class MultiClassFromFile(BaseProcessor): """Label processor for multi class cases where the labels are saved in a file. """ def __init__(self, config: MultiClassFromFileConfig, *args, **kwargs): self.label_vocab = VocabDict(config.vocab_file, *args, **kwargs) def __call__(self, item: Union[Dict[str, Any], str]) -> Dict[str, Any]: if isinstance(item, collections.abc.Mapping): label = item["label"] else: label = item # Remove UNK by subtracting 1 from output # UNK will always be at 0 even if it is not in vocab as it is automatically # always added by vocab dict class_index = self.label_vocab.word2idx(label) - 1 assert class_index != -1, f"{label} is not present in vocab file" return {"class_index": torch.tensor(class_index, dtype=torch.long)}
class VQAAnswerProcessor(BaseProcessor): """Processor for generating answer scores for answers passed using VQA accuracy formula. Using VocabDict class to represent answer vocabulary, so parameters must specify "vocab_file". "num_answers" in parameter config specify the max number of answers possible. Takes in dict containing "answers" or "answers_tokens". "answers" are preprocessed to generate "answers_tokens" if passed. Args: config (DictConfig): Configuration for the processor Attributes: answer_vocab (VocabDict): Class representing answer vocabulary """ DEFAULT_NUM_ANSWERS = 10 def __init__(self, config, *args, **kwargs): if not hasattr(config, "vocab_file"): raise AttributeError("'vocab_file' argument required, but not " "present in AnswerProcessor's config") self.answer_vocab = VocabDict(config.vocab_file, *args, **kwargs) self.PAD_IDX = self.answer_vocab.word2idx("<pad>") self.BOS_IDX = self.answer_vocab.word2idx("<s>") self.EOS_IDX = self.answer_vocab.word2idx("</s>") self.UNK_IDX = self.answer_vocab.UNK_INDEX # Set EOS to something not achievable if it is not there if self.EOS_IDX == self.UNK_IDX: self.EOS_IDX = len(self.answer_vocab) self.preprocessor = None if hasattr(config, "preprocessor"): self.preprocessor = Processor(config.preprocessor) if self.preprocessor is None: raise ValueError( f"No processor named {config.preprocessor} is defined.") if hasattr(config, "num_answers"): self.num_answers = config.num_answers else: self.num_answers = self.DEFAULT_NUM_ANSWERS warnings.warn("'num_answers' not defined in the config. " "Setting to default of {}".format( self.DEFAULT_NUM_ANSWERS)) def __call__(self, item): """Takes in dict with answers or answers_tokens, and returns back a dict with answers (processed), "answers_indices" which point to indices of the answers if present and "answers_scores" which represent VQA style scores for the answers. Args: item (Dict): Dict containing answers or answers_tokens Returns: Dict: Processed answers, indices and scores. """ tokens = [] if not isinstance(item, dict): raise TypeError("'item' passed to processor must be a dict") if "answer_tokens" in item: tokens = item["answer_tokens"] elif "answers" in item and item["answers"] is not None: if self.preprocessor is None: raise AssertionError("'preprocessor' must be defined if you " "don't pass 'answer_tokens'") tokens = [ self.preprocessor({"text": answer})["text"] for answer in item["answers"] ] else: raise AssertionError("'answers' or 'answer_tokens' must be passed" " to answer processor in a dict") if len(tokens) != 0: tokens = self._increase_to_ten(tokens) answers_indices = torch.zeros(self.DEFAULT_NUM_ANSWERS, dtype=torch.long) answers_indices.fill_(self.answer_vocab.get_unk_index()) for idx, token in enumerate(tokens): answers_indices[idx] = self.answer_vocab.word2idx(token) answers_scores = self.compute_answers_scores(answers_indices) return { "answers": tokens, "answers_indices": answers_indices, "answers_scores": answers_scores, } def get_vocab_size(self): """Get vocab size of the answer vocabulary. Can also include soft copy dynamic answer space size. Returns: int: size of the answer vocabulary """ return self.answer_vocab.num_vocab def get_true_vocab_size(self): """True vocab size can be different from normal vocab size in some cases such as soft copy where dynamic answer space is added. Returns: int: True vocab size. """ return self.answer_vocab.num_vocab def word2idx(self, word): """Convert a word to its index according to vocabulary Args: word (str): Word to be converted to index. Returns: int: Index of the word. """ return self.answer_vocab.word2idx(word) def idx2word(self, idx): """Index to word according to the vocabulary. Args: idx (int): Index to be converted to the word. Returns: str: Word corresponding to the index. """ return self.answer_vocab.idx2word(idx) def compute_answers_scores(self, answers_indices): """Generate VQA based answer scores for answers_indices. Args: answers_indices (torch.LongTensor): tensor containing indices of the answers Returns: torch.FloatTensor: tensor containing scores. """ scores = torch.zeros(self.get_vocab_size(), dtype=torch.float) gt_answers = list(enumerate(answers_indices)) unique_answers = set(answers_indices.tolist()) for answer in unique_answers: accs = [] for gt_answer in gt_answers: other_answers = [ item for item in gt_answers if item != gt_answer ] matching_answers = [ item for item in other_answers if item[1] == answer ] acc = min(1, float(len(matching_answers)) / 3) accs.append(acc) avg_acc = sum(accs) / len(accs) if answer != self.answer_vocab.UNK_INDEX: scores[answer] = avg_acc return scores def _increase_to_ten(self, tokens): while len(tokens) < self.DEFAULT_NUM_ANSWERS: tokens += tokens[:self.DEFAULT_NUM_ANSWERS - len(tokens)] return tokens
class M4CAnswerProcessor(BaseProcessor): """ Process a TextVQA answer for iterative decoding in M4C """ def __init__(self, config, *args, **kwargs): super().__init__(config, *args, **kwargs) self.answer_vocab = VocabDict(config.vocab_file, *args, **kwargs) self.PAD_IDX = self.answer_vocab.word2idx("<pad>") self.BOS_IDX = self.answer_vocab.word2idx("<s>") self.EOS_IDX = self.answer_vocab.word2idx("</s>") self.UNK_IDX = self.answer_vocab.UNK_INDEX # make sure PAD_IDX, BOS_IDX and PAD_IDX are valid (not <unk>) assert self.PAD_IDX != self.answer_vocab.UNK_INDEX assert self.BOS_IDX != self.answer_vocab.UNK_INDEX assert self.EOS_IDX != self.answer_vocab.UNK_INDEX assert self.PAD_IDX == 0 self.answer_preprocessor = Processor(config.preprocessor) assert self.answer_preprocessor is not None self.num_answers = config.num_answers self.max_length = config.max_length self.max_copy_steps = config.max_copy_steps assert self.max_copy_steps >= 1 self.match_answer_to_unk = False def tokenize(self, sentence): return sentence.split() def match_answer_to_vocab_ocr_seq(self, answer, vocab2idx_dict, ocr2inds_dict, max_match_num=20): """ Match an answer to a list of sequences of indices each index corresponds to either a fixed vocabulary or an OCR token (in the index address space, the OCR tokens are after the fixed vocab) """ num_vocab = len(vocab2idx_dict) answer_words = self.tokenize(answer) answer_word_matches = [] for word in answer_words: # match answer word to fixed vocabulary matched_inds = [] if word in vocab2idx_dict: matched_inds.append(vocab2idx_dict.get(word)) # match answer word to OCR # we put OCR after the fixed vocabulary in the answer index space # so add num_vocab offset to the OCR index matched_inds.extend( [num_vocab + idx for idx in ocr2inds_dict[word]]) if len(matched_inds) == 0: if self.match_answer_to_unk: matched_inds.append(vocab2idx_dict.get("<unk>")) else: return [] answer_word_matches.append(matched_inds) # expand per-word matched indices into the list of matched sequences if len(answer_word_matches) == 0: return [] idx_seq_list = [()] for matched_inds in answer_word_matches: idx_seq_list = [ seq + (idx, ) for seq in idx_seq_list for idx in matched_inds ] if len(idx_seq_list) > max_match_num: idx_seq_list = idx_seq_list[:max_match_num] return idx_seq_list def get_vocab_size(self): answer_vocab_nums = self.answer_vocab.num_vocab answer_vocab_nums += self.max_length return answer_vocab_nums def get_true_vocab_size(self): return self.answer_vocab.num_vocab def compute_answer_scores(self, answers): gt_answers = list(enumerate(answers)) unique_answers = sorted(set(answers)) unique_answer_scores = [0] * len(unique_answers) for idx, unique_answer in enumerate(unique_answers): accs = [] for gt_answer in gt_answers: other_answers = [ item for item in gt_answers if item != gt_answer ] matching_answers = [ item for item in other_answers if item[1] == unique_answer ] acc = min(1, float(len(matching_answers)) / 3) accs.append(acc) unique_answer_scores[idx] = sum(accs) / len(accs) unique_answer2score = { a: s for a, s in zip(unique_answers, unique_answer_scores) } return unique_answer2score def __call__(self, item): answers = item["answers"] if not answers: return { "sampled_idx_seq": None, "train_prev_inds": torch.zeros(self.max_copy_steps, dtype=torch.long), } answers = [ self.answer_preprocessor({"text": a})["text"] for a in answers ] assert len(answers) == self.num_answers # Step 1: calculate the soft score of ground-truth answers unique_answer2score = self.compute_answer_scores(answers) # Step 2: fill the first step soft scores for tokens scores = torch.zeros(self.max_copy_steps, self.get_vocab_size(), dtype=torch.float) # match answers to fixed vocabularies and OCR tokens. ocr2inds_dict = defaultdict(list) for idx, token in enumerate(item["tokens"]): ocr2inds_dict[token].append(idx) answer_dec_inds = [ self.match_answer_to_vocab_ocr_seq(a, self.answer_vocab.word2idx_dict, ocr2inds_dict) for a in answers ] # Collect all the valid decoding sequences for each answer. # This part (idx_seq_list) was pre-computed in imdb (instead of online) # to save time all_idx_seq_list = [] for answer, idx_seq_list in zip(answers, answer_dec_inds): all_idx_seq_list.extend(idx_seq_list) # fill in the soft score for the first decoding step score = unique_answer2score[answer] for idx_seq in idx_seq_list: score_idx = idx_seq[0] # the scores for the decoding Step 0 will be the maximum # among all answers starting with that vocab # for example: # if "red apple" has score 0.7 and "red flag" has score 0.8 # the score for "red" at Step 0 will be max(0.7, 0.8) = 0.8 scores[0, score_idx] = max(scores[0, score_idx], score) # train_prev_inds is the previous prediction indices in auto-regressive # decoding train_prev_inds = torch.zeros(self.max_copy_steps, dtype=torch.long) # train_loss_mask records the decoding steps where losses are applied train_loss_mask = torch.zeros(self.max_copy_steps, dtype=torch.float) if len(all_idx_seq_list) > 0: # sample a random decoding answer sequence for teacher-forcing idx_seq = all_idx_seq_list[np.random.choice(len(all_idx_seq_list))] dec_step_num = min(1 + len(idx_seq), self.max_copy_steps) train_loss_mask[:dec_step_num] = 1.0 train_prev_inds[0] = self.BOS_IDX for t in range(1, dec_step_num): train_prev_inds[t] = idx_seq[t - 1] score_idx = idx_seq[t] if t < len(idx_seq) else self.EOS_IDX scores[t, score_idx] = 1.0 else: idx_seq = () answer_info = { "answers": answers, "answers_scores": scores, "sampled_idx_seq": idx_seq, "train_prev_inds": train_prev_inds, "train_loss_mask": train_loss_mask, } return answer_info