Esempio n. 1
0
@pytest.fixture(scope='session')
def azure_windows():
    """Determine if running on Azure Windows."""
    return (os.getenv('AZURE_CI_WINDOWS', 'false').lower() == 'true'
            and sys.platform.startswith('win'))


@pytest.fixture()
def check_gui_ci(ci_macos, azure_windows):
    """Skip tests that are not reliable on CIs."""
    if azure_windows or ci_macos:
        pytest.skip('Skipping GUI tests on MacOS CIs and Azure Windows')


@pytest.fixture(scope='session', params=[testing._pytest_param()])
def _evoked():
    # This one is session scoped, so be sure not to modify it (use evoked
    # instead)
    evoked = mne.read_evokeds(fname_evoked,
                              condition='Left Auditory',
                              baseline=(None, 0))
    evoked.crop(0, 0.2)
    return evoked


@pytest.fixture()
def evoked(_evoked):
    """Get evoked data."""
    return _evoked.copy()
Esempio n. 2
0
    with pytest.warns(RuntimeWarning, match='1 of 2 SourceEstimate vertices'):
        simulate_raw(raw, stc, trans, src, bem, None)


def _make_stc(raw, src):
    """Make a STC."""
    seed = 42
    sfreq = raw.info['sfreq']  # Hz
    tstep = 1. / sfreq
    n_samples = len(raw.times) // 10
    times = np.arange(0, n_samples) * tstep
    stc = simulate_sparse_stc(src, 10, times, random_state=seed)
    return stc


@pytest.fixture(scope='function', params=[testing._pytest_param()])
def raw_data():
    """Get some starting data."""
    # raw with ECG channel
    raw = read_raw_fif(raw_fname).crop(0., 5.0).load_data()
    data_picks = pick_types(raw.info, meg=True, eeg=True)
    other_picks = pick_types(raw.info, meg=False, stim=True, eog=True)
    picks = np.sort(np.concatenate((data_picks[::16], other_picks)))
    raw = raw.pick_channels([raw.ch_names[p] for p in picks])
    raw.info.normalize_proj()
    ecg = RawArray(np.zeros((1, len(raw.times))),
                   create_info(['ECG 063'], raw.info['sfreq'], 'ecg'))
    for key in ('dev_head_t', 'highpass', 'lowpass', 'dig'):
        ecg.info[key] = raw.info[key]
    raw.add_channels([ecg])
Esempio n. 3
0
from mne.time_frequency import CrossSpectralDensity
from mne.time_frequency.csd import _sym_mat_to_vector

data_path = testing.data_path(download=False)
fname_raw = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc_raw.fif')
fname_fwd = op.join(data_path, 'MEG', 'sample',
                    'sample_audvis_trunc-meg-eeg-oct-4-fwd.fif')
fname_fwd_vol = op.join(data_path, 'MEG', 'sample',
                        'sample_audvis_trunc-meg-vol-7-fwd.fif')
fname_event = op.join(data_path, 'MEG', 'sample',
                      'sample_audvis_trunc_raw-eve.fif')

subjects_dir = op.join(data_path, 'subjects')


@pytest.fixture(scope='module', params=[testing._pytest_param()])
def _load_forward():
    """Load forward models."""
    fwd_free = mne.read_forward_solution(fname_fwd)
    fwd_free = mne.pick_types_forward(fwd_free, meg=True, eeg=False)
    fwd_free = mne.convert_forward_solution(fwd_free, surf_ori=False)
    fwd_surf = mne.convert_forward_solution(fwd_free, surf_ori=True,
                                            use_cps=False)
    fwd_fixed = mne.convert_forward_solution(fwd_free, force_fixed=True,
                                             use_cps=False)
    fwd_vol = mne.read_forward_solution(fname_fwd_vol)
    return fwd_free, fwd_surf, fwd_fixed, fwd_vol


def _simulate_data(fwd, idx):  # Somewhere on the frontal lobe by default
    """Simulate an oscillator on the cortex."""
Esempio n. 4
0
    for ii in range(2):
        # should work with (ii=0) or without (ii=1) the interpolator
        if ii:
            src[0]['interpolator'] = None
        img = stc.as_volume(src, mri_resolution=False)
        n_on = np.array(img.dataobj).astype(bool).sum()
        # was 20 on `master` before gh-5590
        # then 44 before gh-7653, which took it back to 20
        assert n_on == n_orig
    # without the interpolator, this should fail
    assert src[0]['interpolator'] is None
    with pytest.raises(RuntimeError, match=r'.*src\[0\], .* mri_resolution'):
        stc.as_volume(src, mri_resolution=True)


@pytest.fixture(scope='session', params=[testing._pytest_param()])
def _mixed_morph_srcs():
    # create a mixed source space
    labels_vol = ['Left-Cerebellum-Cortex', 'Right-Cerebellum-Cortex']
    src = mne.setup_source_space('sample', spacing='oct3',
                                 add_dist=False, subjects_dir=subjects_dir)
    src += mne.setup_volume_source_space(
        'sample', mri=fname_aseg, pos=10.0,
        volume_label=labels_vol, subjects_dir=subjects_dir,
        add_interpolator=True, verbose=True)
    # create the destination space
    src_fs = mne.read_source_spaces(
        op.join(subjects_dir, 'fsaverage', 'bem', 'fsaverage-ico-5-src.fif'))
    src_fs += mne.setup_volume_source_space(
        'fsaverage', pos=7., volume_label=labels_vol,
        subjects_dir=subjects_dir, add_interpolator=False, verbose=True)
Esempio n. 5
0
from mne.datasets import testing
from mne import (read_label, read_forward_solution, pick_types_forward,
                 convert_forward_solution)
from mne.label import Label
from mne.simulation import simulate_stc, simulate_sparse_stc, SourceSimulator
from mne.utils import run_tests_if_main, check_version

data_path = testing.data_path(download=False)
fname_fwd = op.join(data_path, 'MEG', 'sample',
                    'sample_audvis_trunc-meg-eeg-oct-6-fwd.fif')
label_names = ['Aud-lh', 'Aud-rh', 'Vis-rh']

subjects_dir = op.join(data_path, 'subjects')


@pytest.fixture(scope="module", params=[testing._pytest_param()])
def _get_fwd_labels():
    fwd = read_forward_solution(fname_fwd)
    fwd = convert_forward_solution(fwd, force_fixed=True, use_cps=True)
    fwd = pick_types_forward(fwd, meg=True, eeg=False)
    labels = [
        read_label(
            op.join(data_path, 'MEG', 'sample', 'labels', '%s.label' % label))
        for label in label_names
    ]
    return fwd, labels


def _get_idx_label_stc(label, stc):
    hemi_idx_mapping = dict(lh=0, rh=1)
Esempio n. 6
0
                 convert_forward_solution)
from mne.label import Label
from mne.simulation.source import simulate_stc, simulate_sparse_stc
from mne.simulation.source import SourceSimulator
from mne.utils import run_tests_if_main


data_path = testing.data_path(download=False)
fname_fwd = op.join(data_path, 'MEG', 'sample',
                    'sample_audvis_trunc-meg-eeg-oct-6-fwd.fif')
label_names = ['Aud-lh', 'Aud-rh', 'Vis-rh']

subjects_dir = op.join(data_path, 'subjects')


@pytest.fixture(scope="module", params=[testing._pytest_param()])
def _get_fwd_labels():
    fwd = read_forward_solution(fname_fwd)
    fwd = convert_forward_solution(fwd, force_fixed=True, use_cps=True)
    fwd = pick_types_forward(fwd, meg=True, eeg=False)
    labels = [read_label(op.join(data_path, 'MEG', 'sample', 'labels',
                         '%s.label' % label)) for label in label_names]
    return fwd, labels


def _get_idx_label_stc(label, stc):
    hemi_idx_mapping = dict(lh=0, rh=1)

    hemi_idx = hemi_idx_mapping[label.hemi]

    idx = np.intersect1d(stc.vertices[hemi_idx], label.vertices)
Esempio n. 7
0
@pytest.fixture()
def fnirs_evoked():
    """Create an fnirs evoked structure."""
    montage = make_standard_montage('biosemi16')
    ch_names = montage.ch_names
    ch_types = ['eeg'] * 16
    info = create_info(ch_names=ch_names, sfreq=20, ch_types=ch_types)
    evoked_data = np.random.randn(16, 30)
    evoked = EvokedArray(evoked_data, info=info, tmin=-0.2, nave=4)
    evoked.set_montage(montage)
    evoked.set_channel_types({'Fp1': 'hbo', 'Fp2': 'hbo', 'F4': 'hbo',
                             'Fz': 'hbo'}, verbose='error')
    return evoked


@pytest.fixture(params=[_pytest_param()])
def fnirs_epochs():
    """Create an fnirs epoch structure."""
    fname = op.join(data_path(download=False),
                    'NIRx', 'nirscout', 'nirx_15_2_recording_w_overlap')
    raw_intensity = read_raw_nirx(fname, preload=False)
    raw_od = optical_density(raw_intensity)
    raw_haemo = beer_lambert_law(raw_od)
    evts, _ = events_from_annotations(raw_haemo, event_id={'1.0': 1})
    evts_dct = {'A': 1}
    tn, tx = -1, 2
    epochs = Epochs(raw_haemo, evts, event_id=evts_dct, tmin=tn, tmax=tx)
    return epochs


# Create one nbclient and reuse it
Esempio n. 8
0
data_path = testing.data_path(download=False)
ft_data_path = op.join(data_path, 'fieldtrip', 'beamformer')
fname_raw = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc_raw.fif')
fname_cov = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc-cov.fif')
fname_fwd = op.join(data_path, 'MEG', 'sample',
                    'sample_audvis_trunc-meg-eeg-oct-4-fwd.fif')
fname_fwd_vol = op.join(data_path, 'MEG', 'sample',
                        'sample_audvis_trunc-meg-vol-7-fwd.fif')
fname_event = op.join(data_path, 'MEG', 'sample',
                      'sample_audvis_trunc_raw-eve.fif')
fname_label = op.join(data_path, 'MEG', 'sample', 'labels', 'Aud-lh.label')

reject = dict(grad=4000e-13, mag=4e-12)


@pytest.fixture(scope='function', params=[testing._pytest_param()])
def _get_bf_data(save_fieldtrip=False):
    raw, epochs, evoked, data_cov, _, _, _, _, _, fwd = _get_data(proj=False)

    if save_fieldtrip is True:
        # raw needs to be saved with all channels and picked in FieldTrip
        raw.save(op.join(ft_data_path, 'raw.fif'), overwrite=True)

        # src (tris are not available in fwd['src'] once imported into MATLAB)
        src = fwd['src'].copy()
        mne.write_source_spaces(op.join(ft_data_path, 'src.fif'), src)

    # pick gradiometers only:
    epochs.pick_types(meg='grad')
    evoked.pick_types(meg='grad')