Esempio n. 1
0
def test_evoked_proj():
    """Test SSP proj operations
    """
    for proj in [True, False]:
        ave = read_evoked(fname, setno=0, proj=proj)
        assert_true(all(p['active'] == proj for p in ave.info['projs']))

        # test adding / deleting proj
        if proj:
            assert_raises(ValueError, ave.add_proj, [],
                          {'remove_existing': True})
            assert_raises(ValueError, ave.del_proj, 0)
        else:
            projs = deepcopy(ave.info['projs'])
            n_proj = len(ave.info['projs'])
            ave.del_proj(0)
            assert_true(len(ave.info['projs']) == n_proj - 1)
            ave.add_proj(projs, remove_existing=False)
            assert_true(len(ave.info['projs']) == 2 * n_proj - 1)
            ave.add_proj(projs, remove_existing=True)
            assert_true(len(ave.info['projs']) == n_proj)

    ave = read_evoked(fname, setno=0, proj=False)
    data = ave.data.copy()
    ave.apply_proj()
    assert_allclose(np.dot(ave._projector, data), ave.data)
Esempio n. 2
0
def test_evoked_io_from_epochs():
    """Test IO of evoked data made from epochs
    """
    # offset our tmin so we don't get exactly a zero value when decimating
    with warnings.catch_warnings(True) as w:
        epochs = Epochs(raw, events[:4], event_id, tmin + 0.011, tmax, picks=picks, baseline=(None, 0), decim=5)
    assert_true(len(w) == 1)
    evoked = epochs.average()
    evoked.save(op.join(tempdir, "evoked.fif"))
    evoked2 = read_evoked(op.join(tempdir, "evoked.fif"))
    assert_allclose(evoked.data, evoked2.data, rtol=1e-4, atol=1e-20)
    assert_allclose(evoked.times, evoked2.times, rtol=1e-4, atol=1 / evoked.info["sfreq"])

    # now let's do one with negative time
    with warnings.catch_warnings(True) as w:
        epochs = Epochs(raw, events[:4], event_id, 0.1, tmax, picks=picks, baseline=(0.1, 0.2), decim=5)
    evoked = epochs.average()
    evoked.save(op.join(tempdir, "evoked.fif"))
    evoked2 = read_evoked(op.join(tempdir, "evoked.fif"))
    assert_allclose(evoked.data, evoked2.data, rtol=1e-4, atol=1e-20)
    assert_allclose(evoked.times, evoked2.times, rtol=1e-4, atol=1e-20)

    # should be equivalent to a cropped original
    with warnings.catch_warnings(True) as w:
        epochs = Epochs(raw, events[:4], event_id, -0.2, tmax, picks=picks, baseline=(0.1, 0.2), decim=5)
    evoked = epochs.average()
    evoked.crop(0.099, None)
    assert_allclose(evoked.data, evoked2.data, rtol=1e-4, atol=1e-20)
    assert_allclose(evoked.times, evoked2.times, rtol=1e-4, atol=1e-20)
Esempio n. 3
0
def test_evoked_standard_error():
    """Test calculation and read/write of standard error
    """
    epochs = Epochs(raw,
                    events[:4],
                    event_id,
                    tmin,
                    tmax,
                    picks=picks,
                    baseline=(None, 0))
    evoked = [epochs.average(), epochs.standard_error()]
    fiff.write_evoked(op.join(tempdir, 'evoked.fif'), evoked)
    evoked2 = read_evoked(op.join(tempdir, 'evoked.fif'), [0, 1])
    evoked3 = [
        read_evoked(op.join(tempdir, 'evoked.fif'), 'Unknown'),
        read_evoked(op.join(tempdir, 'evoked.fif'),
                    'Unknown',
                    kind='standard_error')
    ]
    for evoked_new in [evoked2, evoked3]:
        assert_true(
            evoked_new[0]._aspect_kind == fiff.FIFF.FIFFV_ASPECT_AVERAGE)
        assert_true(evoked_new[0].kind == 'average')
        assert_true(
            evoked_new[1]._aspect_kind == fiff.FIFF.FIFFV_ASPECT_STD_ERR)
        assert_true(evoked_new[1].kind == 'standard_error')
        for ave, ave2 in zip(evoked, evoked_new):
            assert_array_almost_equal(ave.data, ave2.data)
            assert_array_almost_equal(ave.times, ave2.times)
            assert_equal(ave.nave, ave2.nave)
            assert_equal(ave._aspect_kind, ave2._aspect_kind)
            assert_equal(ave.kind, ave2.kind)
            assert_equal(ave.last, ave2.last)
            assert_equal(ave.first, ave2.first)
Esempio n. 4
0
def test_evoked_proj():
    """Test SSP proj operations
    """
    for proj in [True, False]:
        ave = read_evoked(fname, setno=0, proj=proj)
        assert_true(all(p['active'] == proj for p in ave.info['projs']))

        # test adding / deleting proj
        if proj:
            assert_raises(ValueError, ave.add_proj, [],
                          {'remove_existing': True})
            assert_raises(ValueError, ave.del_proj, 0)
        else:
            projs = deepcopy(ave.info['projs'])
            n_proj = len(ave.info['projs'])
            ave.del_proj(0)
            assert_true(len(ave.info['projs']) == n_proj - 1)
            ave.add_proj(projs, remove_existing=False)
            assert_true(len(ave.info['projs']) == 2 * n_proj - 1)
            ave.add_proj(projs, remove_existing=True)
            assert_true(len(ave.info['projs']) == n_proj)

    ave = read_evoked(fname, setno=0, proj=False)
    data = ave.data.copy()
    ave.apply_proj()
    assert_allclose(np.dot(ave._projector, data), ave.data)
Esempio n. 5
0
def test_evoked_resample():
    """Test for resampling of evoked data
    """
    # upsample, write it out, read it in
    ave = read_evoked(fname, 0)
    sfreq_normal = ave.info['sfreq']
    ave.resample(2 * sfreq_normal)
    write_evoked(op.join(tempdir, 'evoked.fif'), ave)
    ave_up = read_evoked(op.join(tempdir, 'evoked.fif'), 0)

    # compare it to the original
    ave_normal = read_evoked(fname, 0)

    # and compare the original to the downsampled upsampled version
    ave_new = read_evoked(op.join(tempdir, 'evoked.fif'), 0)
    ave_new.resample(sfreq_normal)

    assert_array_almost_equal(ave_normal.data, ave_new.data, 2)
    assert_array_almost_equal(ave_normal.times, ave_new.times)
    assert_equal(ave_normal.nave, ave_new.nave)
    assert_equal(ave_normal._aspect_kind, ave_new._aspect_kind)
    assert_equal(ave_normal.kind, ave_new.kind)
    assert_equal(ave_normal.last, ave_new.last)
    assert_equal(ave_normal.first, ave_new.first)

    # for the above to work, the upsampling just about had to, but
    # we'll add a couple extra checks anyway
    assert_true(len(ave_up.times) == 2 * len(ave_normal.times))
    assert_true(ave_up.data.shape[1] == 2 * ave_normal.data.shape[1])
Esempio n. 6
0
def test_io_evoked():
    """Test IO for evoked data (fif + gz) with integer and str args
    """
    ave = read_evoked(fname, 0)

    write_evoked(op.join(tempdir, 'evoked.fif'), ave)
    ave2 = read_evoked(op.join(tempdir, 'evoked.fif'))

    # This not being assert_array_equal due to windows rounding
    assert_true(np.allclose(ave.data, ave2.data, atol=1e-16, rtol=1e-3))
    assert_array_almost_equal(ave.times, ave2.times)
    assert_equal(ave.nave, ave2.nave)
    assert_equal(ave._aspect_kind, ave2._aspect_kind)
    assert_equal(ave.kind, ave2.kind)
    assert_equal(ave.last, ave2.last)
    assert_equal(ave.first, ave2.first)

    # test compressed i/o
    ave2 = read_evoked(fname_gz, 0)
    assert_true(np.allclose(ave.data, ave2.data, atol=1e-16, rtol=1e-8))

    # test str access
    setno = 'Left Auditory'
    assert_raises(ValueError, read_evoked, fname, setno, kind='stderr')
    assert_raises(ValueError, read_evoked, fname, setno, kind='standard_error')
    ave3 = read_evoked(fname, setno)
    assert_array_almost_equal(ave.data, ave3.data, 19)
Esempio n. 7
0
def test_io_evoked():
    """Test IO for evoked data (fif + gz) with integer and str args
    """
    ave = read_evoked(fname, 0)

    write_evoked(op.join(tempdir, 'evoked.fif'), ave)
    ave2 = read_evoked(op.join(tempdir, 'evoked.fif'))

    # This not being assert_array_equal due to windows rounding
    assert_true(np.allclose(ave.data, ave2.data, atol=1e-16, rtol=1e-3))
    assert_array_almost_equal(ave.times, ave2.times)
    assert_equal(ave.nave, ave2.nave)
    assert_equal(ave._aspect_kind, ave2._aspect_kind)
    assert_equal(ave.kind, ave2.kind)
    assert_equal(ave.last, ave2.last)
    assert_equal(ave.first, ave2.first)

    # test compressed i/o
    ave2 = read_evoked(fname_gz, 0)
    assert_true(np.allclose(ave.data, ave2.data, atol=1e-16, rtol=1e-8))

    # test str access
    setno = 'Left Auditory'
    assert_raises(ValueError, read_evoked, fname, setno, kind='stderr')
    assert_raises(ValueError, read_evoked, fname, setno, kind='standard_error')
    ave3 = read_evoked(fname, setno)
    assert_array_almost_equal(ave.data, ave3.data, 19)
Esempio n. 8
0
def test_evoked_standard_error():
    """Test calculation and read/write of standard error
    """
    epochs = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks,
                    baseline=(None, 0))
    evoked = [epochs.average(), epochs.standard_error()]
    fiff.write_evoked(op.join(tempdir, 'evoked.fif'), evoked)
    evoked2 = read_evoked(op.join(tempdir, 'evoked.fif'), [0, 1])
    evoked3 = [read_evoked(op.join(tempdir, 'evoked.fif'), 'Unknown'),
               read_evoked(op.join(tempdir, 'evoked.fif'), 'Unknown',
                           kind='standard_error')]
    for evoked_new in [evoked2, evoked3]:
        assert_true(evoked_new[0]._aspect_kind ==
                    fiff.FIFF.FIFFV_ASPECT_AVERAGE)
        assert_true(evoked_new[0].kind == 'average')
        assert_true(evoked_new[1]._aspect_kind ==
                    fiff.FIFF.FIFFV_ASPECT_STD_ERR)
        assert_true(evoked_new[1].kind == 'standard_error')
        for ave, ave2 in zip(evoked, evoked_new):
            assert_array_almost_equal(ave.data, ave2.data)
            assert_array_almost_equal(ave.times, ave2.times)
            assert_equal(ave.nave, ave2.nave)
            assert_equal(ave._aspect_kind, ave2._aspect_kind)
            assert_equal(ave.kind, ave2.kind)
            assert_equal(ave.last, ave2.last)
            assert_equal(ave.first, ave2.first)
def test_evoked_io_from_epochs():
    """Test IO of evoked data made from epochs
    """
    # offset our tmin so we don't get exactly a zero value when decimating
    with warnings.catch_warnings(True) as w:
        epochs = Epochs(raw, events[:4], event_id, tmin + 0.011, tmax,
                        picks=picks, baseline=(None, 0), decim=5)
    assert_true(len(w) == 1)
    evoked = epochs.average()
    evoked.save(op.join(tempdir, 'evoked.fif'))
    evoked2 = read_evoked(op.join(tempdir, 'evoked.fif'))
    assert_allclose(evoked.data, evoked2.data, rtol=1e-4, atol=1e-20)
    assert_allclose(evoked.times, evoked2.times, rtol=1e-4,
                    atol=1 / evoked.info['sfreq'])

    # now let's do one with negative time
    with warnings.catch_warnings(True) as w:
        epochs = Epochs(raw, events[:4], event_id, 0.1, tmax,
                        picks=picks, baseline=(0.1, 0.2), decim=5)
    evoked = epochs.average()
    evoked.save(op.join(tempdir, 'evoked.fif'))
    evoked2 = read_evoked(op.join(tempdir, 'evoked.fif'))
    assert_allclose(evoked.data, evoked2.data, rtol=1e-4, atol=1e-20)
    assert_allclose(evoked.times, evoked2.times, rtol=1e-4, atol=1e-20)

    # should be equivalent to a cropped original
    with warnings.catch_warnings(True) as w:
        epochs = Epochs(raw, events[:4], event_id, -0.2, tmax,
                        picks=picks, baseline=(0.1, 0.2), decim=5)
    evoked = epochs.average()
    evoked.crop(0.099, None)
    assert_allclose(evoked.data, evoked2.data, rtol=1e-4, atol=1e-20)
    assert_allclose(evoked.times, evoked2.times, rtol=1e-4, atol=1e-20)
Esempio n. 10
0
def test_evoked_resample():
    """Test for resampling of evoked data
    """
    # upsample, write it out, read it in
    ave = read_evoked(fname, 0)
    sfreq_normal = ave.info['sfreq']
    ave.resample(2 * sfreq_normal)
    write_evoked(op.join(tempdir, 'evoked.fif'), ave)
    ave_up = read_evoked(op.join(tempdir, 'evoked.fif'), 0)

    # compare it to the original
    ave_normal = read_evoked(fname, 0)

    # and compare the original to the downsampled upsampled version
    ave_new = read_evoked(op.join(tempdir, 'evoked.fif'), 0)
    ave_new.resample(sfreq_normal)

    assert_array_almost_equal(ave_normal.data, ave_new.data, 2)
    assert_array_almost_equal(ave_normal.times, ave_new.times)
    assert_equal(ave_normal.nave, ave_new.nave)
    assert_equal(ave_normal._aspect_kind, ave_new._aspect_kind)
    assert_equal(ave_normal.kind, ave_new.kind)
    assert_equal(ave_normal.last, ave_new.last)
    assert_equal(ave_normal.first, ave_new.first)

    # for the above to work, the upsampling just about had to, but
    # we'll add a couple extra checks anyway
    assert_true(len(ave_up.times) == 2 * len(ave_normal.times))
    assert_true(ave_up.data.shape[1] == 2 * ave_normal.data.shape[1])
Esempio n. 11
0
def test_evoked_to_nitime():
    """ Test to_nitime """
    aves = read_evoked(fname, [0, 1, 2, 3])
    evoked_ts = aves[0].to_nitime()
    assert_equal(evoked_ts.data, aves[0].data)

    picks2 = [1, 2]
    aves = read_evoked(fname, [0, 1, 2, 3])
    evoked_ts = aves[0].to_nitime(picks=picks2)
    assert_equal(evoked_ts.data, aves[0].data[picks2])
Esempio n. 12
0
def test_evoked_to_nitime():
    """ Test to_nitime """
    aves = read_evoked(fname, [0, 1, 2, 3])
    evoked_ts = aves[0].to_nitime()
    assert_equal(evoked_ts.data, aves[0].data)

    picks2 = [1, 2]
    aves = read_evoked(fname, [0, 1, 2, 3])
    evoked_ts = aves[0].to_nitime(picks=picks2)
    assert_equal(evoked_ts.data, aves[0].data[picks2])
Esempio n. 13
0
def test_evoked_detrend():
    """Test for detrending evoked data
    """
    ave = read_evoked(fname, 0)
    ave_normal = read_evoked(fname, 0)
    ave.detrend(0)
    ave_normal.data -= np.mean(ave_normal.data, axis=1)[:, np.newaxis]
    picks = pick_types(ave.info, meg=True, eeg=True, exclude='bads')
    assert_true(np.allclose(ave.data[picks], ave_normal.data[picks],
                            rtol=1e-8, atol=1e-16))
Esempio n. 14
0
def test_evoked_detrend():
    """Test for detrending evoked data
    """
    ave = read_evoked(fname, 0)
    ave_normal = read_evoked(fname, 0)
    ave.detrend(0)
    ave_normal.data -= np.mean(ave_normal.data, axis=1)[:, np.newaxis]
    picks = pick_types(ave.info, meg=True, eeg=True, exclude='bads')
    assert_true(np.allclose(ave.data[picks], ave_normal.data[picks],
                            rtol=1e-8, atol=1e-16))
Esempio n. 15
0
def test_io_multi_evoked():
    """Test IO for multiple evoked datasets
    """
    aves = read_evoked(fname, [0, 1, 2, 3])
    write_evoked('evoked.fif', aves)
    aves2 = read_evoked('evoked.fif', [0, 1, 2, 3])
    for [ave, ave2] in zip(aves, aves2):
        assert_array_almost_equal(ave.data, ave2.data)
        assert_array_almost_equal(ave.times, ave2.times)
        assert_equal(ave.nave, ave2.nave)
        assert_equal(ave.aspect_kind, ave2.aspect_kind)
        assert_equal(ave.last, ave2.last)
        assert_equal(ave.first, ave2.first)
Esempio n. 16
0
def test_io_evoked():
    """Test IO for evoked data
    """
    ave = read_evoked(fname)

    ave.crop(tmin=0)

    write_evoked('evoked.fif', ave)
    ave2 = read_evoked('evoked.fif')

    assert_array_almost_equal(ave.data, ave2.data)
    assert_array_almost_equal(ave.times, ave2.times)
    assert_equal(ave.nave, ave2.nave)
    assert_equal(ave.aspect_kind, ave2.aspect_kind)
    assert_equal(ave.last, ave2.last)
    assert_equal(ave.first, ave2.first)
def test_meg_field_interpolation_helmet():
    """Test interpolation of MEG field onto helmet
    """
    evoked = read_evoked(evoked_fname, setno='Left Auditory')
    info = evoked.info
    surf = get_meg_helmet_surf(info)
    # let's reduce the number of channels by a bunch to speed it up
    info['bads'] = info['ch_names'][:200]
    # bad ch_type
    assert_raises(ValueError, make_surface_mapping, info, surf, 'foo')
    # bad mode
    assert_raises(ValueError, make_surface_mapping, info, surf, 'meg',
                  mode='foo')
    # no picks
    evoked_eeg = pick_types_evoked(evoked, meg=False, eeg=True)
    assert_raises(RuntimeError, make_surface_mapping, evoked_eeg.info,
                  surf, 'meg')
    # bad surface def
    nn = surf['nn']
    del surf['nn']
    assert_raises(KeyError, make_surface_mapping, info, surf, 'meg')
    surf['nn'] = nn
    cf = surf['coord_frame']
    del surf['coord_frame']
    assert_raises(KeyError, make_surface_mapping, info, surf, 'meg')
    surf['coord_frame'] = cf
    # now do it
    data = make_surface_mapping(info, surf, 'meg', mode='fast')
    assert_array_equal(data.shape, (304, 106))  # data onto surf
Esempio n. 18
0
def test_io_evoked():
    """Test IO for evoked data (fif + gz) with integer and str args
    """
    ave = read_evokeds(fname, 0)

    write_evokeds(op.join(tempdir, 'evoked.fif'), ave)
    ave2 = read_evokeds(op.join(tempdir, 'evoked.fif'))[0]

    # This not being assert_array_equal due to windows rounding
    assert_true(np.allclose(ave.data, ave2.data, atol=1e-16, rtol=1e-3))
    assert_array_almost_equal(ave.times, ave2.times)
    assert_equal(ave.nave, ave2.nave)
    assert_equal(ave._aspect_kind, ave2._aspect_kind)
    assert_equal(ave.kind, ave2.kind)
    assert_equal(ave.last, ave2.last)
    assert_equal(ave.first, ave2.first)

    # test compressed i/o
    ave2 = read_evokeds(fname_gz, 0)
    assert_true(np.allclose(ave.data, ave2.data, atol=1e-16, rtol=1e-8))

    # test str access
    condition = 'Left Auditory'
    assert_raises(ValueError, read_evokeds, fname, condition, kind='stderr')
    assert_raises(ValueError,
                  read_evokeds,
                  fname,
                  condition,
                  kind='standard_error')
    ave3 = read_evokeds(fname, condition)
    assert_array_almost_equal(ave.data, ave3.data, 19)

    # test deprecation warning for read_evoked and write_evoked
    # XXX should be deleted for 0.9 release
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter('always')
        ave = read_evoked(fname, setno=0)
        assert_true(w[0].category == DeprecationWarning)
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter('always')
        write_evoked(op.join(tempdir, 'evoked.fif'), ave)
        assert_true(w[0].category == DeprecationWarning)

    # test read_evokeds and write_evokeds
    types = ['Left Auditory', 'Right Auditory', 'Left visual', 'Right visual']
    aves1 = read_evokeds(fname)
    aves2 = read_evokeds(fname, [0, 1, 2, 3])
    aves3 = read_evokeds(fname, types)
    write_evokeds(op.join(tempdir, 'evoked.fif'), aves1)
    aves4 = read_evokeds(op.join(tempdir, 'evoked.fif'))
    for aves in [aves2, aves3, aves4]:
        for [av1, av2] in zip(aves1, aves):
            assert_array_almost_equal(av1.data, av2.data)
            assert_array_almost_equal(av1.times, av2.times)
            assert_equal(av1.nave, av2.nave)
            assert_equal(av1.kind, av2.kind)
            assert_equal(av1._aspect_kind, av2._aspect_kind)
            assert_equal(av1.last, av2.last)
            assert_equal(av1.first, av2.first)
            assert_equal(av1.comment, av2.comment)
Esempio n. 19
0
def test_plot_topomap():
    """Testing topomap plotting
    """
    # evoked
    evoked = fiff.read_evoked(evoked_fname, 'Left Auditory',
                              baseline=(None, 0))
    evoked.plot_topomap(0.1, 'mag', layout=layout)
    plot_evoked_topomap(evoked, None, ch_type='mag')
    times = [0.1, 0.2]
    plot_evoked_topomap(evoked, times, ch_type='eeg')
    plot_evoked_topomap(evoked, times, ch_type='grad')
    plot_evoked_topomap(evoked, times, ch_type='planar1')
    plot_evoked_topomap(evoked, times, ch_type='planar2')
    with warnings.catch_warnings(True):  # delaunay triangulation warning
        plot_evoked_topomap(evoked, times, ch_type='mag', layout='auto')
    assert_raises(RuntimeError, plot_evoked_topomap, evoked, 0.1, 'mag',
                  proj='interactive')  # projs have already been applied
    evoked.proj = False  # let's fake it like they haven't been applied
    plot_evoked_topomap(evoked, 0.1, 'mag', proj='interactive')
    assert_raises(RuntimeError, plot_evoked_topomap, evoked, np.repeat(.1, 50))
    assert_raises(ValueError, plot_evoked_topomap, evoked, [-3e12, 15e6])

    # projs
    projs = read_proj(ecg_fname)[:7]
    plot_projs_topomap(projs)
    plt.close('all')
Esempio n. 20
0
def test_plot_topomap():
    """Testing topomap plotting
    """
    # evoked
    evoked = fiff.read_evoked(evoked_fname,
                              'Left Auditory',
                              baseline=(None, 0))
    evoked.plot_topomap(0.1, 'mag', layout=layout)
    plot_evoked_topomap(evoked, None, ch_type='mag')
    times = [0.1, 0.2]
    plot_evoked_topomap(evoked, times, ch_type='eeg')
    plot_evoked_topomap(evoked, times, ch_type='grad')
    plot_evoked_topomap(evoked, times, ch_type='planar1')
    plot_evoked_topomap(evoked, times, ch_type='planar2')
    with warnings.catch_warnings(True):  # delaunay triangulation warning
        plot_evoked_topomap(evoked, times, ch_type='mag', layout='auto')
    assert_raises(RuntimeError,
                  plot_evoked_topomap,
                  evoked,
                  0.1,
                  'mag',
                  proj='interactive')  # projs have already been applied
    evoked.proj = False  # let's fake it like they haven't been applied
    plot_evoked_topomap(evoked, 0.1, 'mag', proj='interactive')
    assert_raises(RuntimeError, plot_evoked_topomap, evoked, np.repeat(.1, 50))
    assert_raises(ValueError, plot_evoked_topomap, evoked, [-3e12, 15e6])

    # projs
    projs = read_proj(ecg_fname)[:7]
    plot_projs_topomap(projs)
    plt.close('all')
Esempio n. 21
0
def test_plot_topomap():
    """Test topomap plotting
    """
    # evoked
    warnings.simplefilter('always', UserWarning)
    with warnings.catch_warnings(record=True):
        evoked = fiff.read_evoked(evoked_fname, 'Left Auditory',
                                  baseline=(None, 0))
        evoked.plot_topomap(0.1, 'mag', layout=layout)
        plot_evoked_topomap(evoked, None, ch_type='mag')
        times = [0.1, 0.2]
        plot_evoked_topomap(evoked, times, ch_type='eeg')
        plot_evoked_topomap(evoked, times, ch_type='grad')
        plot_evoked_topomap(evoked, times, ch_type='planar1')
        plot_evoked_topomap(evoked, times, ch_type='planar2')
        plot_evoked_topomap(evoked, times, ch_type='grad', show_names=True)

        p = plot_evoked_topomap(evoked, times, ch_type='grad',
                                show_names=lambda x: x.replace('MEG', ''))
        subplot = [x for x in p.get_children() if
                   isinstance(x, matplotlib.axes.Subplot)][0]
        assert_true(all('MEG' not in x.get_text()
                        for x in subplot.get_children()
                        if isinstance(x, matplotlib.text.Text)))

        # Test title
        def get_texts(p):
            return [x.get_text() for x in p.get_children() if
                    isinstance(x, matplotlib.text.Text)]

        p = plot_evoked_topomap(evoked, times, ch_type='eeg')
        assert_equal(len(get_texts(p)), 0)
        p = plot_evoked_topomap(evoked, times, ch_type='eeg', title='Custom')
        texts = get_texts(p)
        assert_equal(len(texts), 1)
        assert_equal(texts[0], 'Custom')

        # delaunay triangulation warning
        with warnings.catch_warnings(record=True):
            plot_evoked_topomap(evoked, times, ch_type='mag', layout='auto')
        assert_raises(RuntimeError, plot_evoked_topomap, evoked, 0.1, 'mag',
                      proj='interactive')  # projs have already been applied
        evoked.proj = False  # let's fake it like they haven't been applied
        plot_evoked_topomap(evoked, 0.1, 'mag', proj='interactive')
        assert_raises(RuntimeError, plot_evoked_topomap, evoked,
                      np.repeat(.1, 50))
        assert_raises(ValueError, plot_evoked_topomap, evoked, [-3e12, 15e6])

        projs = read_proj(ecg_fname)
        projs = [p for p in projs if p['desc'].lower().find('eeg') < 0]
        plot_projs_topomap(projs)
        plt.close('all')
        for ch in evoked.info['chs']:
            if ch['coil_type'] == fiff.FIFF.FIFFV_COIL_EEG:
                if ch['eeg_loc'] is not None:
                    ch['eeg_loc'].fill(0)
                ch['loc'].fill(0)
        assert_raises(RuntimeError, plot_evoked_topomap, evoked,
                      times, ch_type='eeg')
 def compensate_mne(fname, comp):
     tmp_fname = '%s-%d.fif' % (fname[:-4], comp)
     cmd = [
         'mne_compensate_data', '--in', fname, '--out', tmp_fname, '--grad',
         str(comp)
     ]
     run_subprocess(cmd)
     return read_evoked(tmp_fname)
Esempio n. 23
0
def test_drop_channels_mixin():
    """Test channels-dropping functionality
    """
    evoked = read_evoked(fname, setno=0, proj=True)
    drop_ch = evoked.ch_names[:3]
    ch_names = evoked.ch_names[3:]
    evoked.drop_channels(drop_ch)
    assert_equal(ch_names, evoked.ch_names)
    assert_equal(len(ch_names), len(evoked.data))
Esempio n. 24
0
def test_drop_channels_mixin():
    """Test channels-dropping functionality
    """
    evoked = read_evoked(fname, setno=0, proj=True)
    drop_ch = evoked.ch_names[:3]
    ch_names = evoked.ch_names[3:]
    evoked.drop_channels(drop_ch)
    assert_equal(ch_names, evoked.ch_names)
    assert_equal(len(ch_names), len(evoked.data))
Esempio n. 25
0
def test_io_evoked():
    """Test IO for evoked data (fif + gz) with integer and str args
    """
    ave = read_evokeds(fname, 0)

    write_evokeds(op.join(tempdir, 'evoked.fif'), ave)
    ave2 = read_evokeds(op.join(tempdir, 'evoked.fif'))[0]

    # This not being assert_array_equal due to windows rounding
    assert_true(np.allclose(ave.data, ave2.data, atol=1e-16, rtol=1e-3))
    assert_array_almost_equal(ave.times, ave2.times)
    assert_equal(ave.nave, ave2.nave)
    assert_equal(ave._aspect_kind, ave2._aspect_kind)
    assert_equal(ave.kind, ave2.kind)
    assert_equal(ave.last, ave2.last)
    assert_equal(ave.first, ave2.first)

    # test compressed i/o
    ave2 = read_evokeds(fname_gz, 0)
    assert_true(np.allclose(ave.data, ave2.data, atol=1e-16, rtol=1e-8))

    # test str access
    condition = 'Left Auditory'
    assert_raises(ValueError, read_evokeds, fname, condition, kind='stderr')
    assert_raises(ValueError, read_evokeds, fname, condition,
                  kind='standard_error')
    ave3 = read_evokeds(fname, condition)
    assert_array_almost_equal(ave.data, ave3.data, 19)

    # test deprecation warning for read_evoked and write_evoked
    # XXX should be deleted for 0.9 release
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter('always')
        ave = read_evoked(fname, setno=0)
        assert_true(w[0].category == DeprecationWarning)
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter('always')
        write_evoked(op.join(tempdir, 'evoked.fif'), ave)
        assert_true(w[0].category == DeprecationWarning)

    # test read_evokeds and write_evokeds
    types = ['Left Auditory', 'Right Auditory', 'Left visual', 'Right visual']
    aves1 = read_evokeds(fname)
    aves2 = read_evokeds(fname, [0, 1, 2, 3])
    aves3 = read_evokeds(fname, types)
    write_evokeds(op.join(tempdir, 'evoked.fif'), aves1)
    aves4 = read_evokeds(op.join(tempdir, 'evoked.fif'))
    for aves in [aves2, aves3, aves4]:
        for [av1, av2] in zip(aves1, aves):
            assert_array_almost_equal(av1.data, av2.data)
            assert_array_almost_equal(av1.times, av2.times)
            assert_equal(av1.nave, av2.nave)
            assert_equal(av1.kind, av2.kind)
            assert_equal(av1._aspect_kind, av2._aspect_kind)
            assert_equal(av1.last, av2.last)
            assert_equal(av1.first, av2.first)
            assert_equal(av1.comment, av2.comment)
Esempio n. 26
0
def test_as_data_frame():
    """Test evoked Pandas exporter"""
    ave = read_evoked(fname, [0])[0]
    assert_raises(ValueError, ave.as_data_frame, picks=np.arange(400))
    df = ave.as_data_frame()
    assert_true((df.columns == ave.ch_names).all())
    df = ave.as_data_frame(use_time_index=False)
    assert_true('time' in df.columns)
    assert_array_equal(df.values[:, 1], ave.data[0] * 1e13)
    assert_array_equal(df.values[:, 3], ave.data[2] * 1e15)
Esempio n. 27
0
def test_io_multi_evoked():
    """Test IO for multiple evoked datasets
    """
    aves = read_evoked(fname, [0, 1, 2, 3])
    write_evoked(op.join(tempdir, 'evoked.fif'), aves)
    aves2 = read_evoked(op.join(tempdir, 'evoked.fif'), [0, 1, 2, 3])
    types = ['Left Auditory', 'Right Auditory', 'Left visual', 'Right visual']
    aves3 = read_evoked(op.join(tempdir, 'evoked.fif'), types)
    for aves_new in [aves2, aves3]:
        for [ave, ave_new] in zip(aves, aves_new):
            assert_array_almost_equal(ave.data, ave_new.data)
            assert_array_almost_equal(ave.times, ave_new.times)
            assert_equal(ave.nave, ave_new.nave)
            assert_equal(ave.kind, ave_new.kind)
            assert_equal(ave._aspect_kind, ave_new._aspect_kind)
            assert_equal(ave.last, ave_new.last)
            assert_equal(ave.first, ave_new.first)
    # this should throw an error since there are mulitple datasets
    assert_raises(ValueError, read_evoked, fname)
Esempio n. 28
0
def test_as_data_frame():
    """Test Pandas exporter"""
    ave = read_evoked(fname, [0])[0]
    assert_raises(ValueError, ave.as_data_frame, picks=np.arange(400))
    df = ave.as_data_frame()
    assert_true((df.columns == ave.ch_names).all())
    df = ave.as_data_frame(use_time_index=False)
    assert_true('time' in df.columns)
    assert_array_equal(df.values[:, 1], ave.data[0] * 1e13)
    assert_array_equal(df.values[:, 3], ave.data[2] * 1e15)
Esempio n. 29
0
def test_io_multi_evoked():
    """Test IO for multiple evoked datasets
    """
    aves = read_evoked(fname, [0, 1, 2, 3])
    write_evoked(op.join(tempdir, 'evoked.fif'), aves)
    aves2 = read_evoked(op.join(tempdir, 'evoked.fif'), [0, 1, 2, 3])
    types = ['Left Auditory', 'Right Auditory', 'Left visual', 'Right visual']
    aves3 = read_evoked(op.join(tempdir, 'evoked.fif'), types)
    for aves_new in [aves2, aves3]:
        for [ave, ave_new] in zip(aves, aves_new):
            assert_array_almost_equal(ave.data, ave_new.data)
            assert_array_almost_equal(ave.times, ave_new.times)
            assert_equal(ave.nave, ave_new.nave)
            assert_equal(ave.kind, ave_new.kind)
            assert_equal(ave._aspect_kind, ave_new._aspect_kind)
            assert_equal(ave.last, ave_new.last)
            assert_equal(ave.first, ave_new.first)
    # this should throw an error since there are mulitple datasets
    assert_raises(ValueError, read_evoked, fname)
Esempio n. 30
0
def test_equalize_channels():
    """Test equalization of channels
    """
    evoked1 = read_evoked(fname, setno=0, proj=True)
    evoked2 = evoked1.copy()
    ch_names = evoked1.ch_names[2:]
    evoked1.drop_channels(evoked1.ch_names[:1])
    evoked2.drop_channels(evoked2.ch_names[1:2])
    my_comparison = [evoked1, evoked2]
    equalize_channels(my_comparison)
    for e in my_comparison:
        assert_equal(ch_names, e.ch_names)
Esempio n. 31
0
def test_equalize_channels():
    """Test equalization of channels
    """
    evoked1 = read_evoked(fname, setno=0, proj=True)
    evoked2 = evoked1.copy()
    ch_names = evoked1.ch_names[2:]
    evoked1.drop_channels(evoked1.ch_names[:1])
    evoked2.drop_channels(evoked2.ch_names[1:2])
    my_comparison = [evoked1, evoked2]
    equalize_channels(my_comparison)
    for e in my_comparison:
        assert_equal(ch_names, e.ch_names)
def extract_data(s, setno, ch_names):
	print "hello"
	data = fiff.read_evoked(s,setno=setno,baseline=(None, 0))
	sel = [data['info']['ch_names'].index(c) for c in ch_names]
	print "hello3"
	times = data['evoked']['times']
	mask = times > 0
	print "-------------- " + str(data['info']['bads'])
	epochs = data['evoked']['epochs'][sel][:, mask]
	bads = [k for k, _ in enumerate(sel) if ch_names[k] in data['info']['bads']]
	bads_name = [ch_names[k] for k, _ in enumerate(sel) if ch_names[k] in data['info']['bads']]
	return epochs, times[mask], bads, bads_name
Esempio n. 33
0
def test_io_evoked():
    """Test IO for evoked data (fif + gz)
    """
    ave = read_evoked(fname)

    ave.crop(tmin=0)

    write_evoked('evoked.fif', ave)
    ave2 = read_evoked('evoked.fif')

    assert_array_almost_equal(ave.data, ave2.data)
    assert_array_almost_equal(ave.times, ave2.times)
    assert_equal(ave.nave, ave2.nave)
    assert_equal(ave.aspect_kind, ave2.aspect_kind)
    assert_equal(ave.last, ave2.last)
    assert_equal(ave.first, ave2.first)

    # test compressed i/o
    ave2 = read_evoked(fname_gz)
    ave2.crop(tmin=0)
    assert_array_equal(ave.data, ave2.data)
Esempio n. 34
0
def test_plot_evoked_field():
    trans_fname = op.join(data_dir, 'MEG', 'sample',
                          'sample_audvis_raw-trans.fif')
    setno = 'Left Auditory'
    evoked = fiff.read_evoked(evoked_fname, setno=setno,
                              baseline=(-0.2, 0.0))
    evoked = pick_channels_evoked(evoked, evoked.ch_names[::10])  # speed
    for t in ['meg', None]:
        maps = make_field_map(evoked, trans_fname=trans_fname,
                              subject='sample', subjects_dir=subjects_dir,
                              n_jobs=1, ch_type=t)

        evoked.plot_field(maps, time=0.1)
Esempio n. 35
0
def test_plot_evoked_field():
    trans_fname = op.join(data_dir, 'MEG', 'sample',
                          'sample_audvis_raw-trans.fif')
    setno = 'Left Auditory'
    evoked = fiff.read_evoked(evoked_fname, setno=setno, baseline=(-0.2, 0.0))
    evoked = pick_channels_evoked(evoked, evoked.ch_names[::10])  # speed
    for t in ['meg', None]:
        maps = make_field_map(evoked,
                              trans_fname=trans_fname,
                              subject='sample',
                              subjects_dir=subjects_dir,
                              n_jobs=1,
                              ch_type=t)

        evoked.plot_field(maps, time=0.1)
Esempio n. 36
0
def extract_data(s, setno, ch_names):
    print "hello"
    data = fiff.read_evoked(s, setno=setno, baseline=(None, 0))
    sel = [data['info']['ch_names'].index(c) for c in ch_names]
    print "hello3"
    times = data['evoked']['times']
    mask = times > 0
    print "-------------- " + str(data['info']['bads'])
    epochs = data['evoked']['epochs'][sel][:, mask]
    bads = [
        k for k, _ in enumerate(sel) if ch_names[k] in data['info']['bads']
    ]
    bads_name = [
        ch_names[k] for k, _ in enumerate(sel)
        if ch_names[k] in data['info']['bads']
    ]
    return epochs, times[mask], bads, bads_name
Esempio n. 37
0
def test_evoked_standard_error():
    """Test calculation and read/write of standard error
    """
    epochs = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks,
                    baseline=(None, 0))
    evoked = [epochs.average(), epochs.standard_error()]
    fiff.write_evoked('evoked.fif', evoked)
    evoked2 = fiff.read_evoked('evoked.fif', [0, 1])
    assert_true(evoked2[0].aspect_kind == fiff.FIFF.FIFFV_ASPECT_AVERAGE)
    assert_true(evoked2[1].aspect_kind == fiff.FIFF.FIFFV_ASPECT_STD_ERR)
    for ave, ave2 in zip(evoked, evoked2):
        assert_array_almost_equal(ave.data, ave2.data)
        assert_array_almost_equal(ave.times, ave2.times)
        assert_equal(ave.nave, ave2.nave)
        assert_equal(ave.aspect_kind, ave2.aspect_kind)
        assert_equal(ave.last, ave2.last)
        assert_equal(ave.first, ave2.first)
Esempio n. 38
0
def test_plot_topomap():
    """Testing topomap plotting
    """
    # evoked
    evoked = fiff.read_evoked(evoked_fname, "Left Auditory", baseline=(None, 0))
    evoked.plot_topomap(0.1, "mag", layout=layout)
    plot_evoked_topomap(evoked, None, ch_type="mag")
    times = [0.1, 0.2]
    plot_evoked_topomap(evoked, times, ch_type="grad")
    plot_evoked_topomap(evoked, times, ch_type="planar1")
    plot_evoked_topomap(evoked, times, ch_type="mag", layout="auto")
    plot_evoked_topomap(evoked, 0.1, "mag", proj="interactive")
    assert_raises(RuntimeError, plot_evoked_topomap, evoked, np.repeat(0.1, 50))
    assert_raises(ValueError, plot_evoked_topomap, evoked, [-3e12, 15e6])

    # projs
    projs = read_proj(ecg_fname)[:7]
    plot_projs_topomap(projs)
Esempio n. 39
0
def test_get_peak():
    """Test peak getter
    """

    evoked = read_evoked(fname, setno=0, proj=True)
    assert_raises(ValueError, evoked.get_peak, ch_type='mag', tmin=1)
    assert_raises(ValueError, evoked.get_peak, ch_type='mag', tmax=0.9)
    assert_raises(ValueError, evoked.get_peak, ch_type='mag', tmin=0.02, 
                  tmax=0.01)
    assert_raises(ValueError, evoked.get_peak, ch_type='mag', mode='foo')
    assert_raises(RuntimeError, evoked.get_peak, ch_type=None, mode='foo')
    assert_raises(ValueError, evoked.get_peak, ch_type='misc', mode='foo')

    ch_idx, time_idx = evoked.get_peak(ch_type='mag')
    assert_true(ch_idx in evoked.ch_names)
    assert_true(time_idx in evoked.times)

    ch_idx, time_idx = evoked.get_peak(ch_type='mag',
                                       time_as_index=True)
    assert_true(time_idx < len(evoked.times))

    data = np.array([[0., 1.,  2.],
                     [0., -3.,  0]])

    times = np.array([.1, .2, .3])

    ch_idx, time_idx = _get_peak(data, times, mode='abs')
    assert_equal(ch_idx, 1)
    assert_equal(time_idx, 1)

    ch_idx, time_idx = _get_peak(data * -1, times, mode='neg')
    assert_equal(ch_idx, 0)
    assert_equal(time_idx, 2)

    ch_idx, time_idx = _get_peak(data, times, mode='pos')
    assert_equal(ch_idx, 0)
    assert_equal(time_idx, 2)

    assert_raises(ValueError, _get_peak, data + 1e3, times, mode='neg')
    assert_raises(ValueError, _get_peak, data - 1e3, times, mode='pos')

    
Esempio n. 40
0
def test_get_peak():
    """Test peak getter
    """

    evoked = read_evoked(fname, setno=0, proj=True)
    assert_raises(ValueError, evoked.get_peak, ch_type='mag', tmin=1)
    assert_raises(ValueError, evoked.get_peak, ch_type='mag', tmax=0.9)
    assert_raises(ValueError,
                  evoked.get_peak,
                  ch_type='mag',
                  tmin=0.02,
                  tmax=0.01)
    assert_raises(ValueError, evoked.get_peak, ch_type='mag', mode='foo')
    assert_raises(RuntimeError, evoked.get_peak, ch_type=None, mode='foo')
    assert_raises(ValueError, evoked.get_peak, ch_type='misc', mode='foo')

    ch_idx, time_idx = evoked.get_peak(ch_type='mag')
    assert_true(ch_idx in evoked.ch_names)
    assert_true(time_idx in evoked.times)

    ch_idx, time_idx = evoked.get_peak(ch_type='mag', time_as_index=True)
    assert_true(time_idx < len(evoked.times))

    data = np.array([[0., 1., 2.], [0., -3., 0]])

    times = np.array([.1, .2, .3])

    ch_idx, time_idx = _get_peak(data, times, mode='abs')
    assert_equal(ch_idx, 1)
    assert_equal(time_idx, 1)

    ch_idx, time_idx = _get_peak(data * -1, times, mode='neg')
    assert_equal(ch_idx, 0)
    assert_equal(time_idx, 2)

    ch_idx, time_idx = _get_peak(data, times, mode='pos')
    assert_equal(ch_idx, 0)
    assert_equal(time_idx, 2)

    assert_raises(ValueError, _get_peak, data + 1e3, times, mode='neg')
    assert_raises(ValueError, _get_peak, data - 1e3, times, mode='pos')
def test_make_field_map_eeg():
    """Test interpolation of EEG field onto head
    """
    trans = read_trans(trans_fname)
    evoked = read_evoked(evoked_fname, setno='Left Auditory')
    evoked.info['bads'] = ['MEG 2443', 'EEG 053']  # add some bads
    surf = get_head_surf('sample', subjects_dir=subjects_dir)
    # we must have trans if surface is in MRI coords
    assert_raises(ValueError, _make_surface_mapping, evoked.info, surf, 'eeg')

    evoked = pick_types_evoked(evoked, meg=False, eeg=True)
    fmd = make_field_map(evoked, trans_fname=trans_fname,
                         subject='sample', subjects_dir=subjects_dir)

    # trans is necessary for EEG only
    assert_raises(RuntimeError, make_field_map, evoked, trans_fname=None,
                  subject='sample', subjects_dir=subjects_dir)

    fmd = make_field_map(evoked, trans_fname=trans_fname,
                         subject='sample', subjects_dir=subjects_dir)
    assert_true(len(fmd) == 1)
    assert_array_equal(fmd[0]['data'].shape, (2562, 59))  # maps data onto surf
    assert_true(len(fmd[0]['ch_names']), 59)
Esempio n. 42
0
def test_plot_topomap():
    """Test topomap plotting
    """
    # evoked
    warnings.simplefilter('always', UserWarning)
    with warnings.catch_warnings(record=True):
        evoked = fiff.read_evoked(evoked_fname, 'Left Auditory',
                                  baseline=(None, 0))
        evoked.plot_topomap(0.1, 'mag', layout=layout)
        plot_evoked_topomap(evoked, None, ch_type='mag')
        times = [0.1, 0.2]
        plot_evoked_topomap(evoked, times, ch_type='eeg')
        plot_evoked_topomap(evoked, times, ch_type='grad')
        plot_evoked_topomap(evoked, times, ch_type='planar1')
        plot_evoked_topomap(evoked, times, ch_type='planar2')
        with warnings.catch_warnings(record=True):  # delaunay triangulation warning
            plot_evoked_topomap(evoked, times, ch_type='mag', layout='auto')
        assert_raises(RuntimeError, plot_evoked_topomap, evoked, 0.1, 'mag',
                      proj='interactive')  # projs have already been applied
        evoked.proj = False  # let's fake it like they haven't been applied
        plot_evoked_topomap(evoked, 0.1, 'mag', proj='interactive')
        assert_raises(RuntimeError, plot_evoked_topomap, evoked,
                      np.repeat(.1, 50))
        assert_raises(ValueError, plot_evoked_topomap, evoked, [-3e12, 15e6])

        projs = read_proj(ecg_fname)
        projs = [p for p in projs if p['desc'].lower().find('eeg') < 0]
        plot_projs_topomap(projs)
        plt.close('all')
        for ch in evoked.info['chs']:
            if ch['coil_type'] == fiff.FIFF.FIFFV_COIL_EEG:
                if ch['eeg_loc'] is not None:
                    ch['eeg_loc'].fill(0)
                ch['loc'].fill(0)
        assert_raises(RuntimeError, plot_evoked_topomap, evoked,
                      times, ch_type='eeg')
def test_make_field_map_meg():
    """Test interpolation of MEG field onto helmet
    """
    evoked = read_evoked(evoked_fname, setno='Left Auditory')
    info = evoked.info
    surf = get_meg_helmet_surf(info)
    # let's reduce the number of channels by a bunch to speed it up
    info['bads'] = info['ch_names'][:200]
    # bad ch_type
    assert_raises(ValueError, _make_surface_mapping, info, surf, 'foo')
    # bad mode
    assert_raises(ValueError, _make_surface_mapping, info, surf, 'meg',
                  mode='foo')
    # no picks
    evoked_eeg = pick_types_evoked(evoked, meg=False, eeg=True)
    assert_raises(RuntimeError, _make_surface_mapping, evoked_eeg.info,
                  surf, 'meg')
    # bad surface def
    nn = surf['nn']
    del surf['nn']
    assert_raises(KeyError, _make_surface_mapping, info, surf, 'meg')
    surf['nn'] = nn
    cf = surf['coord_frame']
    del surf['coord_frame']
    assert_raises(KeyError, _make_surface_mapping, info, surf, 'meg')
    surf['coord_frame'] = cf

    # now do it with make_field_map
    evoked = pick_types_evoked(evoked, meg=True, eeg=False)
    fmd = make_field_map(evoked, trans_fname=None,
                         subject='sample', subjects_dir=subjects_dir)
    assert_true(len(fmd) == 1)
    assert_array_equal(fmd[0]['data'].shape, (304, 106))  # maps data onto surf
    assert_true(len(fmd[0]['ch_names']), 106)

    assert_raises(ValueError, make_field_map, evoked, ch_type='foobar')
Esempio n. 44
0
def test_shift_time_evoked():
    """ Test for shifting of time scale
    """
    # Shift backward
    ave = read_evoked(fname, 0)
    ave.shift_time(-0.1, relative=True)
    write_evoked(op.join(tempdir, 'evoked.fif'), ave)

    # Shift forward twice the amount
    ave_bshift = read_evoked(op.join(tempdir, 'evoked.fif'), 0)
    ave_bshift.shift_time(0.2, relative=True)
    write_evoked(op.join(tempdir, 'evoked.fif'), ave_bshift)

    # Shift backward again
    ave_fshift = read_evoked(op.join(tempdir, 'evoked.fif'), 0)
    ave_fshift.shift_time(-0.1, relative=True)
    write_evoked(op.join(tempdir, 'evoked.fif'), ave_fshift)

    ave_normal = read_evoked(fname, 0)
    ave_relative = read_evoked(op.join(tempdir, 'evoked.fif'), 0)

    assert_true(
        np.allclose(ave_normal.data, ave_relative.data, atol=1e-16, rtol=1e-3))
    assert_array_almost_equal(ave_normal.times, ave_relative.times, 10)

    assert_equal(ave_normal.last, ave_relative.last)
    assert_equal(ave_normal.first, ave_relative.first)

    # Absolute time shift
    ave = read_evoked(fname, 0)
    ave.shift_time(-0.3, relative=False)
    write_evoked(op.join(tempdir, 'evoked.fif'), ave)

    ave_absolute = read_evoked(op.join(tempdir, 'evoked.fif'), 0)

    assert_true(
        np.allclose(ave_normal.data, ave_absolute.data, atol=1e-16, rtol=1e-3))
    assert_equal(ave_absolute.first, int(-0.3 * ave.info['sfreq']))
Esempio n. 45
0
def test_shift_time_evoked():
    """ Test for shifting of time scale
    """
    # Shift backward
    ave = read_evoked(fname, 0)
    ave.shift_time(-0.1, relative=True)
    write_evoked(op.join(tempdir, 'evoked.fif'), ave)

    # Shift forward twice the amount
    ave_bshift = read_evoked(op.join(tempdir, 'evoked.fif'), 0)
    ave_bshift.shift_time(0.2, relative=True)
    write_evoked(op.join(tempdir, 'evoked.fif'), ave_bshift)

    # Shift backward again
    ave_fshift = read_evoked(op.join(tempdir, 'evoked.fif'), 0)
    ave_fshift.shift_time(-0.1, relative=True)
    write_evoked(op.join(tempdir, 'evoked.fif'), ave_fshift)

    ave_normal = read_evoked(fname, 0)
    ave_relative = read_evoked(op.join(tempdir, 'evoked.fif'), 0)

    assert_true(np.allclose(ave_normal.data, ave_relative.data,
                            atol=1e-16, rtol=1e-3))
    assert_array_almost_equal(ave_normal.times, ave_relative.times, 10)

    assert_equal(ave_normal.last, ave_relative.last)
    assert_equal(ave_normal.first, ave_relative.first)

    # Absolute time shift
    ave = read_evoked(fname, 0)
    ave.shift_time(-0.3, relative=False)
    write_evoked(op.join(tempdir, 'evoked.fif'), ave)

    ave_absolute = read_evoked(op.join(tempdir, 'evoked.fif'), 0)

    assert_true(np.allclose(ave_normal.data, ave_absolute.data,
                            atol=1e-16, rtol=1e-3))
    assert_equal(ave_absolute.first, int(-0.3 * ave.info['sfreq']))
Esempio n. 46
0
fname_cov = op.join(data_path, 'MEG', 'sample', 'sample_audvis-cov.fif')
fname_fwd = op.join(data_path, 'MEG', 'sample',
                            'sample_audvis-meg-oct-6-fwd.fif')
label = 'Aud-rh'
fname_label = op.join(data_path, 'MEG', 'sample', 'labels', '%s.label' % label)

evoked = fiff.Evoked(fname_data, setno=1, baseline=(None, 0))

# Read noise covariance matrix
cov = read_cov(fname_cov)

# Handling average file
setno = 0
loose = None

evoked = fiff.read_evoked(fname_data, setno=setno, baseline=(None, 0))
evoked.crop(tmin=0.08, tmax=0.12)

# Handling forward solution
forward = read_forward_solution(fname_fwd, force_fixed=True)
label = read_label(fname_label)


def test_MxNE_inverse():
    """Test MxNE inverse computation"""
    alpha = 60  # spatial regularization parameter
    stc = mixed_norm(evoked, forward, cov, alpha, loose=None, depth=0.9,
                     maxit=500, tol=1e-4, active_set_size=10)

    assert_array_almost_equal(stc.times, evoked.times, 5)
    assert_true(stc.vertno[1][0] in label.vertices)
Esempio n. 47
0
def test_mxne_inverse():
    """Test (TF-)MxNE inverse computation"""
    # Handling forward solution
    evoked = fiff.Evoked(fname_data, setno=1, baseline=(None, 0))

    # Read noise covariance matrix
    cov = read_cov(fname_cov)

    # Handling average file
    setno = 0
    loose = None
    depth = 0.9

    evoked = fiff.read_evoked(fname_data, setno=setno, baseline=(None, 0))
    evoked.crop(tmin=-0.1, tmax=0.4)

    evoked_l21 = copy.deepcopy(evoked)
    evoked_l21.crop(tmin=0.08, tmax=0.1)
    label = read_label(fname_label)
    weights_min = 0.5
    forward = read_forward_solution(fname_fwd,
                                    force_fixed=False,
                                    surf_ori=True)

    # Reduce source space to make test computation faster
    inverse_operator = make_inverse_operator(evoked.info,
                                             forward,
                                             cov,
                                             loose=loose,
                                             depth=depth,
                                             fixed=True)
    stc_dspm = apply_inverse(evoked_l21,
                             inverse_operator,
                             lambda2=1. / 9.,
                             method='dSPM')
    stc_dspm.data[np.abs(stc_dspm.data) < 12] = 0.0
    stc_dspm.data[np.abs(stc_dspm.data) >= 12] = 1.

    # MxNE tests
    alpha = 60  # spatial regularization parameter

    stc_prox = mixed_norm(evoked_l21,
                          forward,
                          cov,
                          alpha,
                          loose=None,
                          depth=0.9,
                          maxit=1000,
                          tol=1e-8,
                          active_set_size=10,
                          solver='prox')
    stc_cd = mixed_norm(evoked_l21,
                        forward,
                        cov,
                        alpha,
                        loose=None,
                        depth=0.9,
                        maxit=1000,
                        tol=1e-8,
                        active_set_size=10,
                        solver='cd')
    assert_array_almost_equal(stc_prox.times, evoked_l21.times, 5)
    assert_array_almost_equal(stc_cd.times, evoked_l21.times, 5)
    assert_array_almost_equal(stc_prox.data, stc_cd.data, 5)
    assert_true(stc_prox.vertno[1][0] in label.vertices)
    assert_true(stc_cd.vertno[1][0] in label.vertices)

    stc, _ = mixed_norm(evoked_l21,
                        forward,
                        cov,
                        alpha,
                        loose=None,
                        depth=depth,
                        maxit=500,
                        tol=1e-4,
                        active_set_size=10,
                        weights=stc_dspm,
                        weights_min=weights_min,
                        return_residual=True)

    assert_array_almost_equal(stc.times, evoked_l21.times, 5)
    assert_true(stc.vertno[1][0] in label.vertices)

    # Do with TF-MxNE for test memory savings
    alpha_space = 60.  # spatial regularization parameter
    alpha_time = 1.  # temporal regularization parameter

    stc, _ = tf_mixed_norm(evoked,
                           forward,
                           cov,
                           alpha_space,
                           alpha_time,
                           loose=loose,
                           depth=depth,
                           maxit=100,
                           tol=1e-4,
                           tstep=4,
                           wsize=16,
                           window=0.1,
                           weights=stc_dspm,
                           weights_min=weights_min,
                           return_residual=True)

    assert_array_almost_equal(stc.times, evoked.times, 5)
    assert_true(stc.vertno[1][0] in label.vertices)
Esempio n. 48
0
fname_cov = op.join(data_path, 'MEG', 'sample', 'sample_audvis-cov.fif')
fname_fwd = op.join(data_path, 'MEG', 'sample',
                    'sample_audvis-meg-oct-6-fwd.fif')
label = 'Aud-rh'
fname_label = op.join(data_path, 'MEG', 'sample', 'labels', '%s.label' % label)

evoked = fiff.Evoked(fname_data, setno=1, baseline=(None, 0))

# Read noise covariance matrix
cov = read_cov(fname_cov)

# Handling average file
setno = 0
loose = None

evoked = fiff.read_evoked(fname_data, setno=setno, baseline=(None, 0))
evoked.crop(tmin=0.08, tmax=0.12)

# Handling forward solution
forward = read_forward_solution(fname_fwd, force_fixed=True)
label = read_label(fname_label)


def test_MxNE_inverse():
    """Test MxNE inverse computation"""
    alpha = 60  # spatial regularization parameter
    stc = mixed_norm(evoked,
                     forward,
                     cov,
                     alpha,
                     loose=None,
#
# License: BSD (3-clause)

print __doc__

import os
import mne
from mne import fiff

fname = os.environ['MNE_SAMPLE_DATASET_PATH']
fname += '/MEG/sample/sample_audvis-ave.fif'
cov_fname = os.environ['MNE_SAMPLE_DATASET_PATH']
cov_fname += '/MEG/sample/sample_audvis-cov.fif'

# Reading
ave = fiff.read_evoked(fname, setno=0, baseline=(None, 0))
cov = mne.Covariance()
cov.load(cov_fname)

ave_whiten, W = cov.whiten_evoked(ave)

bads = ave_whiten['info']['bads']
ind_meg_grad = fiff.pick_types(ave['info'], meg='grad', exclude=bads)
ind_meg_mag = fiff.pick_types(ave['info'], meg='mag', exclude=bads)
ind_eeg = fiff.pick_types(ave['info'], meg=False, eeg=True, exclude=bads)

###############################################################################
# Show result
import pylab as pl
pl.clf()
pl.subplot(3, 1, 1)
Esempio n. 50
0
def test_mxne_inverse():
    """Test (TF-)MxNE inverse computation"""
    # Handling forward solution
    evoked = fiff.Evoked(fname_data, setno=1, baseline=(None, 0))

    # Read noise covariance matrix
    cov = read_cov(fname_cov)

    # Handling average file
    setno = 0
    loose = None
    depth = 0.9

    evoked = fiff.read_evoked(fname_data, setno=setno, baseline=(None, 0))
    evoked.crop(tmin=-0.1, tmax=0.4)

    evoked_l21 = copy.deepcopy(evoked)
    evoked_l21.crop(tmin=0.08, tmax=0.1)
    label = read_label(fname_label)
    weights_min = 0.5
    forward = read_forward_solution(fname_fwd, force_fixed=False,
                                    surf_ori=True)

    # Reduce source space to make test computation faster
    inverse_operator = make_inverse_operator(evoked.info, forward, cov,
                                             loose=loose, depth=depth,
                                             fixed=True)
    stc_dspm = apply_inverse(evoked_l21, inverse_operator, lambda2=1. / 9.,
                             method='dSPM')
    stc_dspm.data[np.abs(stc_dspm.data) < 12] = 0.0
    stc_dspm.data[np.abs(stc_dspm.data) >= 12] = 1.

    # MxNE tests
    alpha = 60  # spatial regularization parameter

    stc_prox = mixed_norm(evoked_l21, forward, cov, alpha, loose=None,
                          depth=0.9, maxit=1000, tol=1e-8, active_set_size=10,
                          solver='prox')
    stc_cd = mixed_norm(evoked_l21, forward, cov, alpha, loose=None,
                        depth=0.9, maxit=1000, tol=1e-8, active_set_size=10,
                        solver='cd')
    assert_array_almost_equal(stc_prox.times, evoked_l21.times, 5)
    assert_array_almost_equal(stc_cd.times, evoked_l21.times, 5)
    assert_array_almost_equal(stc_prox.data, stc_cd.data, 5)
    assert_true(stc_prox.vertno[1][0] in label.vertices)
    assert_true(stc_cd.vertno[1][0] in label.vertices)

    stc, _ = mixed_norm(evoked_l21, forward, cov, alpha, loose=None,
                        depth=depth, maxit=500, tol=1e-4, active_set_size=10,
                        weights=stc_dspm, weights_min=weights_min,
                        return_residual=True)

    assert_array_almost_equal(stc.times, evoked_l21.times, 5)
    assert_true(stc.vertno[1][0] in label.vertices)

    # Do with TF-MxNE for test memory savings
    alpha_space = 60.  # spatial regularization parameter
    alpha_time = 1.  # temporal regularization parameter

    stc, _ = tf_mixed_norm(evoked, forward, cov, alpha_space, alpha_time,
                           loose=loose, depth=depth, maxit=100, tol=1e-4,
                           tstep=4, wsize=16, window=0.1, weights=stc_dspm,
                           weights_min=weights_min, return_residual=True)

    assert_array_almost_equal(stc.times, evoked.times, 5)
    assert_true(stc.vertno[1][0] in label.vertices)
from mne import fiff
from mne.datasets import sample
from mne.inverse_sparse import mixed_norm
from mne.minimum_norm import make_inverse_operator, apply_inverse
from mne.viz import plot_sparse_source_estimates

data_path = sample.data_path()
fwd_fname = data_path + '/MEG/sample/sample_audvis-meg-eeg-oct-6-fwd.fif'
ave_fname = data_path + '/MEG/sample/sample_audvis-ave.fif'
cov_fname = data_path + '/MEG/sample/sample_audvis-cov.fif'

# Read noise covariance matrix
cov = mne.read_cov(cov_fname)
# Handling average file
setno = 0
evoked = fiff.read_evoked(ave_fname, setno=setno, baseline=(None, 0))
evoked.crop(tmin=0, tmax=0.3)
# Handling forward solution
forward = mne.read_forward_solution(fwd_fname, surf_ori=True)

cov = mne.cov.regularize(cov, evoked.info)

import matplotlib.pyplot as plt
plt.figure()
ylim = dict(eeg=[-10, 10], grad=[-400, 400], mag=[-600, 600])
evoked.plot(ylim=ylim, proj=True)

###############################################################################
# Run solver
alpha = 70  # regularization parameter between 0 and 100 (100 is high)
loose, depth = 0.2, 0.9  # loose orientation & depth weighting
Esempio n. 52
0
def test_plot_topomap():
    """Test topomap plotting
    """
    # evoked
    warnings.simplefilter('always', UserWarning)
    with warnings.catch_warnings(record=True):
        evoked = fiff.read_evoked(evoked_fname,
                                  'Left Auditory',
                                  baseline=(None, 0))
        evoked.plot_topomap(0.1, 'mag', layout=layout)
        plot_evoked_topomap(evoked, None, ch_type='mag')
        times = [0.1, 0.2]
        plot_evoked_topomap(evoked, times, ch_type='eeg')
        plot_evoked_topomap(evoked, times, ch_type='grad')
        plot_evoked_topomap(evoked, times, ch_type='planar1')
        plot_evoked_topomap(evoked, times, ch_type='planar2')
        plot_evoked_topomap(evoked, times, ch_type='grad', show_names=True)

        p = plot_evoked_topomap(evoked,
                                times,
                                ch_type='grad',
                                show_names=lambda x: x.replace('MEG', ''))
        subplot = [
            x for x in p.get_children()
            if isinstance(x, matplotlib.axes.Subplot)
        ][0]
        assert_true(
            all('MEG' not in x.get_text() for x in subplot.get_children()
                if isinstance(x, matplotlib.text.Text)))

        # Test title
        def get_texts(p):
            return [
                x.get_text() for x in p.get_children()
                if isinstance(x, matplotlib.text.Text)
            ]

        p = plot_evoked_topomap(evoked, times, ch_type='eeg')
        assert_equal(len(get_texts(p)), 0)
        p = plot_evoked_topomap(evoked, times, ch_type='eeg', title='Custom')
        texts = get_texts(p)
        assert_equal(len(texts), 1)
        assert_equal(texts[0], 'Custom')

        # delaunay triangulation warning
        with warnings.catch_warnings(record=True):
            plot_evoked_topomap(evoked, times, ch_type='mag', layout='auto')
        assert_raises(RuntimeError,
                      plot_evoked_topomap,
                      evoked,
                      0.1,
                      'mag',
                      proj='interactive')  # projs have already been applied
        evoked.proj = False  # let's fake it like they haven't been applied
        plot_evoked_topomap(evoked, 0.1, 'mag', proj='interactive')
        assert_raises(RuntimeError, plot_evoked_topomap, evoked,
                      np.repeat(.1, 50))
        assert_raises(ValueError, plot_evoked_topomap, evoked, [-3e12, 15e6])

        projs = read_proj(ecg_fname)
        projs = [p for p in projs if p['desc'].lower().find('eeg') < 0]
        plot_projs_topomap(projs)
        plt.close('all')
        for ch in evoked.info['chs']:
            if ch['coil_type'] == fiff.FIFF.FIFFV_COIL_EEG:
                if ch['eeg_loc'] is not None:
                    ch['eeg_loc'].fill(0)
                ch['loc'].fill(0)
        assert_raises(RuntimeError,
                      plot_evoked_topomap,
                      evoked,
                      times,
                      ch_type='eeg')
Esempio n. 53
0
from mne.datasets import sample
from mne.minimum_norm import make_inverse_operator, apply_inverse
from mne.inverse_sparse import tf_mixed_norm
from mne.viz import plot_sparse_source_estimates

data_path = sample.data_path()
fwd_fname = data_path + '/MEG/sample/sample_audvis-meg-eeg-oct-6-fwd.fif'
ave_fname = data_path + '/MEG/sample/sample_audvis-no-filter-ave.fif'
cov_fname = data_path + '/MEG/sample/sample_audvis-cov.fif'

# Read noise covariance matrix
cov = mne.read_cov(cov_fname)

# Handling average file
setno = 'Left visual'
evoked = fiff.read_evoked(ave_fname, setno=setno, baseline=(None, 0))
evoked = fiff.pick.pick_channels_evoked(evoked)
# We make the window slightly larger than what you'll eventually be interested
# in ([-0.05, 0.3]) to avoid edge effects.
evoked.crop(tmin=-0.1, tmax=0.4)

# Handling forward solution
forward = mne.read_forward_solution(fwd_fname, force_fixed=False,
                                    surf_ori=True)

cov = mne.cov.regularize(cov, evoked.info)

###############################################################################
# Run solver

# alpha_space regularization parameter is between 0 and 100 (100 is high)
Esempio n. 54
0
"""

# Author: Alexandre Gramfort <*****@*****.**>
#
# License: BSD (3-clause)

print __doc__

import pylab as pl

from mne import fiff
from mne.layouts import Layout
from mne.viz import plot_topo
from mne.datasets import sample
data_path = sample.data_path('.')

fname = data_path + '/MEG/sample/sample_audvis-ave.fif'

# Reading
evoked = fiff.read_evoked(fname, setno=0, baseline=(None, 0))

layout = Layout('Vectorview-all')

###############################################################################
# Show topography
plot_topo(evoked, layout)
title = 'MNE sample data (condition : %s)' % evoked.comment
pl.figtext(0.03, 0.93, title, color='w', fontsize=18)
pl.show()