def plot_components(A, raw, picks, **kwargs): p, q = A.shape ica = ICA_(n_components=q, method='fastica', random_state=0, fit_params=dict(max_iter=1)) ica.info = pick_info(raw.info, picks) if ica.info['comps']: ica.info['comps'] = [] ica.ch_names = ica.info['ch_names'] ica.mixing_matrix_ = A ica.pca_components_ = np.eye(p) ica.pca_mean_ = None ica.unmixing_matrix_ = np.linalg.pinv(A) ica.n_components_ = p ica._update_ica_names() ica.plot_components(**kwargs)
def transfer_to_mne(A, raw, picks): ''' Hack to use the MNE ICA class providing the estimated mixing matrix A. ''' p, q = A.shape ica = ICA_(n_components=q, method='fastica', random_state=0, fit_params=dict(max_iter=1)) ica.info = pick_info(raw.info, picks) if ica.info['comps']: ica.info['comps'] = [] ica.ch_names = ica.info['ch_names'] ica.mixing_matrix_ = A ica.pca_components_ = np.eye(p) ica.pca_mean_ = None ica.unmixing_matrix_ = np.linalg.pinv(A) ica.n_components_ = p ica._update_ica_names() return ica