def __init__(self, model): super(PytorchEmitter, self).__init__() if isinstance(model, _string_types): network_path = model else: network_path = model[0] weight_path = model[1] self.init_code = str() self.IR_graph = IRGraph(network_path) self.IR_graph.build() self._load_weights(weight_path) folder = Folder(self.IR_graph, self.weights_dict) folder.fold()
def __init__(self, model): super(TensorflowEmitter, self).__init__() from six import string_types as _string_types if isinstance(model, _string_types): network_path = model else: network_path = model[0] self._load_weights(model[1]) self.IR_graph = IRGraph(network_path) super(TensorflowEmitter, self)._build() folder = Folder(self.IR_graph, self.weights_dict) folder.fold()
def __init__(self, model): super(Keras2Emitter, self).__init__() from six import string_types as _string_types if isinstance(model, _string_types): network_path = model else: network_path = model[0] weight_path = model[1] self._load_weights(weight_path) self.IR_graph = IRGraph(network_path) self.IR_graph.build() self.yolo_parameter = [] self.region_parameter = [] self.layers_codes_count = dict() folder = Folder(self.IR_graph, self.weights_dict) folder.fold()
def __init__(self, model): super(MXNetEmitter, self).__init__() from six import string_types as _string_types if isinstance(model, _string_types): network_path = model self.weight_loaded = False elif len(model) == 3: network_path = model[0] weight_path = model[1] self.output_weights_file = model[2] self.weights = np.load(weight_path).item() self.weight_loaded = True self.output_weights = dict() else: raise ValueError("the # of input arguments [{}] is not supported" % len(model)) self.IR_graph = IRGraph(network_path) self.IR_graph.build() folder = Folder(self.IR_graph, self.weights) folder.fold()