):
        super().__init__(model_cfg=model_cfg)
        self.point_cloud_range = point_cloud_range
        self.vx = voxel_size[0]
        self.vy = voxel_size[1]
        self.vz = voxel_size[2]
        self.x_offset = self.vx / 2 + point_cloud_range[0]
        self.y_offset = self.vy / 2 + point_cloud_range[1]
        self.z_offset = self.vz / 2 + point_cloud_range[2]

        # self.use_norm = self.model_cfg.USE_NORM
        self.with_distance = self.model_cfg.WITH_DISTANCE
        self.use_absolute_xyz = self.model_cfg.USE_ABSLOTE_XYZ
        num_point_features += 5 if self.use_absolute_xyz else 3
        if self.with_distance:
            num_point_features += 1

        self.num_filters = self.model_cfg.NUM_FILTERS
        assert len(self.num_filters) > 0

        self.num_filters = [num_point_features] + list(self.num_filters)
        pfn_layers = []
        # TODO: currently only support one PFNLayer

        for i in range(len(self.num_filters) - 1):
            in_filters = self.num_filters[i]
            out_filters = self.num_filters[i + 1]
            if i > 0:
                in_filters *= 2
            _, norm_layer = build_norm_layer(norm_cfg, out_filters)
            pfn_layers.append(
                nn.Sequential(nn.Linear(in_filters, out_filters, bias=False),
                              norm_layer, nn.ReLU(inplace=True)))
        self.num_pfn = len(pfn_layers)
        self.pfn_layers = nn.ModuleList(pfn_layers)

        self.pfn_scatter = DynamicScatter(voxel_size, point_cloud_range,
                                          (mode != 'max'))
        self.cluster_scatter = DynamicScatter(voxel_size,
                                              point_cloud_range,
                                              average_points=True)
        voxel_layer = dict(max_num_points=-1,
                           point_cloud_range=point_cloud_range,
                           voxel_size=voxel_size,
                           max_voxels=(-1, -1))
        self.voxel_layer = Voxelization(**voxel_layer)
Esempio n. 5
0
    def __init__(self,
                 pts_voxel_layer=None,
                 pts_voxel_encoder=None,
                 pts_middle_encoder=None,
                 img_backbone=None,
                 img_seg_head=None,
                 pts_backbone=None,
                 pts_neck=None,
                 pts_bbox_head=None,
                 train_cfg=None,
                 test_cfg=None,
                 pretrained=None,
                 pts_fc=[]):
        super(FusionBaseline4, self).__init__()

        if img_backbone:
            self.img_backbone = builder.build_backbone(img_backbone)
        if img_seg_head:
            self.img_seg_head = builder.build_head(img_seg_head)

        if pts_voxel_layer:
            self.pts_voxel_layer = Voxelization(**pts_voxel_layer)
        if pts_voxel_encoder:
            self.pts_voxel_encoder = builder.build_voxel_encoder(
                pts_voxel_encoder)
        if pts_middle_encoder:
            self.pts_middle_encoder = builder.build_middle_encoder(
                pts_middle_encoder)
        if pts_backbone:
            self.pts_backbone = builder.build_backbone(pts_backbone)
        if pts_neck is not None:
            self.pts_neck = builder.build_neck(pts_neck)
        if pts_bbox_head:
            pts_train_cfg = train_cfg.pts if train_cfg else None
            pts_bbox_head.update(train_cfg=pts_train_cfg)
            pts_test_cfg = test_cfg.pts if test_cfg else None
            pts_bbox_head.update(test_cfg=pts_test_cfg)
            self.pts_bbox_head = builder.build_head(pts_bbox_head)

        fc_layers = []
        for i, (in_c, out_c) in enumerate(zip(pts_fc[:-1], pts_fc[1:])):
            fc_layers.append(nn.Linear(in_c, out_c))
            if i == len(pts_fc) - 2:
                break
            fc_layers.append(nn.ReLU(inplace=True))
        self.fc_layers = nn.Sequential(*fc_layers)

        self.train_cfg = train_cfg
        self.test_cfg = test_cfg
        self.init_weights(pretrained=pretrained)
Esempio n. 6
0
    def __init__(self,
                 pts_voxel_layer=None,
                 pts_voxel_encoder=None,
                 pts_middle_encoder=None,
                 img_backbone=None,
                 img_seg_head=None,
                 pts_backbone=None,
                 pts_neck=None,
                 pts_bbox_head=None,
                 train_cfg=None,
                 test_cfg=None,
                 pretrained=None,
                 vfes=[]):
        super(FusionBaseline, self).__init__()

        if img_backbone:
            self.img_backbone = builder.build_backbone(img_backbone)
        if img_seg_head:
            self.img_seg_head = builder.build_head(img_seg_head)

        if pts_voxel_layer:
            self.pts_voxel_layer = Voxelization(**pts_voxel_layer)
        if pts_voxel_encoder:
            self.pts_voxel_encoder = builder.build_voxel_encoder(
                pts_voxel_encoder)
        if pts_middle_encoder:
            self.pts_middle_encoder = builder.build_middle_encoder(
                pts_middle_encoder)
        if pts_backbone:
            self.pts_backbone = builder.build_backbone(pts_backbone)
        if pts_neck is not None:
            self.pts_neck = builder.build_neck(pts_neck)
        if pts_bbox_head:
            pts_train_cfg = train_cfg.pts if train_cfg else None
            pts_bbox_head.update(train_cfg=pts_train_cfg)
            pts_test_cfg = test_cfg.pts if test_cfg else None
            pts_bbox_head.update(test_cfg=pts_test_cfg)
            self.pts_bbox_head = builder.build_head(pts_bbox_head)

        vfe_layers = []
        for in_c, out_c in zip(vfes[:-1], vfes[1:]):
            vfe_layers.append(VFELayer(in_c, out_c, max_out=False))
        self.vfe_layers = nn.Sequential(*vfe_layers)

        self.train_cfg = train_cfg
        self.test_cfg = test_cfg
        self.init_weights(pretrained=pretrained)
Esempio n. 7
0
    def __init__(self,
                 pts_voxel_layer=None,
                 pts_voxel_encoder=None,
                 pts_middle_encoder=None,
                 pts_fusion_layer=None,
                 img_backbone=None,
                 pts_backbone=None,
                 pts_neck=None,
                 pts_bbox_head=None,
                 img_seg_head=None,
                 train_cfg=None,
                 test_cfg=None,
                 pretrained=None):
        super(MMDA, self).__init__()

        if pts_voxel_layer:
            self.pts_voxel_layer = Voxelization(**pts_voxel_layer)
        if pts_voxel_encoder:
            self.pts_voxel_encoder = builder.build_voxel_encoder(
                pts_voxel_encoder)
        if pts_middle_encoder:
            self.pts_middle_encoder = builder.build_middle_encoder(
                pts_middle_encoder)
        if pts_backbone:
            self.pts_backbone = builder.build_backbone(pts_backbone)
        if pts_fusion_layer:
            self.pts_fusion_layer = builder.build_fusion_layer(
                pts_fusion_layer)
        if pts_neck is not None:
            self.pts_neck = builder.build_neck(pts_neck)
        if pts_bbox_head:
            pts_train_cfg = train_cfg.pts if train_cfg else None
            pts_bbox_head.update(train_cfg=pts_train_cfg)
            pts_test_cfg = test_cfg.pts if test_cfg else None
            pts_bbox_head.update(test_cfg=pts_test_cfg)
            self.pts_bbox_head = builder.build_head(pts_bbox_head)

        if img_backbone:
            self.img_backbone = builder.build_backbone(img_backbone)
        if img_seg_head:
            self.img_seg_head = builder.build_head(img_seg_head)

        self.train_cfg = train_cfg
        self.test_cfg = test_cfg
        self.init_weights(pretrained=pretrained)
Esempio n. 8
0
    def __init__(self,
                 voxel_layer,
                 voxel_encoder,
                 middle_encoder,
                 backbone,
                 neck=None,
                 rpn_head=None,
                 roi_head=None,
                 train_cfg=None,
                 test_cfg=None,
                 pretrained=None):
        super(PartA2, self).__init__(
            backbone=backbone,
            neck=neck,
            rpn_head=rpn_head,
            roi_head=roi_head,
            train_cfg=train_cfg,
            test_cfg=test_cfg,
            pretrained=pretrained,
        )
        self.voxel_layer = Voxelization(**voxel_layer)
        self.voxel_encoder = builder.build_voxel_encoder(voxel_encoder)
        self.middle_encoder = builder.build_middle_encoder(middle_encoder)

        # 转换RangeImage部分相关代码
        self.H = 48
        self.W = 512
        self.fov_up = 3
        self.fov_down = -15.0
        self.pi = torch.tensor(np.pi)
        fov_up = self.fov_up * self.pi / 180.0
        fov_down = self.fov_down * self.pi / 180.0
        fov = abs(fov_up) + abs(fov_down)
        self.uv = torch.zeros((2, self.H, self.W))
        self.uv[1] = torch.arange(0, self.W)
        self.uv.permute((0, 2, 1))[0] = torch.arange(0, self.H)
        self.uv[0] = (
            (self.H - self.uv[0]) * fov - abs(fov_down) * self.H) / self.H
        self.uv[1] = (self.uv[1] * 2.0 - self.W) * self.pi / (
            self.W * 4)  # 最后一个 4 用来控制水平范围

        # self.range_encoder = RangeEncoder(5, 64, use_img=True)
        self.fusion = Fusion(5, 3)
Esempio n. 9
0
 def __init__(self,
              voxel_layer,
              voxel_encoder,
              middle_encoder,
              backbone,
              neck=None,
              bbox_head=None,
              train_cfg=None,
              test_cfg=None,
              pretrained=None):
     super(VoxelNet, self).__init__(
         backbone=backbone,
         neck=neck,
         bbox_head=bbox_head,
         train_cfg=train_cfg,
         test_cfg=test_cfg,
         pretrained=pretrained,
     )
     self.voxel_layer = Voxelization(**voxel_layer)
     self.voxel_encoder = builder.build_voxel_encoder(voxel_encoder)
     self.middle_encoder = builder.build_middle_encoder(middle_encoder)
Esempio n. 10
0
 def __init__(self,
              voxel_layer,
              voxel_encoder,
              middle_encoder,
              backbone,
              neck=None,
              rpn_head=None,
              roi_head=None,
              train_cfg=None,
              test_cfg=None,
              pretrained=None,
              init_cfg=None):
     super(PartA2, self).__init__(backbone=backbone,
                                  neck=neck,
                                  rpn_head=rpn_head,
                                  roi_head=roi_head,
                                  train_cfg=train_cfg,
                                  test_cfg=test_cfg,
                                  pretrained=pretrained,
                                  init_cfg=init_cfg)
     self.voxel_layer = Voxelization(**voxel_layer)
     self.voxel_encoder = builder.build_voxel_encoder(voxel_encoder)
     self.middle_encoder = builder.build_middle_encoder(middle_encoder)
Esempio n. 11
0
 def __init__(self,
              voxel_layer,
              voxel_encoder,
              middle_encoder,
              backbone,
              neck=None,
              bbox_head=None,
              train_cfg=None,
              test_cfg=None,
              pretrained=None):
     super(VoxelNet_RAN, self).__init__(
         backbone=backbone,
         neck=neck,
         bbox_head=bbox_head,
         train_cfg=train_cfg,
         test_cfg=test_cfg,
         pretrained=pretrained,
     )
     self.voxel_layer = Voxelization(**voxel_layer)
     # self.backbone_second = build_backbone(backbone)
     # if neck is not None:
     #     self.neck_secondfpn = build_neck(neck)
     self.voxel_encoder = builder.build_voxel_encoder(voxel_encoder)
     self.middle_encoder = builder.build_middle_encoder(middle_encoder)
Esempio n. 12
0
    def __init__(self,
                 pts_voxel_layer=None,
                 pts_voxel_encoder=None,
                 pts_middle_encoder=None,
                 pts_fusion_layer=None,
                 img_backbone=None,
                 pts_backbone=None,
                 img_neck=None,
                 pts_neck=None,
                 pts_bbox_head=None,
                 img_roi_head=None,
                 img_rpn_head=None,
                 train_cfg=None,
                 test_cfg=None,
                 pretrained=None,
                 init_cfg=None):
        super(MVXTwoStageDetector, self).__init__(init_cfg=init_cfg)

        if pts_voxel_layer:
            self.pts_voxel_layer = Voxelization(**pts_voxel_layer)
        if pts_voxel_encoder:
            self.pts_voxel_encoder = builder.build_voxel_encoder(
                pts_voxel_encoder)
        if pts_middle_encoder:
            self.pts_middle_encoder = builder.build_middle_encoder(
                pts_middle_encoder)
        if pts_backbone:
            self.pts_backbone = builder.build_backbone(pts_backbone)
        if pts_fusion_layer:
            self.pts_fusion_layer = builder.build_fusion_layer(
                pts_fusion_layer)
        if pts_neck is not None:
            self.pts_neck = builder.build_neck(pts_neck)
        if pts_bbox_head:
            pts_train_cfg = train_cfg.pts if train_cfg else None
            pts_bbox_head.update(train_cfg=pts_train_cfg)
            pts_test_cfg = test_cfg.pts if test_cfg else None
            pts_bbox_head.update(test_cfg=pts_test_cfg)
            self.pts_bbox_head = builder.build_head(pts_bbox_head)

        if img_backbone:
            self.img_backbone = builder.build_backbone(img_backbone)
        if img_neck is not None:
            self.img_neck = builder.build_neck(img_neck)
        if img_rpn_head is not None:
            self.img_rpn_head = builder.build_head(img_rpn_head)
        if img_roi_head is not None:
            self.img_roi_head = builder.build_head(img_roi_head)

        self.train_cfg = train_cfg
        self.test_cfg = test_cfg

        if pretrained is None:
            img_pretrained = None
            pts_pretrained = None
        elif isinstance(pretrained, dict):
            img_pretrained = pretrained.get('img', None)
            pts_pretrained = pretrained.get('pts', None)
        else:
            raise ValueError(
                f'pretrained should be a dict, got {type(pretrained)}')

        if self.with_img_backbone:
            if img_pretrained is not None:
                warnings.warn('DeprecationWarning: pretrained is a deprecated \
                    key, please consider using init_cfg')
                self.img_backbone.init_cfg = dict(type='Pretrained',
                                                  checkpoint=img_pretrained)
        if self.with_img_roi_head:
            if img_pretrained is not None:
                warnings.warn('DeprecationWarning: pretrained is a deprecated \
                    key, please consider using init_cfg')
                self.img_roi_head.init_cfg = dict(type='Pretrained',
                                                  checkpoint=img_pretrained)

        if self.with_pts_backbone:
            if img_pretrained is not None:
                warnings.warn('DeprecationWarning: pretrained is a deprecated \
                    key, please consider using init_cfg')
                self.pts_backbone.init_cfg = dict(type='Pretrained',
                                                  checkpoint=pts_pretrained)