Esempio n. 1
0
def main():
    parser = argparse.ArgumentParser(description='Benchmark dataloading')
    parser.add_argument('config', help='train config file path')
    args = parser.parse_args()
    cfg = Config.fromfile(args.config)

    # init logger before other steps
    logger = get_root_logger()
    logger.info(f'Config: {cfg.text}')

    dataset = build_dataset(cfg.data.train)
    data_loaders = [
        build_dataloader(ds,
                         cfg.data.samples_per_gpu,
                         cfg.data.workers_per_gpu,
                         dist=False,
                         drop_last=cfg.data.get('drop_last', False),
                         seed=0) for ds in dataset
    ]
    # Start progress bar after first 5 batches
    prog_bar = mmcv.ProgressBar(len(dataset) - 5 * cfg.data.samples_per_gpu,
                                start=False)
    for data_loader in data_loaders:
        for i, data in enumerate(data_loader):
            if i == 5:
                prog_bar.start()
            for _ in data['imgs']:
                if i < 5:
                    continue
                prog_bar.update()
Esempio n. 2
0
def main():
    args = parse_args()

    cfg = Config.fromfile(args.config)
    if args.cfg_options is not None:
        cfg.merge_from_dict(args.cfg_options)

    # init distributed env first, since logger depends on the dist info.
    distributed = False

    # build the dataloader
    dataset = build_dataset(cfg.data.test)

    loader_cfg = {
        **dict((k, cfg.data[k]) for k in ['workers_per_gpu'] if k in cfg.data),
        **dict(
            samples_per_gpu=1,
            drop_last=False,
            shuffle=False,
            dist=distributed),
        **cfg.data.get('test_dataloader', {})
    }

    data_loader = build_dataloader(dataset, **loader_cfg)

    # build the model
    if args.backend == 'onnxruntime':
        model = ONNXRuntimeEditing(args.model, cfg=cfg, device_id=0)
    elif args.backend == 'tensorrt':
        model = TensorRTEditing(args.model, cfg=cfg, device_id=0)

    args.save_image = args.save_path is not None
    model = MMDataParallel(model, device_ids=[0])
    outputs = single_gpu_test(
        model,
        data_loader,
        save_path=args.save_path,
        save_image=args.save_image)

    print()
    # print metrics
    stats = dataset.evaluate(outputs)
    for stat in stats:
        print('Eval-{}: {}'.format(stat, stats[stat]))

    # save result pickle
    if args.out:
        print('writing results to {}'.format(args.out))
        mmcv.dump(outputs, args.out)
Esempio n. 3
0
def test_build_dataloader():
    dataset = ToyDataset()
    samples_per_gpu = 3
    # dist=True, shuffle=True, 1GPU
    dataloader = build_dataloader(dataset,
                                  samples_per_gpu=samples_per_gpu,
                                  workers_per_gpu=2)
    assert dataloader.batch_size == samples_per_gpu
    assert len(dataloader) == int(math.ceil(len(dataset) / samples_per_gpu))
    assert isinstance(dataloader.sampler, DistributedSampler)
    assert dataloader.sampler.shuffle

    # dist=True, shuffle=False, 1GPU
    dataloader = build_dataloader(dataset,
                                  samples_per_gpu=samples_per_gpu,
                                  workers_per_gpu=2,
                                  shuffle=False)
    assert dataloader.batch_size == samples_per_gpu
    assert len(dataloader) == int(math.ceil(len(dataset) / samples_per_gpu))
    assert isinstance(dataloader.sampler, DistributedSampler)
    assert not dataloader.sampler.shuffle

    # dist=True, shuffle=True, 8GPU
    dataloader = build_dataloader(dataset,
                                  samples_per_gpu=samples_per_gpu,
                                  workers_per_gpu=2,
                                  num_gpus=8)
    assert dataloader.batch_size == samples_per_gpu
    assert len(dataloader) == int(math.ceil(len(dataset) / samples_per_gpu))
    assert dataloader.num_workers == 2

    # dist=False, shuffle=True, 1GPU
    dataloader = build_dataloader(dataset,
                                  samples_per_gpu=samples_per_gpu,
                                  workers_per_gpu=2,
                                  dist=False)
    assert dataloader.batch_size == samples_per_gpu
    assert len(dataloader) == int(math.ceil(len(dataset) / samples_per_gpu))
    assert isinstance(dataloader.sampler, RandomSampler)
    assert dataloader.num_workers == 2

    # dist=False, shuffle=False, 1GPU
    dataloader = build_dataloader(dataset,
                                  samples_per_gpu=3,
                                  workers_per_gpu=2,
                                  shuffle=False,
                                  dist=False)
    assert dataloader.batch_size == samples_per_gpu
    assert len(dataloader) == int(math.ceil(len(dataset) / samples_per_gpu))
    assert isinstance(dataloader.sampler, SequentialSampler)
    assert dataloader.num_workers == 2

    # dist=False, shuffle=True, 8GPU
    dataloader = build_dataloader(dataset,
                                  samples_per_gpu=3,
                                  workers_per_gpu=2,
                                  num_gpus=8,
                                  dist=False)
    assert dataloader.batch_size == samples_per_gpu * 8
    assert len(dataloader) == int(math.ceil(
        len(dataset) / samples_per_gpu / 8))
    assert isinstance(dataloader.sampler, RandomSampler)
    assert dataloader.num_workers == 16
Esempio n. 4
0
def main():
    args = parse_args()

    cfg = mmcv.Config.fromfile(args.config)
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
    cfg.model.pretrained = None

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    rank, _ = get_dist_info()

    # set random seeds
    if args.seed is not None:
        if rank == 0:
            print('set random seed to', args.seed)
        set_random_seed(args.seed, deterministic=args.deterministic)

    # build the dataloader
    # TODO: support multiple images per gpu (only minor changes are needed)
    dataset = build_dataset(cfg.data.test)

    loader_cfg = {
        **dict((k, cfg.data[k]) for k in ['workers_per_gpu'] if k in cfg.data),
        **dict(samples_per_gpu=1,
               drop_last=False,
               shuffle=False,
               dist=distributed),
        **cfg.data.get('test_dataloader', {})
    }

    data_loader = build_dataloader(dataset, **loader_cfg)

    # build the model and load checkpoint
    model = build_model(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)

    args.save_image = args.save_path is not None
    empty_cache = cfg.get('empty_cache', False)
    if not distributed:
        _ = load_checkpoint(model, args.checkpoint, map_location='cpu')
        model = MMDataParallel(model, device_ids=[0])
        outputs = single_gpu_test(model,
                                  data_loader,
                                  save_path=args.save_path,
                                  save_image=args.save_image)
    else:
        find_unused_parameters = cfg.get('find_unused_parameters', False)
        model = DistributedDataParallelWrapper(
            model,
            device_ids=[torch.cuda.current_device()],
            broadcast_buffers=False,
            find_unused_parameters=find_unused_parameters)

        device_id = torch.cuda.current_device()
        _ = load_checkpoint(
            model,
            args.checkpoint,
            map_location=lambda storage, loc: storage.cuda(device_id))
        outputs = multi_gpu_test(model,
                                 data_loader,
                                 args.tmpdir,
                                 args.gpu_collect,
                                 save_path=args.save_path,
                                 save_image=args.save_image,
                                 empty_cache=empty_cache)

    if rank == 0:
        print('')
        # print metrics
        stats = dataset.evaluate(outputs)
        for stat in stats:
            print('Eval-{}: {}'.format(stat, stats[stat]))

        # save result pickle
        if args.out:
            print('writing results to {}'.format(args.out))
            mmcv.dump(outputs, args.out)
Esempio n. 5
0
def main():
    args = parse_args()

    checkpoint_list = os.listdir(args.checkpoint_dir)

    print(checkpoint_list)

    for checkpoint in checkpoint_list:
        if '.pth' in checkpoint:

            cfg = mmcv.Config.fromfile(args.config)
            # set cudnn_benchmark
            if cfg.get('cudnn_benchmark', False):
                torch.backends.cudnn.benchmark = True
            cfg.model.pretrained = None

            # init distributed env first, since logger depends on the dist info.
            if args.launcher == 'none':
                distributed = False
            else:
                distributed = True
                init_dist(args.launcher, **cfg.dist_params)

            rank, _ = get_dist_info()

            # set random seeds
            if args.seed is not None:
                if rank == 0:
                    print('set random seed to', args.seed)
                set_random_seed(args.seed, deterministic=args.deterministic)

            # build the dataloader
            # TODO: support multiple images per gpu (only minor changes are needed)
            dataset = build_dataset(cfg.data.test)
            data_loader = build_dataloader(dataset,
                                           samples_per_gpu=1,
                                           workers_per_gpu=cfg.data.get(
                                               'val_workers_per_gpu',
                                               cfg.data.workers_per_gpu),
                                           dist=distributed,
                                           shuffle=False)

            # build the model and load checkpoint
            model = build_model(cfg.model,
                                train_cfg=None,
                                test_cfg=cfg.test_cfg)

            args.save_image = args.save_path is not None

            # distributed test
            find_unused_parameters = cfg.get('find_unused_parameters', False)
            model = DistributedDataParallelWrapper(
                model,
                device_ids=[torch.cuda.current_device()],
                broadcast_buffers=False,
                find_unused_parameters=find_unused_parameters)

            device_id = torch.cuda.current_device()

            _ = load_checkpoint(
                model,
                os.path.join(args.checkpoint_dir, checkpoint),
                map_location=lambda storage, loc: storage.cuda(device_id))

            outputs = multi_gpu_test(model,
                                     data_loader,
                                     args.tmpdir,
                                     args.gpu_collect,
                                     save_path=args.save_path,
                                     save_image=args.save_image)

            if rank == 0:
                # print metrics
                stats = dataset.evaluate(outputs)
                write_file = open(
                    os.path.join(args.checkpoint_dir, 'eval_result_new.txt'),
                    'a')
                for stat in stats:
                    print('{}: Eval-{}: {}'.format(checkpoint, stat,
                                                   stats[stat]))
                    write_file.write('{}: Eval-{}: {} '.format(
                        checkpoint, stat, stats[stat]))
                write_file.write('\n')
                write_file.close()
                # save result pickle
                if args.out:
                    print('writing results to {}'.format(args.out))
                    mmcv.dump(outputs, args.out)