Esempio n. 1
0
def test_events_long():
    """Test events."""
    data_path = testing.data_path()
    raw_fname = data_path + '/MEG/sample/sample_audvis_trunc_raw.fif'
    raw = read_raw_fif(raw_fname, preload=True)
    raw_tmin, raw_tmax = 0, 90

    tmin, tmax = -0.2, 0.5
    event_id = dict(aud_l=1, vis_l=3)

    # select gradiometers
    picks = pick_types(raw.info, meg='grad', eeg=False, eog=True,
                       stim=True, exclude=raw.info['bads'])

    # load data with usual Epochs for later verification
    raw = concatenate_raws([raw, raw.copy(), raw.copy(), raw.copy(),
                            raw.copy(), raw.copy()])
    assert 110 < raw.times[-1] < 130
    raw_cropped = raw.copy().crop(raw_tmin, raw_tmax)
    events_offline = find_events(raw_cropped)
    epochs_offline = Epochs(raw_cropped, events_offline, event_id=event_id,
                            tmin=tmin, tmax=tmax, picks=picks, decim=1,
                            reject=dict(grad=4000e-13, eog=150e-6),
                            baseline=None)
    epochs_offline.drop_bad()

    # create the mock-client object
    rt_client = MockRtClient(raw)
    rt_epochs = RtEpochs(rt_client, event_id, tmin, tmax, picks=picks, decim=1,
                         reject=dict(grad=4000e-13, eog=150e-6), baseline=None,
                         isi_max=1.)

    rt_epochs.start()
    rt_client.send_data(rt_epochs, picks, tmin=raw_tmin, tmax=raw_tmax,
                        buffer_size=1000)

    expected_events = epochs_offline.events.copy()
    expected_events[:, 0] = expected_events[:, 0] - raw_cropped.first_samp
    assert np.all(expected_events[:, 0] <=
                  (raw_tmax - tmax) * raw.info['sfreq'])
    assert_array_equal(rt_epochs.events, expected_events)
    assert len(rt_epochs) == len(epochs_offline)

    data_picks = pick_types(epochs_offline.info, meg='grad', eeg=False,
                            eog=True,
                            stim=False, exclude=raw.info['bads'])

    for ev_num, ev in enumerate(rt_epochs.iter_evoked()):
        if ev_num == 0:
            X_rt = ev.data[None, data_picks, :]
            y_rt = int(ev.comment)  # comment attribute contains the event_id
        else:
            X_rt = np.concatenate((X_rt, ev.data[None, data_picks, :]), axis=0)
            y_rt = np.append(y_rt, int(ev.comment))

    X_offline = epochs_offline.get_data()[:, data_picks, :]
    y_offline = epochs_offline.events[:, 2]
    assert_array_equal(X_rt, X_offline)
    assert_array_equal(y_rt, y_offline)
Esempio n. 2
0
def test_fieldtrip_rtepochs(free_tcp_port, tmpdir):
    """Test FieldTrip RtEpochs."""
    raw_tmax = 7
    raw = read_raw_fif(raw_fname, preload=True)
    raw.crop(tmin=0, tmax=raw_tmax)
    events_offline = find_events(raw, stim_channel='STI 014')
    event_id = list(np.unique(events_offline[:, 2]))
    tmin, tmax = -0.2, 0.5
    epochs_offline = Epochs(raw, events_offline, event_id=event_id,
                            tmin=tmin, tmax=tmax)
    epochs_offline.drop_bad()
    isi_max = (np.max(np.diff(epochs_offline.events[:, 0])) /
               raw.info['sfreq']) + 1.0

    neuromag2ft_fname = op.realpath(op.join(os.environ['NEUROMAG2FT_ROOT'],
                                            'neuromag2ft'))
    # Works with neuromag2ft-3.0.2
    cmd = (neuromag2ft_fname, '--file', raw_fname, '--speed', '8.0',
           '--bufport', str(free_tcp_port))

    with running_subprocess(cmd, after='terminate', verbose=False):
        data_rt = None
        events_ids_rt = None
        with pytest.warns(RuntimeWarning, match='Trying to guess it'):
            with FieldTripClient(host='localhost', port=free_tcp_port,
                                 tmax=raw_tmax, wait_max=2) as rt_client:
                # get measurement info guessed by MNE-Python
                raw_info = rt_client.get_measurement_info()
                assert ([ch['ch_name'] for ch in raw_info['chs']] ==
                        [ch['ch_name'] for ch in raw.info['chs']])

                # create the real-time epochs object
                epochs_rt = RtEpochs(rt_client, event_id, tmin, tmax,
                                     stim_channel='STI 014', isi_max=isi_max)
                epochs_rt.start()

                time.sleep(0.5)
                for ev_num, ev in enumerate(epochs_rt.iter_evoked()):
                    if ev_num == 0:
                        data_rt = ev.data[None, :, :]
                        events_ids_rt = int(
                            ev.comment)  # comment attribute contains event_id
                    else:
                        data_rt = np.concatenate(
                            (data_rt, ev.data[None, :, :]), axis=0)
                        events_ids_rt = np.append(events_ids_rt,
                                                  int(ev.comment))

                _call_base_epochs_public_api(epochs_rt, tmpdir)
                epochs_rt.stop(stop_receive_thread=True)

        assert_array_equal(events_ids_rt, epochs_rt.events[:, 2])
        assert_array_equal(data_rt, epochs_rt.get_data())
        assert len(epochs_rt) == len(epochs_offline)
        assert_array_equal(events_ids_rt, epochs_offline.events[:, 2])
        assert_allclose(epochs_rt.get_data(), epochs_offline.get_data(),
                        rtol=1.e-5, atol=1.e-8)  # defaults of np.isclose
Esempio n. 3
0
def test_events_sampledata():
    """ based on examples/realtime/plot_compute_rt_decoder.py"""
    data_path = sample.data_path()
    raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif'
    raw = read_raw_fif(raw_fname, preload=True)
    raw_tmin, raw_tmax = 0, 90

    tmin, tmax = -0.2, 0.5
    event_id = dict(aud_l=1, vis_l=3)

    # select gradiometers
    picks = pick_types(raw.info, meg='grad', eeg=False, eog=True,
                       stim=True, exclude=raw.info['bads'])

    # load data with usual Epochs for later verification
    raw_cropped = raw.copy().crop(raw_tmin, raw_tmax)
    events_offline = find_events(raw_cropped)
    epochs_offline = Epochs(raw_cropped, events_offline, event_id=event_id,
                            tmin=tmin, tmax=tmax, picks=picks, decim=1,
                            reject=dict(grad=4000e-13, eog=150e-6),
                            baseline=None)
    epochs_offline.drop_bad()

    # create the mock-client object
    rt_client = MockRtClient(raw)
    rt_epochs = RtEpochs(rt_client, event_id, tmin, tmax, picks=picks, decim=1,
                         reject=dict(grad=4000e-13, eog=150e-6), baseline=None,
                         isi_max=1.)

    rt_epochs.start()
    rt_client.send_data(rt_epochs, picks, tmin=raw_tmin, tmax=raw_tmax,
                        buffer_size=1000)

    expected_events = epochs_offline.events.copy()
    expected_events[:, 0] = expected_events[:, 0] - raw_cropped.first_samp
    assert np.all(expected_events[:, 0] <=
                  (raw_tmax - tmax) * raw.info['sfreq'])
    assert_array_equal(rt_epochs.events, expected_events)
    assert len(rt_epochs) == len(epochs_offline)

    data_picks = pick_types(epochs_offline.info, meg='grad', eeg=False,
                            eog=True,
                            stim=False, exclude=raw.info['bads'])

    for ev_num, ev in enumerate(rt_epochs.iter_evoked()):
        if ev_num == 0:
            X_rt = ev.data[None, data_picks, :]
            y_rt = int(ev.comment)  # comment attribute contains the event_id
        else:
            X_rt = np.concatenate((X_rt, ev.data[None, data_picks, :]), axis=0)
            y_rt = np.append(y_rt, int(ev.comment))

    X_offline = epochs_offline.get_data()[:, data_picks, :]
    y_offline = epochs_offline.events[:, 2]
    assert_array_equal(X_rt, X_offline)
    assert_array_equal(y_rt, y_offline)
def test_fieldtrip_rtepochs(free_tcp_port, tmpdir):
    """Test FieldTrip RtEpochs."""
    raw_tmax = 7
    raw = read_raw_fif(raw_fname, preload=True)
    raw.crop(tmin=0, tmax=raw_tmax)
    events_offline = find_events(raw, stim_channel='STI 014')
    event_id = list(np.unique(events_offline[:, 2]))
    tmin, tmax = -0.2, 0.5
    epochs_offline = Epochs(raw, events_offline, event_id=event_id,
                            tmin=tmin, tmax=tmax)
    epochs_offline.drop_bad()
    isi_max = (np.max(np.diff(epochs_offline.events[:, 0])) /
               raw.info['sfreq']) + 1.0

    kill_signal = _start_buffer_thread(free_tcp_port)

    try:
        data_rt = None
        events_ids_rt = None
        with pytest.warns(RuntimeWarning, match='Trying to guess it'):
            with FieldTripClient(host='localhost', port=free_tcp_port,
                                 tmax=raw_tmax, wait_max=2) as rt_client:
                # get measurement info guessed by MNE-Python
                raw_info = rt_client.get_measurement_info()
                assert ([ch['ch_name'] for ch in raw_info['chs']] ==
                        [ch['ch_name'] for ch in raw.info['chs']])

                # create the real-time epochs object
                epochs_rt = RtEpochs(rt_client, event_id, tmin, tmax,
                                     stim_channel='STI 014', isi_max=isi_max)
                epochs_rt.start()

                time.sleep(0.5)
                for ev_num, ev in enumerate(epochs_rt.iter_evoked()):
                    if ev_num == 0:
                        data_rt = ev.data[None, :, :]
                        events_ids_rt = int(
                            ev.comment)  # comment attribute contains event_id
                    else:
                        data_rt = np.concatenate(
                            (data_rt, ev.data[None, :, :]), axis=0)
                        events_ids_rt = np.append(events_ids_rt,
                                                  int(ev.comment))

                _call_base_epochs_public_api(epochs_rt, tmpdir)
                epochs_rt.stop(stop_receive_thread=True)

        assert_array_equal(events_ids_rt, epochs_rt.events[:, 2])
        assert_array_equal(data_rt, epochs_rt.get_data())
        assert len(epochs_rt) == len(epochs_offline)
        assert_array_equal(events_ids_rt, epochs_offline.events[:, 2])
        assert_allclose(epochs_rt.get_data(), epochs_offline.get_data(),
                        rtol=1.e-5, atol=1.e-8)  # defaults of np.isclose
    finally:
        kill_signal.put(False)  # stop the buffer
Esempio n. 5
0
def test_fieldtrip_rtepochs(free_tcp_port, tmpdir):
    """Test FieldTrip RtEpochs."""
    raw_tmax = 7
    raw = read_raw_fif(raw_fname, preload=True)
    raw.crop(tmin=0, tmax=raw_tmax)
    events_offline = find_events(raw, stim_channel='STI 014')
    event_id = list(np.unique(events_offline[:, 2]))
    tmin, tmax = -0.2, 0.5
    epochs_offline = Epochs(raw, events_offline, event_id=event_id,
                            tmin=tmin, tmax=tmax)
    epochs_offline.drop_bad()
    isi_max = (np.max(np.diff(epochs_offline.events[:, 0])) /
               raw.info['sfreq']) + 1.0

    kill_signal = _start_buffer_thread(free_tcp_port)

    try:
        data_rt = None
        events_ids_rt = None
        with pytest.warns(RuntimeWarning, match='Trying to guess it'):
            with FieldTripClient(host='localhost', port=free_tcp_port,
                                 tmax=raw_tmax, wait_max=2) as rt_client:
                # get measurement info guessed by MNE-Python
                raw_info = rt_client.get_measurement_info()
                assert ([ch['ch_name'] for ch in raw_info['chs']] ==
                        [ch['ch_name'] for ch in raw.info['chs']])

                # create the real-time epochs object
                epochs_rt = RtEpochs(rt_client, event_id, tmin, tmax,
                                     stim_channel='STI 014', isi_max=isi_max)
                epochs_rt.start()

                time.sleep(0.5)
                for ev_num, ev in enumerate(epochs_rt.iter_evoked()):
                    if ev_num == 0:
                        data_rt = ev.data[None, :, :]
                        events_ids_rt = int(
                            ev.comment)  # comment attribute contains event_id
                    else:
                        data_rt = np.concatenate(
                            (data_rt, ev.data[None, :, :]), axis=0)
                        events_ids_rt = np.append(events_ids_rt,
                                                  int(ev.comment))

                _call_base_epochs_public_api(epochs_rt, tmpdir)
                epochs_rt.stop(stop_receive_thread=True)

        assert_array_equal(events_ids_rt, epochs_rt.events[:, 2])
        assert_array_equal(data_rt, epochs_rt.get_data())
        assert len(epochs_rt) == len(epochs_offline)
        assert_array_equal(events_ids_rt, epochs_offline.events[:, 2])
        assert_allclose(epochs_rt.get_data(), epochs_offline.get_data(),
                        rtol=1.e-5, atol=1.e-8)  # defaults of np.isclose
    finally:
        kill_signal.put(False)  # stop the buffer
data_picks = mne.pick_types(rt_epochs.info,
                            meg='grad',
                            eeg=False,
                            eog=True,
                            stim=False,
                            exclude=raw.info['bads'])
ax = plt.subplot(111)
ax.set_xlabel('Trials')
ax.set_ylabel('Classification score (% correct)')
ax.set_title('Real-time decoding')
ax.set_xlim([min_trials, 50])
ax.set_ylim([30, 105])
plt.axhline(50, color='k', linestyle='--', label="Chance level")
plt.show(block=False)

for ev_num, ev in enumerate(rt_epochs.iter_evoked()):

    print("Just got epoch %d" % (ev_num + 1))

    if ev_num == 0:
        X = ev.data[None, data_picks, :]
        y = int(ev.comment)  # the comment attribute contains the event_id
    else:
        X = np.concatenate((X, ev.data[None, data_picks, :]), axis=0)
        y = np.append(y, int(ev.comment))

    if ev_num >= min_trials:

        cv = ShuffleSplit(5, test_size=0.2, random_state=42)
        scores_t = cross_val_score(concat_classifier, X, y, cv=cv,
                                   n_jobs=1) * 100

scores_x, scores, std_scores = [], [], []

filt = FilterEstimator(rt_epochs.info, 1, 40)
scaler = preprocessing.StandardScaler()
vectorizer = EpochsVectorizer()
clf = SVC(C=1, kernel='linear')

concat_classifier = Pipeline([('filter', filt), ('vector', vectorizer),
                              ('scaler', scaler), ('svm', clf)])

data_picks = mne.pick_types(rt_epochs.info, meg='grad', eeg=False, eog=True,
                            stim=False, exclude=raw.info['bads'])

for ev_num, ev in enumerate(rt_epochs.iter_evoked()):

    print("Just got epoch %d" % (ev_num + 1))

    if ev_num == 0:
        X = ev.data[None, data_picks, :]
        y = int(ev.comment)  # the comment attribute contains the event_id
    else:
        X = np.concatenate((X, ev.data[None, data_picks, :]), axis=0)
        y = np.append(y, int(ev.comment))

    if ev_num >= min_trials:

        cv = ShuffleSplit(len(y), 5, test_size=0.2, random_state=42)
        scores_t = cross_val_score(concat_classifier, X, y, cv=cv,
                                   n_jobs=1) * 100
Esempio n. 8
0
def test_find_events():
    """Test find_events in rt_epochs."""
    raw = read_raw_fif(raw_fname, preload=True, verbose=False)
    picks = pick_types(raw.info, meg='grad', eeg=False, eog=True,
                       stim=True, exclude=raw.info['bads'])

    event_id = [0, 5, 6]
    tmin, tmax = -0.2, 0.5

    stim_channel = 'STI 014'
    stim_channel_idx = pick_channels(raw.info['ch_names'],
                                     include=[stim_channel])

    # Reset some data for ease of comparison
    raw._first_samps[0] = 0
    raw.info['sfreq'] = 1000
    # Test that we can handle consecutive events with no gap
    raw._data[stim_channel_idx, :] = 0
    raw._data[stim_channel_idx, 500:520] = 5
    raw._data[stim_channel_idx, 520:530] = 6
    raw._data[stim_channel_idx, 530:532] = 5
    raw._data[stim_channel_idx, 540] = 6
    raw._update_times()

    # consecutive=False
    find_events = dict(consecutive=False)

    rt_client = MockRtClient(raw)
    rt_epochs = RtEpochs(rt_client, event_id, tmin, tmax, picks=picks,
                         stim_channel='STI 014', isi_max=0.5,
                         find_events=find_events)
    rt_client.send_data(rt_epochs, picks, tmin=0, tmax=10, buffer_size=1000)
    rt_epochs.start()
    # make sure next() works even if no iter-method has been called before
    rt_epochs.next()

    events = [5, 6]
    for ii, ev in enumerate(rt_epochs.iter_evoked()):
        assert ev.comment == str(events[ii])
    assert ii == 1

    # consecutive=True
    find_events = dict(consecutive=True)
    rt_client = MockRtClient(raw)
    rt_epochs = RtEpochs(rt_client, event_id, tmin, tmax, picks=picks,
                         stim_channel='STI 014', isi_max=0.5,
                         find_events=find_events)
    rt_client.send_data(rt_epochs, picks, tmin=0, tmax=10, buffer_size=1000)
    rt_epochs.start()
    events = [5, 6, 5, 6]
    for ii, ev in enumerate(rt_epochs.iter_evoked()):
        assert ev.comment == str(events[ii])
    assert ii == 3

    # min_duration=0.002
    find_events = dict(consecutive=False, min_duration=0.002)
    rt_client = MockRtClient(raw)
    rt_epochs = RtEpochs(rt_client, event_id, tmin, tmax, picks=picks,
                         stim_channel='STI 014', isi_max=0.5,
                         find_events=find_events)
    rt_client.send_data(rt_epochs, picks, tmin=0, tmax=10, buffer_size=1000)
    rt_epochs.start()
    events = [5]
    for ii, ev in enumerate(rt_epochs.iter_evoked()):
        assert ev.comment == str(events[ii])
    assert ii == 0

    # output='step', consecutive=True
    find_events = dict(output='step', consecutive=True)
    rt_client = MockRtClient(raw)
    rt_epochs = RtEpochs(rt_client, event_id, tmin, tmax, picks=picks,
                         stim_channel='STI 014', isi_max=0.5,
                         find_events=find_events)
    rt_client.send_data(rt_epochs, picks, tmin=0, tmax=10, buffer_size=1000)
    rt_epochs.start()
    events = [5, 6, 5, 0, 6, 0]
    for ii, ev in enumerate(rt_epochs.iter_evoked()):
        assert ev.comment == str(events[ii])
    assert ii == 5

    # Reset some data for ease of comparison
    raw._first_samps[0] = 0
    raw.info['sfreq'] = 1000
    # Test that we can handle events at the beginning of the buffer
    raw._data[stim_channel_idx, :] = 0
    raw._data[stim_channel_idx, 1000:1005] = 5
    raw._update_times()

    # Check that we find events that start at the beginning of the buffer
    find_events = dict(consecutive=False)
    rt_client = MockRtClient(raw)
    rt_epochs = RtEpochs(rt_client, event_id, tmin, tmax, picks=picks,
                         stim_channel='STI 014', isi_max=0.5,
                         find_events=find_events)
    rt_client.send_data(rt_epochs, picks, tmin=0, tmax=10, buffer_size=1000)
    rt_epochs.start()
    events = [5]
    for ii, ev in enumerate(rt_epochs.iter_evoked()):
        assert ev.comment == str(events[ii])
    assert ii == 0

    # Reset some data for ease of comparison
    raw._first_samps[0] = 0
    raw.info['sfreq'] = 1000
    # Test that we can handle events over different buffers
    raw._data[stim_channel_idx, :] = 0
    raw._data[stim_channel_idx, 997:1003] = 5
    raw._update_times()
    for min_dur in [0.002, 0.004]:
        find_events = dict(consecutive=False, min_duration=min_dur)
        rt_client = MockRtClient(raw)
        rt_epochs = RtEpochs(rt_client, event_id, tmin, tmax, picks=picks,
                             stim_channel='STI 014', isi_max=0.5,
                             find_events=find_events)
        rt_client.send_data(rt_epochs, picks, tmin=0, tmax=10,
                            buffer_size=1000)
        rt_epochs.start()
        events = [5]
        for ii, ev in enumerate(rt_epochs.iter_evoked()):
            assert ev.comment == str(events[ii])
        assert ii == 0
Esempio n. 9
0
    # create the real-time epochs object
    rt_epochs = RtEpochs(rt_client,
                         event_id,
                         tmin,
                         tmax,
                         stim_channel='STI 014',
                         picks=picks,
                         reject=dict(grad=4000e-13, eog=150e-6),
                         decim=1,
                         isi_max=10.0,
                         proj=None)

    # start the acquisition
    rt_epochs.start()

    for ii, ev in enumerate(rt_epochs.iter_evoked()):
        print("Just got epoch %d" % (ii + 1))

        ev.pick_types(meg=True, eog=False)
        if ii == 0:
            evoked = ev
        else:
            evoked = mne.combine_evoked([evoked, ev], weights='nave')

        ax[0].cla()
        ax[1].cla()  # clear axis

        plot_events(rt_epochs.events[-5:],
                    sfreq=ev.info['sfreq'],
                    first_samp=-rt_client.tmin_samp,
                    axes=ax[0])
Esempio n. 10
0
def test_find_events():
    """Test find_events in rt_epochs."""

    raw = read_raw_fif(raw_fname, preload=True, verbose=False)
    picks = pick_types(raw.info, meg='grad', eeg=False, eog=True,
                       stim=True, exclude=raw.info['bads'])

    event_id = [0, 5, 6]
    tmin, tmax = -0.2, 0.5

    stim_channel = 'STI 014'
    stim_channel_idx = pick_channels(raw.info['ch_names'],
                                     include=[stim_channel])

    # Reset some data for ease of comparison
    raw._first_samps[0] = 0
    raw.info['sfreq'] = 1000
    # Test that we can handle consecutive events with no gap
    raw._data[stim_channel_idx, :] = 0
    raw._data[stim_channel_idx, 500:520] = 5
    raw._data[stim_channel_idx, 520:530] = 6
    raw._data[stim_channel_idx, 530:532] = 5
    raw._data[stim_channel_idx, 540] = 6
    raw._update_times()

    # consecutive=False
    find_events = dict(consecutive=False)

    rt_client = MockRtClient(raw)
    rt_epochs = RtEpochs(rt_client, event_id, tmin, tmax, picks=picks,
                         stim_channel='STI 014', isi_max=0.5,
                         find_events=find_events)
    rt_client.send_data(rt_epochs, picks, tmin=0, tmax=10, buffer_size=1000)
    rt_epochs.start()
    events = [5, 6]
    for ii, ev in enumerate(rt_epochs.iter_evoked()):
        assert ev.comment == str(events[ii])
    assert ii == 1

    # consecutive=True
    find_events = dict(consecutive=True)
    rt_client = MockRtClient(raw)
    rt_epochs = RtEpochs(rt_client, event_id, tmin, tmax, picks=picks,
                         stim_channel='STI 014', isi_max=0.5,
                         find_events=find_events)
    rt_client.send_data(rt_epochs, picks, tmin=0, tmax=10, buffer_size=1000)
    rt_epochs.start()
    events = [5, 6, 5, 6]
    for ii, ev in enumerate(rt_epochs.iter_evoked()):
        assert ev.comment == str(events[ii])
    assert ii == 3

    # min_duration=0.002
    find_events = dict(consecutive=False, min_duration=0.002)
    rt_client = MockRtClient(raw)
    rt_epochs = RtEpochs(rt_client, event_id, tmin, tmax, picks=picks,
                         stim_channel='STI 014', isi_max=0.5,
                         find_events=find_events)
    rt_client.send_data(rt_epochs, picks, tmin=0, tmax=10, buffer_size=1000)
    rt_epochs.start()
    events = [5]
    for ii, ev in enumerate(rt_epochs.iter_evoked()):
        assert ev.comment == str(events[ii])
    assert ii == 0

    # output='step', consecutive=True
    find_events = dict(output='step', consecutive=True)
    rt_client = MockRtClient(raw)
    rt_epochs = RtEpochs(rt_client, event_id, tmin, tmax, picks=picks,
                         stim_channel='STI 014', isi_max=0.5,
                         find_events=find_events)
    rt_client.send_data(rt_epochs, picks, tmin=0, tmax=10, buffer_size=1000)
    rt_epochs.start()
    events = [5, 6, 5, 0, 6, 0]
    for ii, ev in enumerate(rt_epochs.iter_evoked()):
        assert ev.comment == str(events[ii])
    assert ii == 5

    # Reset some data for ease of comparison
    raw._first_samps[0] = 0
    raw.info['sfreq'] = 1000
    # Test that we can handle events at the beginning of the buffer
    raw._data[stim_channel_idx, :] = 0
    raw._data[stim_channel_idx, 1000:1005] = 5
    raw._update_times()

    # Check that we find events that start at the beginning of the buffer
    find_events = dict(consecutive=False)
    rt_client = MockRtClient(raw)
    rt_epochs = RtEpochs(rt_client, event_id, tmin, tmax, picks=picks,
                         stim_channel='STI 014', isi_max=0.5,
                         find_events=find_events)
    rt_client.send_data(rt_epochs, picks, tmin=0, tmax=10, buffer_size=1000)
    rt_epochs.start()
    events = [5]
    for ii, ev in enumerate(rt_epochs.iter_evoked()):
        assert ev.comment == str(events[ii])
    assert ii == 0

    # Reset some data for ease of comparison
    raw._first_samps[0] = 0
    raw.info['sfreq'] = 1000
    # Test that we can handle events over different buffers
    raw._data[stim_channel_idx, :] = 0
    raw._data[stim_channel_idx, 997:1003] = 5
    raw._update_times()
    for min_dur in [0.002, 0.004]:
        find_events = dict(consecutive=False, min_duration=min_dur)
        rt_client = MockRtClient(raw)
        rt_epochs = RtEpochs(rt_client, event_id, tmin, tmax, picks=picks,
                             stim_channel='STI 014', isi_max=0.5,
                             find_events=find_events)
        rt_client.send_data(rt_epochs, picks, tmin=0, tmax=10,
                            buffer_size=1000)
        rt_epochs.start()
        events = [5]
        for ii, ev in enumerate(rt_epochs.iter_evoked()):
            assert ev.comment == str(events[ii])
        assert ii == 0
                         tmax=30, wait_max=5, info=info) as rt_client:

        # get measurement info guessed by MNE-Python
        raw_info = rt_client.get_measurement_info()

        # select gradiometers
        picks = mne.pick_types(raw_info, meg='grad', eeg=False, eog=True,
                               stim=True, exclude=bads)

        # create the real-time epochs object and start acquisition
        rt_epochs = RtEpochs(rt_client, event_id, tmin, tmax,
                             stim_channel='STI 014', picks=picks,
                             reject=dict(grad=4000e-13, eog=150e-6),
                             decim=1, isi_max=2.0, proj=None)
        rt_epochs.start()
        for ii, ev in enumerate(rt_epochs.iter_evoked()):
            print("Just got epoch %d" % (ii + 1))

            ev.pick_types(meg=True, eog=False)
            if ii == 0:
                evoked = ev
            else:
                evoked = mne.combine_evoked([evoked, ev], weights='nave')

            ax[0].cla()
            ax[1].cla()  # clear axis

            plot_events(rt_epochs.events[-5:], sfreq=ev.info['sfreq'],
                        first_samp=-rt_client.tmin_samp, axes=ax[0])

            # plot on second subplot
Esempio n. 12
0
def test_find_events():
    """Test find_events in rt_epochs."""

    raw = mne.io.read_raw_fif(raw_fname, preload=True, verbose=False)
    picks = mne.pick_types(raw.info, meg='grad', eeg=False, eog=True,
                           stim=True, exclude=raw.info['bads'])

    event_id = [0, 5, 6]
    tmin, tmax = -0.2, 0.5

    stim_channel = 'STI 014'
    stim_channel_idx = pick_channels(raw.info['ch_names'],
                                     include=[stim_channel])

    # Reset some data for ease of comparison
    raw._first_samps[0] = 0
    raw.info['sfreq'] = 1000
    # Test that we can handle consecutive events with no gap
    raw._data[stim_channel_idx, :] = 0
    raw._data[stim_channel_idx, 500:520] = 5
    raw._data[stim_channel_idx, 520:530] = 6
    raw._data[stim_channel_idx, 530:532] = 5
    raw._data[stim_channel_idx, 540] = 6
    raw._update_times()

    # consecutive=False
    find_events = dict(consecutive=False)

    rt_client = MockRtClient(raw)
    rt_epochs = RtEpochs(rt_client, event_id, tmin, tmax, picks=picks,
                         stim_channel='STI 014', isi_max=0.5,
                         find_events=find_events)
    rt_client.send_data(rt_epochs, picks, tmin=0, tmax=10, buffer_size=1000)
    rt_epochs.start()
    events = [5, 6]
    for ii, ev in enumerate(rt_epochs.iter_evoked()):
        assert_true(ev.comment == str(events[ii]))
    assert_true(ii == 1)

    # consecutive=True
    find_events = dict(consecutive=True)
    rt_client = MockRtClient(raw)
    rt_epochs = RtEpochs(rt_client, event_id, tmin, tmax, picks=picks,
                         stim_channel='STI 014', isi_max=0.5,
                         find_events=find_events)
    rt_client.send_data(rt_epochs, picks, tmin=0, tmax=10, buffer_size=1000)
    rt_epochs.start()
    events = [5, 6, 5, 6]
    for ii, ev in enumerate(rt_epochs.iter_evoked()):
        assert_true(ev.comment == str(events[ii]))
    assert_true(ii == 3)

    # min_duration=0.002
    find_events = dict(consecutive=False, min_duration=0.002)
    rt_client = MockRtClient(raw)
    rt_epochs = RtEpochs(rt_client, event_id, tmin, tmax, picks=picks,
                         stim_channel='STI 014', isi_max=0.5,
                         find_events=find_events)
    rt_client.send_data(rt_epochs, picks, tmin=0, tmax=10, buffer_size=1000)
    rt_epochs.start()
    events = [5]
    for ii, ev in enumerate(rt_epochs.iter_evoked()):
        assert_true(ev.comment == str(events[ii]))
    assert_true(ii == 0)

    # ouput='step', consecutive=True
    find_events = dict(output='step', consecutive=True)
    rt_client = MockRtClient(raw)
    rt_epochs = RtEpochs(rt_client, event_id, tmin, tmax, picks=picks,
                         stim_channel='STI 014', isi_max=0.5,
                         find_events=find_events)
    rt_client.send_data(rt_epochs, picks, tmin=0, tmax=10, buffer_size=1000)
    rt_epochs.start()
    events = [5, 6, 5, 0, 6, 0]
    for ii, ev in enumerate(rt_epochs.iter_evoked()):
        assert_true(ev.comment == str(events[ii]))
    assert_true(ii == 5)
Esempio n. 13
0
def test_find_events():
    """Test find_events in rt_epochs."""

    raw = mne.io.Raw(raw_fname, preload=True, verbose=False)
    picks = mne.pick_types(raw.info,
                           meg='grad',
                           eeg=False,
                           eog=True,
                           stim=True,
                           exclude=raw.info['bads'])

    event_id = [0, 5, 6]
    tmin, tmax = -0.2, 0.5

    stim_channel = 'STI 014'
    stim_channel_idx = pick_channels(raw.info['ch_names'],
                                     include=stim_channel)

    # Reset some data for ease of comparison
    raw.first_samp = 0
    raw.info['sfreq'] = 1000
    # Test that we can handle consecutive events with no gap
    raw._data[stim_channel_idx, :] = 0
    raw._data[stim_channel_idx, 500:520] = 5
    raw._data[stim_channel_idx, 520:530] = 6
    raw._data[stim_channel_idx, 530:532] = 5
    raw._data[stim_channel_idx, 540] = 6

    # consecutive=False
    find_events = dict(consecutive=False)

    rt_client = MockRtClient(raw)
    rt_epochs = RtEpochs(rt_client,
                         event_id,
                         tmin,
                         tmax,
                         picks=picks,
                         stim_channel='STI 014',
                         isi_max=0.5,
                         find_events=find_events)
    rt_client.send_data(rt_epochs, picks, tmin=0, tmax=10, buffer_size=1000)
    rt_epochs.start()
    events = [5, 6]
    for ii, ev in enumerate(rt_epochs.iter_evoked()):
        assert_true(ev.comment == str(events[ii]))
    assert_true(ii == 1)

    # consecutive=True
    find_events = dict(consecutive=True)
    rt_client = MockRtClient(raw)
    rt_epochs = RtEpochs(rt_client,
                         event_id,
                         tmin,
                         tmax,
                         picks=picks,
                         stim_channel='STI 014',
                         isi_max=0.5,
                         find_events=find_events)
    rt_client.send_data(rt_epochs, picks, tmin=0, tmax=10, buffer_size=1000)
    rt_epochs.start()
    events = [5, 6, 5, 6]
    for ii, ev in enumerate(rt_epochs.iter_evoked()):
        assert_true(ev.comment == str(events[ii]))
    assert_true(ii == 3)

    # min_duration=0.002
    find_events = dict(consecutive=False, min_duration=0.002)
    rt_client = MockRtClient(raw)
    rt_epochs = RtEpochs(rt_client,
                         event_id,
                         tmin,
                         tmax,
                         picks=picks,
                         stim_channel='STI 014',
                         isi_max=0.5,
                         find_events=find_events)
    rt_client.send_data(rt_epochs, picks, tmin=0, tmax=10, buffer_size=1000)
    rt_epochs.start()
    events = [5]
    for ii, ev in enumerate(rt_epochs.iter_evoked()):
        assert_true(ev.comment == str(events[ii]))
    assert_true(ii == 0)

    # ouput='step', consecutive=True
    find_events = dict(output='step', consecutive=True)
    rt_client = MockRtClient(raw)
    rt_epochs = RtEpochs(rt_client,
                         event_id,
                         tmin,
                         tmax,
                         picks=picks,
                         stim_channel='STI 014',
                         isi_max=0.5,
                         find_events=find_events)
    rt_client.send_data(rt_epochs, picks, tmin=0, tmax=10, buffer_size=1000)
    rt_epochs.start()
    events = [5, 6, 5, 0, 6, 0]
    for ii, ev in enumerate(rt_epochs.iter_evoked()):
        assert_true(ev.comment == str(events[ii]))
    assert_true(ii == 5)