def __init__(self,
                 in_channels,
                 num_joints,
                 max_norm=None,
                 loss_keypoint=None,
                 train_cfg=None,
                 test_cfg=None):
        super().__init__()

        self.in_channels = in_channels
        self.num_joints = num_joints
        self.max_norm = max_norm
        self.loss = build_loss(loss_keypoint)

        self.train_cfg = {} if train_cfg is None else train_cfg
        self.test_cfg = {} if test_cfg is None else test_cfg

        self.conv = build_conv_layer(
            dict(type='Conv1d'), in_channels, num_joints * 3, 1)

        if self.max_norm is not None:
            # Apply weight norm clip to conv layers
            weight_clip = WeightNormClipHook(self.max_norm)
            for module in self.modules():
                if isinstance(module, nn.modules.conv._ConvNd):
                    weight_clip.register(module)
Esempio n. 2
0
def test_weight_norm_clip():
    torch.manual_seed(0)

    module = torch.nn.Linear(2, 2, bias=False)
    module.weight.data.fill_(2)
    WeightNormClipHook(max_norm=1.0).register(module)

    x = torch.rand(1, 2).requires_grad_()
    _ = module(x)

    weight_norm = module.weight.norm().item()
    np.testing.assert_allclose(weight_norm, 1.0, rtol=1e-6)
Esempio n. 3
0
    def __init__(self,
                 in_channels,
                 stem_channels=1024,
                 num_blocks=2,
                 kernel_sizes=(3, 3, 3),
                 dropout=0.25,
                 causal=False,
                 residual=True,
                 use_stride_conv=False,
                 conv_cfg=dict(type='Conv1d'),
                 norm_cfg=dict(type='BN1d'),
                 max_norm=None):
        # Protect mutable default arguments
        conv_cfg = copy.deepcopy(conv_cfg)
        norm_cfg = copy.deepcopy(norm_cfg)
        super().__init__()
        self.in_channels = in_channels
        self.stem_channels = stem_channels
        self.num_blocks = num_blocks
        self.kernel_sizes = kernel_sizes
        self.dropout = dropout
        self.causal = causal
        self.residual = residual
        self.use_stride_conv = use_stride_conv
        self.max_norm = max_norm

        assert num_blocks == len(kernel_sizes) - 1
        for ks in kernel_sizes:
            assert ks % 2 == 1, 'Only odd filter widths are supported.'

        self.expand_conv = ConvModule(
            in_channels,
            stem_channels,
            kernel_size=kernel_sizes[0],
            stride=kernel_sizes[0] if use_stride_conv else 1,
            bias='auto',
            conv_cfg=conv_cfg,
            norm_cfg=norm_cfg)

        dilation = kernel_sizes[0]
        self.tcn_blocks = nn.ModuleList()
        for i in range(1, num_blocks + 1):
            self.tcn_blocks.append(
                BasicTemporalBlock(in_channels=stem_channels,
                                   out_channels=stem_channels,
                                   mid_channels=stem_channels,
                                   kernel_size=kernel_sizes[i],
                                   dilation=dilation,
                                   dropout=dropout,
                                   causal=causal,
                                   residual=residual,
                                   use_stride_conv=use_stride_conv,
                                   conv_cfg=conv_cfg,
                                   norm_cfg=norm_cfg))
            dilation *= kernel_sizes[i]

        if self.max_norm is not None:
            # Apply weight norm clip to conv layers
            weight_clip = WeightNormClipHook(self.max_norm)
            for module in self.modules():
                if isinstance(module, nn.modules.conv._ConvNd):
                    weight_clip.register(module)

        self.dropout = nn.Dropout(dropout) if dropout > 0 else None