def get_meg_data(per_condition=True): time_range = range(_addon().get_max_time_steps()) brain_obj = bpy.data.objects['Brain'] if per_condition: meg_data, meg_colors = OrderedDict(), OrderedDict() rois_objs = bpy.data.objects['Cortex-lh'].children + bpy.data.objects['Cortex-rh'].children for roi_obj in rois_objs: if roi_obj.animation_data: meg_data_roi, meg_colors_roi = mu.evaluate_fcurves(roi_obj, time_range) meg_data.update(meg_data_roi) meg_colors.update(meg_colors_roi) else: meg_data, meg_colors = mu.evaluate_fcurves(brain_obj, time_range) return meg_data, meg_colors
def get_meg_data(per_condition=True): time_range = range(PlayPanel.addon.get_max_time_steps()) brain_obj = bpy.data.objects['Brain'] if per_condition: meg_data, meg_colors = OrderedDict(), OrderedDict() rois_objs = bpy.data.objects['Cortex-lh'].children + bpy.data.objects['Cortex-rh'].children for roi_obj in rois_objs: if roi_obj.animation_data: meg_data_roi, meg_colors_roi = mu.evaluate_fcurves(roi_obj, time_range) meg_data.update(meg_data_roi) meg_colors.update(meg_colors_roi) else: meg_data, meg_colors = mu.evaluate_fcurves(brain_obj, time_range) return meg_data, meg_colors
def get_connectivity_data(): time_range = range(_addon().get_max_time_steps()) parent_name = _addon().get_connections_parent_name() parent_obj = bpy.data.objects.get(parent_name) if not parent_obj is None: return mu.evaluate_fcurves(parent_obj, time_range) else: return None, None
def capture_graph_data(per_condition): parent_obj = bpy.data.objects.get(PARENT_OBJ, None) if parent_obj: time_range = range(0, ConnectionsPanel.addon.get_max_time_steps(), bpy.context.scene.play_dt) if per_condition: #todo: implement pass else: data, colors = mu.evaluate_fcurves(parent_obj, time_range) return data, colors else: return {}, {}
def get_electrodes_data(per_condition=True): if bpy.context.scene.selection_type == 'spec_cond' and bpy.context.scene.conditions_selection == '': print('You must choose the condition first!') return None, None elecs_data, elecs_colors = OrderedDict(), OrderedDict() time_range = range(_addon().get_max_time_steps()) if per_condition: for obj_name in PlayPanel.electrodes_names: if bpy.data.objects.get(obj_name) is None: continue elec_obj = bpy.data.objects[obj_name] if elec_obj.hide or elec_obj.animation_data is None: continue curr_cond = bpy.context.scene.conditions_selection if \ bpy.context.scene.selection_type == 'spec_cond' else None data, colors = mu.evaluate_fcurves(elec_obj, time_range, curr_cond) elecs_data.update(data) elecs_colors.update(colors) else: parent_obj = bpy.data.objects['Deep_electrodes'] elecs_data, elecs_colors = mu.evaluate_fcurves(parent_obj, time_range) return elecs_data, elecs_colors
def get_electrodes_data(per_condition=True): if bpy.context.scene.selection_type == 'spec_cond' and bpy.context.scene.conditions_selection == '': print('You must choose the condition first!') return None, None elecs_data, elecs_colors = OrderedDict(), OrderedDict() time_range = range(PlayPanel.addon.get_max_time_steps()) if per_condition: for obj_name in PlayPanel.electrodes_names: if bpy.data.objects.get(obj_name) is None: continue elec_obj = bpy.data.objects[obj_name] if elec_obj.hide or elec_obj.animation_data is None: continue curr_cond = bpy.context.scene.conditions_selection if \ bpy.context.scene.selection_type == 'spec_cond' else None data, colors = mu.evaluate_fcurves(elec_obj, time_range, curr_cond) elecs_data.update(data) elecs_colors.update(colors) else: parent_obj = bpy.data.objects['Deep_electrodes'] elecs_data, elecs_colors = mu.evaluate_fcurves(parent_obj, time_range) return elecs_data, elecs_colors
def get_fmri_data(): time_range = range(_addon().get_max_time_steps()) brain_obj = bpy.data.objects['fMRI'] data, colors = mu.evaluate_fcurves(brain_obj, time_range) return data, colors