Esempio n. 1
0
 def target_and_gradients(self, unit_cell, sites_cart, gradient_array=None):
     if (gradient_array is None):
         gradient_array = flex.vec3_double(sites_cart.size(),
                                           (0.0, 0.0, 0.0))
     overall_residual_sum = 0
     # Oldfield
     self.residuals_array_oldfield = None  #residuals_array_oldfield
     n_oldfield_proxies = self.get_n_oldfield_proxies()
     oldfield_residual_sum = 0
     if n_oldfield_proxies > 0:
         if self.residuals_array_oldfield is None:
             self.residuals_array_oldfield = flex.double(
                 n_oldfield_proxies, 0.)
         op = self.params.oldfield
         w = op.weight
         if w is None:
             w = 0.
         oldfield_residual_sum = ramachandran_residual_sum(
             sites_cart=sites_cart,
             proxies=self._oldfield_proxies,
             gradient_array=gradient_array,
             phi_psi_targets=self.target_phi_psi,
             weights=(w, op.weight_scale, op.distance_weight_min,
                      op.distance_weight_max),
             residuals_array=self.residuals_array_oldfield)
         overall_residual_sum += oldfield_residual_sum
     # Emsley
     self.residuals_array_emsley = None  #residuals_array_emsley
     n_emsley_proxies = self.get_n_emsley_proxies()
     if n_emsley_proxies > 0:
         if self.residuals_array_emsley is None:
             self.residuals_array_emsley = flex.double(n_emsley_proxies, 0.)
         #assert (self.params.rama_weight >= 0.0)
         # Moving these cycles to C++ part would speed them up only up to 10%
         for i, proxy in enumerate(self._emsley_proxies):
             rama_table = self._emsley_tables[self.new_to_old_conversion[
                 proxy.residue_type]]
             self.residuals_array_emsley[i] = rama_table.compute_gradients(
                 gradient_array=gradient_array,
                 sites_cart=sites_cart,
                 proxy=proxy,
                 epsilon=0.001)
         overall_residual_sum += flex.sum(self.residuals_array_emsley)
     # emsley8k
     self.residuals_array_emsley8k = None
     n_emsley8k_proxies = self.get_n_emsley8k_proxies()
     if n_emsley8k_proxies > 0:
         if self.residuals_array_emsley8k is None:
             self.residuals_array_emsley8k = flex.double(
                 n_emsley8k_proxies, 0.)
         for i, proxy in enumerate(self._emsley8k_proxies):
             rama_table = self._emsley8k_tables[proxy.residue_type]
             self.residuals_array_emsley8k[
                 i] = rama_table.compute_gradients(
                     gradient_array=gradient_array,
                     sites_cart=sites_cart,
                     proxy=proxy,
                     epsilon=1.0)  # XXX
         overall_residual_sum += flex.sum(self.residuals_array_emsley8k)
     return overall_residual_sum
Esempio n. 2
0
 def target_and_gradients(self,
                          unit_cell,
                          sites_cart,
                          gradient_array=None,
                          residuals_array=None):
     assert self.proxies is not None
     if (gradient_array is None):
         gradient_array = flex.vec3_double(sites_cart.size(),
                                           (0.0, 0.0, 0.0))
     if residuals_array is None:
         residuals_array = flex.double(self.proxies.size())
     target = 0
     if (self.params.rama_potential == "oldfield"):
         op = self.params.oldfield
         w = op.weight
         if w is None:
             w = -1
         res = ramachandran_residual_sum(
             sites_cart=sites_cart,
             proxies=self.proxies,
             gradient_array=gradient_array,
             phi_psi_targets=self.target_phi_psi,
             weights=(w, op.esd, op.dist_weight_max, 2.0, op.weight_scale),
             residuals_array=residuals_array)
         return res
     else:  # emsley
         assert (self.params.rama_weight >= 0.0)
         # bad hack to keep emsley potential in working(?) condition after
         # changing from rama500 to rama8000
         new_to_old_conversion = {
             "general": "ala",
             "glycine": "gly",
             "cis-proline": "pro",
             "trans-proline": "pro",
             "pre-proline": "prepro",
             "isoleucine or valine": "ala"
         }
         # Moving these cycles to C++ part would speed them up only up to 10%
         for i, proxy in enumerate(self.proxies):
             rama_table = self.tables[new_to_old_conversion[
                 proxy.residue_type]]
             residuals_array[i] = rama_table.compute_gradients(
                 gradient_array=gradient_array,
                 sites_cart=sites_cart,
                 proxy=proxy,
                 weight=self.params.rama_weight,
                 epsilon=0.001)
     return flex.sum(residuals_array)
Esempio n. 3
0
 def target_and_gradients (self,
     unit_cell,
     sites_cart,
     gradient_array=None,
     residuals_array=None) :
   assert self.proxies is not None
   if(gradient_array is None) :
     gradient_array = flex.vec3_double(sites_cart.size(), (0.0,0.0,0.0))
   if residuals_array is None:
     residuals_array = flex.double(self.proxies.size())
   target = 0
   if(self.params.rama_potential == "oldfield"):
     op = self.params.oldfield
     w = op.weight
     if w is None:
       w = -1
     res = ramachandran_residual_sum(
         sites_cart=sites_cart,
         proxies=self.proxies,
         gradient_array=gradient_array,
         general_table=self.tables.general,
         gly_table=self.tables.gly,
         cispro_table=self.tables.cispro,
         transpro_table=self.tables.transpro,
         prepro_table=self.tables.prepro,
         ileval_table=self.tables.ileval,
         weights=(w, op.esd, op.dist_weight_max, 2.0, op.weight_scale),
         residuals_array=residuals_array)
     return res
   else: # emsley
     assert (self.params.rama_weight >= 0.0)
     # bad hack to keep emsley potential in working(?) condition after
     # changing from rama500 to rama8000
     new_to_old_conversion = {"general":"ala", "glycine":"gly",
         "cis-proline":"pro", "trans-proline":"pro", "pre-proline":"prepro",
         "isoleucine or valine":"ala"}
     # Moving these cycles to C++ part would speed them up only up to 10%
     for i, proxy in enumerate(self.proxies):
       rama_table = self.tables[new_to_old_conversion[proxy.residue_type]]
       residuals_array[i] = rama_table.compute_gradients(
         gradient_array=gradient_array,
         sites_cart=sites_cart,
         proxy=proxy,
         weight=self.params.rama_weight,
         epsilon=0.001)
   return flex.sum(residuals_array)