Esempio n. 1
1
def test_saving_picked():
    """Test saving picked CTF instances."""
    temp_dir = _TempDir()
    out_fname = op.join(temp_dir, 'test_py_raw.fif')
    raw = read_raw_ctf(op.join(ctf_dir, ctf_fname_1_trial))
    raw.crop(0, 1).load_data()
    assert raw.compensation_grade == get_current_comp(raw.info) == 0
    assert len(raw.info['comps']) == 5
    pick_kwargs = dict(meg=True, ref_meg=False, verbose=True)
    for comp_grade in [0, 1]:
        raw.apply_gradient_compensation(comp_grade)
        with catch_logging() as log:
            raw_pick = raw.copy().pick_types(**pick_kwargs)
        assert len(raw.info['comps']) == 5
        assert len(raw_pick.info['comps']) == 0
        log = log.getvalue()
        assert 'Removing 5 compensators' in log
        raw_pick.save(out_fname, overwrite=True)  # should work
        raw2 = read_raw_fif(out_fname)
        assert (raw_pick.ch_names == raw2.ch_names)
        assert_array_equal(raw_pick.times, raw2.times)
        assert_allclose(raw2[0:20][0], raw_pick[0:20][0], rtol=1e-6,
                        atol=1e-20)  # atol is very small but > 0

        raw2 = read_raw_fif(out_fname, preload=True)
        assert (raw_pick.ch_names == raw2.ch_names)
        assert_array_equal(raw_pick.times, raw2.times)
        assert_allclose(raw2[0:20][0], raw_pick[0:20][0], rtol=1e-6,
                        atol=1e-20)  # atol is very small but > 0
Esempio n. 2
1
def test_calculate_chpi_positions():
    """Test calculation of cHPI positions
    """
    trans, rot, t = head_pos_to_trans_rot_t(read_head_pos(pos_fname))
    with warnings.catch_warnings(record=True):
        raw = Raw(chpi_fif_fname, allow_maxshield=True, preload=True)
    t -= raw.first_samp / raw.info['sfreq']
    quats = _calculate_chpi_positions(raw, verbose='debug')
    trans_est, rot_est, t_est = head_pos_to_trans_rot_t(quats)
    _compare_positions((trans, rot, t), (trans_est, rot_est, t_est), 0.003)

    # degenerate conditions
    raw_no_chpi = Raw(test_fif_fname)
    assert_raises(RuntimeError, _calculate_chpi_positions, raw_no_chpi)
    raw_bad = raw.copy()
    for d in raw_bad.info['dig']:
        if d['kind'] == FIFF.FIFFV_POINT_HPI:
            d['coord_frame'] = 999
            break
    assert_raises(RuntimeError, _calculate_chpi_positions, raw_bad)
    raw_bad = raw.copy()
    for d in raw_bad.info['dig']:
        if d['kind'] == FIFF.FIFFV_POINT_HPI:
            d['r'] = np.ones(3)
    raw_bad.crop(0, 1., copy=False)
    with warnings.catch_warnings(record=True):  # bad pos
        with catch_logging() as log_file:
            _calculate_chpi_positions(raw_bad, verbose=True)
    # ignore HPI info header and [done] footer
    for line in log_file.getvalue().strip().split('\n')[4:-1]:
        assert_true('0/5 good' in line)
Esempio n. 3
0
def test_make_inverse_operator():
    """Test MNE inverse computation (precomputed and non-precomputed)."""
    # Test old version of inverse computation starting from forward operator
    evoked = _get_evoked()
    noise_cov = read_cov(fname_cov)
    inverse_operator = read_inverse_operator(fname_inv)
    fwd_op = convert_forward_solution(read_forward_solution_meg(fname_fwd),
                                      surf_ori=True, copy=False)
    with catch_logging() as log:
        my_inv_op = make_inverse_operator(evoked.info, fwd_op, noise_cov,
                                          loose=0.2, depth=0.8,
                                          limit_depth_chs=False, verbose=True)
    log = log.getvalue()
    assert 'rank 302 (3 small eigenvalues omitted)' in log
    _compare_io(my_inv_op)
    assert_equal(inverse_operator['units'], 'Am')
    _compare_inverses_approx(my_inv_op, inverse_operator, evoked,
                             rtol=1e-2, atol=1e-5, depth_atol=1e-3)
    # Test MNE inverse computation starting from forward operator
    with catch_logging() as log:
        my_inv_op = make_inverse_operator(evoked.info, fwd_op, noise_cov,
                                          loose=0.2, depth=0.8, verbose=True)
    log = log.getvalue()
    assert 'rank 302 (3 small eigenvalues omitted)' in log
    _compare_io(my_inv_op)
    _compare_inverses_approx(my_inv_op, inverse_operator, evoked,
                             rtol=1e-3, atol=1e-5)
    assert ('dev_head_t' in my_inv_op['info'])
    assert ('mri_head_t' in my_inv_op)
Esempio n. 4
0
def test_chpi_subtraction():
    """Test subtraction of cHPI signals."""
    raw = read_raw_fif(chpi_fif_fname, allow_maxshield='yes', preload=True)
    raw.info['bads'] = ['MEG0111']
    raw.del_proj()
    with catch_logging() as log:
        filter_chpi(raw, include_line=False, verbose=True)
    assert 'No average EEG' not in log.getvalue()
    assert '5 cHPI' in log.getvalue()
    # MaxFilter doesn't do quite as well as our algorithm with the last bit
    raw.crop(0, 16)
    # remove cHPI status chans
    raw_c = read_raw_fif(sss_hpisubt_fname).crop(0, 16).load_data()
    raw_c.pick_types(
        meg=True, eeg=True, eog=True, ecg=True, stim=True, misc=True)
    assert_meg_snr(raw, raw_c, 143, 624)

    # Degenerate cases
    raw_nohpi = read_raw_fif(test_fif_fname, preload=True)
    pytest.raises(RuntimeError, filter_chpi, raw_nohpi)

    # When MaxFliter downsamples, like::
    #     $ maxfilter -nosss -ds 2 -f test_move_anon_raw.fif \
    #           -o test_move_anon_ds2_raw.fif
    # it can strip out some values of info, which we emulate here:
    raw = read_raw_fif(chpi_fif_fname, allow_maxshield='yes')
    raw = raw.crop(0, 1).load_data().resample(600., npad='auto')
    raw.info['lowpass'] = 200.
    del raw.info['maxshield']
    del raw.info['hpi_results'][0]['moments']
    del raw.info['hpi_subsystem']['event_channel']
    with catch_logging() as log:
        filter_chpi(raw, verbose=True)
    pytest.raises(ValueError, filter_chpi, raw, t_window=-1)
    assert '2 cHPI' in log.getvalue()
Esempio n. 5
0
def test_head_translation():
    """Test Maxwell filter head translation."""
    raw = read_crop(raw_fname, (0., 1.))
    # First try with an unchanged destination
    raw_sss = maxwell_filter(raw, destination=raw_fname,
                             origin=mf_head_origin, regularize=None,
                             bad_condition='ignore')
    assert_meg_snr(raw_sss, read_crop(sss_std_fname, (0., 1.)), 200.)
    # Now with default
    with pytest.warns(RuntimeWarning, match='over 25 mm'):
        with catch_logging() as log:
            raw_sss = maxwell_filter(raw, destination=mf_head_origin,
                                     origin=mf_head_origin, regularize=None,
                                     bad_condition='ignore', verbose='warning')
    assert ('over 25 mm' in log.getvalue())
    assert_meg_snr(raw_sss, read_crop(sss_trans_default_fname), 125.)
    destination = np.eye(4)
    destination[2, 3] = 0.04
    assert_allclose(raw_sss.info['dev_head_t']['trans'], destination)
    # Now to sample's head pos
    with pytest.warns(RuntimeWarning, match='= 25.6 mm'):
        with catch_logging() as log:
            raw_sss = maxwell_filter(raw, destination=sample_fname,
                                     origin=mf_head_origin, regularize=None,
                                     bad_condition='ignore', verbose='warning')
    assert ('= 25.6 mm' in log.getvalue())
    assert_meg_snr(raw_sss, read_crop(sss_trans_sample_fname), 350.)
    assert_allclose(raw_sss.info['dev_head_t']['trans'],
                    read_info(sample_fname)['dev_head_t']['trans'])
    # Degenerate cases
    pytest.raises(RuntimeError, maxwell_filter, raw,
                  destination=mf_head_origin, coord_frame='meg')
    pytest.raises(ValueError, maxwell_filter, raw, destination=[0.] * 4)
Esempio n. 6
0
def test_fetch_file(url, tmpdir):
    """Test URL retrieval."""
    tempdir = str(tmpdir)
    archive_name = op.join(tempdir, "download_test")
    with catch_logging() as log:
        _fetch_file(url, archive_name, timeout=30., verbose='debug')
    log = log.getvalue()
    assert 'Resuming at' not in log
    with open(archive_name, 'rb') as fid:
        data = fid.read()
    stop = len(data) // 2
    assert 0 < stop < len(data)
    with open(archive_name + '.part', 'wb') as fid:
        fid.write(data[:stop])
    with catch_logging() as log:
        _fetch_file(url, archive_name, timeout=30., verbose='debug')
    log = log.getvalue()
    assert 'Resuming at %s' % stop in log
    with pytest.raises(Exception, match='unknown url type'):
        _fetch_file('NOT_AN_ADDRESS', op.join(tempdir, 'test'), verbose=False)
    resume_name = op.join(tempdir, "download_resume")
    # touch file
    with open(resume_name + '.part', 'w'):
        os.utime(resume_name + '.part', None)
    _fetch_file(url, resume_name, resume=True, timeout=30.,
                verbose=False)
    with pytest.raises(ValueError, match='Bad hash value'):
        _fetch_file(url, archive_name, hash_='a', verbose=False)
    with pytest.raises(RuntimeError, match='Hash mismatch'):
        _fetch_file(url, archive_name, hash_='a' * 32, verbose=False)
Esempio n. 7
0
def test_head_translation():
    """Test Maxwell filter head translation"""
    with warnings.catch_warnings(record=True):  # maxshield
        raw = Raw(raw_fname, allow_maxshield=True).crop(0.0, 1.0, False)
    # First try with an unchanged destination
    raw_sss = maxwell_filter(raw, destination=raw_fname, origin=mf_head_origin, regularize=None, bad_condition="ignore")
    assert_meg_snr(raw_sss, Raw(sss_std_fname).crop(0.0, 1.0, False), 200.0)
    # Now with default
    with catch_logging() as log:
        raw_sss = maxwell_filter(
            raw,
            destination=mf_head_origin,
            origin=mf_head_origin,
            regularize=None,
            bad_condition="ignore",
            verbose="warning",
        )
    assert_true("over 25 mm" in log.getvalue())
    assert_meg_snr(raw_sss, Raw(sss_trans_default_fname), 125.0)
    # Now to sample's head pos
    with catch_logging() as log:
        raw_sss = maxwell_filter(
            raw,
            destination=sample_fname,
            origin=mf_head_origin,
            regularize=None,
            bad_condition="ignore",
            verbose="warning",
        )
    assert_true("= 25.6 mm" in log.getvalue())
    assert_meg_snr(raw_sss, Raw(sss_trans_sample_fname), 350.0)
    # Degenerate cases
    assert_raises(RuntimeError, maxwell_filter, raw, destination=mf_head_origin, coord_frame="meg")
    assert_raises(ValueError, maxwell_filter, raw, destination=[0.0] * 4)
def test_thresholds():
    """Test automatic threshold calculations."""
    # within subjects
    rng = np.random.RandomState(0)
    X = rng.randn(10, 1, 1) + 0.08
    want_thresh = -stats.t.ppf(0.025, len(X) - 1)
    assert 0.03 < stats.ttest_1samp(X[:, 0, 0], 0)[1] < 0.05
    my_fun = partial(ttest_1samp_no_p)
    with catch_logging() as log:
        with pytest.warns(RuntimeWarning, match='threshold is only valid'):
            out = permutation_cluster_1samp_test(X, stat_fun=my_fun,
                                                 verbose=True)
    log = log.getvalue()
    assert str(want_thresh)[:6] in log
    assert len(out[1]) == 1  # 1 cluster
    assert 0.03 < out[2] < 0.05
    # between subjects
    Y = rng.randn(10, 1, 1)
    Z = rng.randn(10, 1, 1) - 0.7
    X = [X, Y, Z]
    want_thresh = stats.f.ppf(1. - 0.05, 2, sum(len(a) for a in X) - len(X))
    p = stats.f_oneway(*X)[1]
    assert 0.03 < p < 0.05
    my_fun = partial(f_oneway)  # just to make the check fail
    with catch_logging() as log:
        with pytest.warns(RuntimeWarning, match='threshold is only valid'):
            out = permutation_cluster_test(X, tail=1, stat_fun=my_fun,
                                           verbose=True)
    log = log.getvalue()
    assert str(want_thresh)[:6] in log
    assert len(out[1]) == 1  # 1 cluster
    assert 0.03 < out[2] < 0.05
    with pytest.warns(RuntimeWarning, match='Ignoring argument "tail"'):
        permutation_cluster_test(X, tail=0)
Esempio n. 9
0
def test_chpi_adjust():
    """Test cHPI logging and adjustment"""
    raw = read_raw_fif(chpi_fif_fname, allow_maxshield='yes')
    with catch_logging() as log:
        _get_hpi_info(raw.info, adjust=True, verbose='debug')

    # Ran MaxFilter (with -list, -v, -movecomp, etc.), and got:
    msg = ['HPIFIT: 5 coils digitized in order 5 1 4 3 2',
           'HPIFIT: 3 coils accepted: 1 2 4',
           'Hpi coil moments (3 5):',
           '2.08542e-15 -1.52486e-15 -1.53484e-15',
           '2.14516e-15 2.09608e-15 7.30303e-16',
           '-3.2318e-16 -4.25666e-16 2.69997e-15',
           '5.21717e-16 1.28406e-15 1.95335e-15',
           '1.21199e-15 -1.25801e-19 1.18321e-15',
           'HPIFIT errors:  0.3, 0.3, 5.3, 0.4, 3.2 mm.',
           'HPI consistency of isotrak and hpifit is OK.',
           'HP fitting limits: err = 5.0 mm, gval = 0.980.',
           'Using 5 HPI coils: 83 143 203 263 323 Hz',  # actually came earlier
           ]

    log = log.getvalue().splitlines()
    assert_true(set(log) == set(msg), '\n' + '\n'.join(set(msg) - set(log)))

    # Then took the raw file, did this:
    raw.info['dig'][5]['r'][2] += 1.
    # And checked the result in MaxFilter, which changed the logging as:
    msg = msg[:8] + [
        'HPIFIT errors:  0.3, 0.3, 5.3, 999.7, 3.2 mm.',
        'Note: HPI coil 3 isotrak is adjusted by 5.3 mm!',
        'Note: HPI coil 5 isotrak is adjusted by 3.2 mm!'] + msg[-2:]
    with catch_logging() as log:
        _get_hpi_info(raw.info, adjust=True, verbose='debug')
    log = log.getvalue().splitlines()
    assert_true(set(log) == set(msg), '\n' + '\n'.join(set(msg) - set(log)))
Esempio n. 10
0
def test_make_inverse_operator_loose(evoked):
    """Test MNE inverse computation (precomputed and non-precomputed)."""
    # Test old version of inverse computation starting from forward operator
    noise_cov = read_cov(fname_cov)
    inverse_operator = read_inverse_operator(fname_inv)
    fwd_op = convert_forward_solution(read_forward_solution_meg(fname_fwd),
                                      surf_ori=True, copy=False)
    with catch_logging() as log:
        with pytest.deprecated_call():  # limit_depth_chs
            my_inv_op = make_inverse_operator(
                evoked.info, fwd_op, noise_cov, loose=0.2, depth=0.8,
                limit_depth_chs=False, verbose=True)
    log = log.getvalue()
    assert 'MEG: rank 302 computed' in log
    assert 'limit = 1/%d' % fwd_op['nsource'] in log
    _compare_io(my_inv_op)
    assert_equal(inverse_operator['units'], 'Am')
    _compare_inverses_approx(my_inv_op, inverse_operator, evoked,
                             rtol=1e-2, atol=1e-5, depth_atol=1e-3)
    # Test MNE inverse computation starting from forward operator
    with catch_logging() as log:
        my_inv_op = make_inverse_operator(evoked.info, fwd_op, noise_cov,
                                          loose='auto', depth=0.8,
                                          fixed=False, verbose=True)
    log = log.getvalue()
    assert 'MEG: rank 302 computed from 305' in log
    _compare_io(my_inv_op)
    _compare_inverses_approx(my_inv_op, inverse_operator, evoked,
                             rtol=1e-3, atol=1e-5)
    assert ('dev_head_t' in my_inv_op['info'])
    assert ('mri_head_t' in my_inv_op)
Esempio n. 11
0
def test_chpi_subtraction():
    """Test subtraction of cHPI signals"""
    raw = Raw(chpi_fif_fname, allow_maxshield="yes", preload=True)
    with catch_logging() as log:
        filter_chpi(raw, include_line=False, verbose=True)
    assert_true("5 cHPI" in log.getvalue())
    # MaxFilter doesn't do quite as well as our algorithm with the last bit
    raw.crop(0, 16, copy=False)
    # remove cHPI status chans
    raw_c = Raw(sss_hpisubt_fname).crop(0, 16, copy=False).load_data()
    raw_c.pick_types(meg=True, eeg=True, eog=True, ecg=True, stim=True, misc=True)
    assert_meg_snr(raw, raw_c, 143, 624)

    # Degenerate cases
    raw_nohpi = Raw(test_fif_fname, preload=True)
    assert_raises(RuntimeError, filter_chpi, raw_nohpi)

    # When MaxFliter downsamples, like::
    #     $ maxfilter -nosss -ds 2 -f test_move_anon_raw.fif \
    #           -o test_move_anon_ds2_raw.fif
    # it can strip out some values of info, which we emulate here:
    raw = Raw(chpi_fif_fname, allow_maxshield="yes")
    with warnings.catch_warnings(record=True):  # uint cast suggestion
        raw = raw.crop(0, 1).load_data().resample(600.0, npad="auto")
    raw.info["buffer_size_sec"] = np.float64(2.0)
    raw.info["lowpass"] = 200.0
    del raw.info["maxshield"]
    del raw.info["hpi_results"][0]["moments"]
    del raw.info["hpi_subsystem"]["event_channel"]
    with catch_logging() as log:
        filter_chpi(raw, verbose=True)
    assert_true("2 cHPI" in log.getvalue())
Esempio n. 12
0
def test_chpi_subtraction():
    """Test subtraction of cHPI signals"""
    raw = Raw(chpi_fif_fname, allow_maxshield='yes', preload=True)
    with catch_logging() as log:
        filter_chpi(raw, include_line=False, verbose=True)
    assert_true('5 cHPI' in log.getvalue())
    # MaxFilter doesn't do quite as well as our algorithm with the last bit
    raw.crop(0, 16, copy=False)
    raw_c = Raw(sss_hpisubt_fname, preload=True).crop(0, 16, copy=False)
    raw_c.pick_types(meg=True, eeg=True, eog=True, ecg=True, stim=True,
                     misc=True, copy=False)  # remove cHPI status chans
    assert_meg_snr(raw, raw_c, 143, 624)

    # Degenerate cases
    raw_nohpi = Raw(test_fif_fname, preload=True)
    assert_raises(RuntimeError, filter_chpi, raw_nohpi)

    # When MaxFliter downsamples, like::
    #     $ maxfilter -nosss -ds 2 -f test_move_anon_raw.fif \
    #           -o test_move_anon_ds2_raw.fif
    # it can strip out some values of info, which we emulate here:
    raw = Raw(chpi_fif_fname, allow_maxshield='yes')
    raw.crop(0, 1, copy=False).load_data()
    raw.resample(600., npad='auto')
    raw.info['buffer_size_sec'] = np.float64(2.)
    raw.info['lowpass'] = 200.
    del raw.info['maxshield']
    del raw.info['hpi_results'][0]['moments']
    del raw.info['hpi_subsystem']['event_channel']
    with catch_logging() as log:
        filter_chpi(raw, verbose=True)
    assert_true('2 cHPI' in log.getvalue())
Esempio n. 13
0
def test_head_translation():
    """Test Maxwell filter head translation"""
    with warnings.catch_warnings(record=True):  # maxshield
        raw = Raw(raw_fname, allow_maxshield=True).crop(0., 1., False)
    # First try with an unchanged destination
    raw_sss = maxwell_filter(raw, destination=raw_fname,
                             origin=mf_head_origin, regularize=None,
                             bad_condition='ignore')
    assert_meg_snr(raw_sss, Raw(sss_std_fname).crop(0., 1., False), 200.)
    # Now with default
    with warnings.catch_warnings(record=True):
        with catch_logging() as log:
            raw_sss = maxwell_filter(raw, destination=mf_head_origin,
                                     origin=mf_head_origin, regularize=None,
                                     bad_condition='ignore', verbose='warning')
    assert_true('over 25 mm' in log.getvalue())
    assert_meg_snr(raw_sss, Raw(sss_trans_default_fname), 125.)
    destination = np.eye(4)
    destination[2, 3] = 0.04
    assert_allclose(raw_sss.info['dev_head_t']['trans'], destination)
    # Now to sample's head pos
    with warnings.catch_warnings(record=True):
        with catch_logging() as log:
            raw_sss = maxwell_filter(raw, destination=sample_fname,
                                     origin=mf_head_origin, regularize=None,
                                     bad_condition='ignore', verbose='warning')
    assert_true('= 25.6 mm' in log.getvalue())
    assert_meg_snr(raw_sss, Raw(sss_trans_sample_fname), 350.)
    assert_allclose(raw_sss.info['dev_head_t']['trans'],
                    read_info(sample_fname)['dev_head_t']['trans'])
    # Degenerate cases
    assert_raises(RuntimeError, maxwell_filter, raw,
                  destination=mf_head_origin, coord_frame='meg')
    assert_raises(ValueError, maxwell_filter, raw, destination=[0.] * 4)
Esempio n. 14
0
def test_calculate_chpi_positions():
    """Test calculation of cHPI positions."""
    # Check to make sure our fits match MF decently
    mf_quats = read_head_pos(pos_fname)
    raw = read_raw_fif(chpi_fif_fname, allow_maxshield='yes', preload=True)
    # This is a little hack (aliasing while decimating) to make it much faster
    # for testing purposes only. We can relax this later if we find it breaks
    # something.
    raw_dec = _decimate_chpi(raw, 15)
    with catch_logging() as log:
        py_quats = _calculate_chpi_positions(raw_dec, t_step_max=1.,
                                             verbose='debug')
    assert_true(log.getvalue().startswith('HPIFIT'))
    _assert_quats(py_quats, mf_quats, dist_tol=0.004, angle_tol=2.5)

    # degenerate conditions
    raw_no_chpi = read_raw_fif(test_fif_fname)
    assert_raises(RuntimeError, _calculate_chpi_positions, raw_no_chpi)
    raw_bad = raw.copy()
    del raw_bad.info['hpi_meas'][0]['hpi_coils'][0]['coil_freq']
    assert_raises(RuntimeError, _calculate_chpi_positions, raw_bad)
    raw_bad = raw.copy()
    for d in raw_bad.info['dig']:
        if d['kind'] == FIFF.FIFFV_POINT_HPI:
            d['coord_frame'] = FIFF.FIFFV_COORD_UNKNOWN
            break
    assert_raises(RuntimeError, _calculate_chpi_positions, raw_bad)
    for d in raw_bad.info['dig']:
        if d['kind'] == FIFF.FIFFV_POINT_HPI:
            d['coord_frame'] = FIFF.FIFFV_COORD_HEAD
            d['r'] = np.ones(3)
    raw_bad.crop(0, 1.)
    picks = np.concatenate([np.arange(306, len(raw_bad.ch_names)),
                            pick_types(raw_bad.info, meg=True)[::16]])
    raw_bad.pick_channels([raw_bad.ch_names[pick] for pick in picks])
    with warnings.catch_warnings(record=True):  # bad pos
        with catch_logging() as log_file:
            _calculate_chpi_positions(raw_bad, t_step_min=1., verbose=True)
    # ignore HPI info header and [done] footer
    assert_true('0/5 good' in log_file.getvalue().strip().split('\n')[-2])

    # half the rate cuts off cHPI coils
    raw.info['lowpass'] /= 2.
    assert_raises_regex(RuntimeError, 'above the',
                        _calculate_chpi_positions, raw)

    # test on 5k artemis data
    raw = read_raw_artemis123(art_fname, preload=True)
    mf_quats = read_head_pos(art_mc_fname)
    with catch_logging() as log:
        py_quats = _calculate_chpi_positions(raw, t_step_min=2.,
                                             verbose='debug')
    _assert_quats(py_quats, mf_quats, dist_tol=0.004, angle_tol=2.5)
Esempio n. 15
0
def test_manifest_check_download(tmpdir, n_have, monkeypatch):
    """Test our manifest downloader."""
    monkeypatch.setattr(datasets.utils, '_fetch_file', _fake_zip_fetch)
    destination = op.join(str(tmpdir), 'empty')
    manifest_path = op.join(str(tmpdir), 'manifest.txt')
    with open(manifest_path, 'w') as fid:
        for fname in _zip_fnames:
            fid.write('%s\n' % fname)
    assert n_have in range(len(_zip_fnames) + 1)
    assert not op.isdir(destination)
    if n_have > 0:
        os.makedirs(op.join(destination, 'foo'))
        assert op.isdir(op.join(destination, 'foo'))
    for fname in _zip_fnames:
        assert not op.isfile(op.join(destination, fname))
    for fname in _zip_fnames[:n_have]:
        with open(op.join(destination, fname), 'w'):
            pass
    with catch_logging() as log:
        with use_log_level(True):
            url = hash_ = ''  # we mock the _fetch_file so these are not used
            _manifest_check_download(manifest_path, destination, url, hash_)
    log = log.getvalue()
    n_missing = 3 - n_have
    assert ('%d file%s missing from' % (n_missing, _pl(n_missing))) in log
    for want in ('Extracting missing', 'Successfully '):
        if n_missing > 0:
            assert want in log
        else:
            assert want not in log
    assert op.isdir(destination)
    for fname in _zip_fnames:
        assert op.isfile(op.join(destination, fname))
Esempio n. 16
0
def test_helmet():
    """Test loading helmet surfaces."""
    base_dir = op.join(op.dirname(__file__), '..', 'io')
    fname_raw = op.join(base_dir, 'tests', 'data', 'test_raw.fif')
    fname_kit_raw = op.join(base_dir, 'kit', 'tests', 'data',
                            'test_bin_raw.fif')
    fname_bti_raw = op.join(base_dir, 'bti', 'tests', 'data',
                            'exported4D_linux_raw.fif')
    fname_ctf_raw = op.join(base_dir, 'tests', 'data', 'test_ctf_raw.fif')
    fname_trans = op.join(base_dir, 'tests', 'data',
                          'sample-audvis-raw-trans.txt')
    trans = _get_trans(fname_trans)[0]
    new_info = read_info(fname_raw)
    artemis_info = new_info.copy()
    for pick in pick_types(new_info):
        new_info['chs'][pick]['coil_type'] = 9999
        artemis_info['chs'][pick]['coil_type'] = \
            FIFF.FIFFV_COIL_ARTEMIS123_GRAD
    for info, n, name in [(read_info(fname_raw), 304, '306m'),
                          (read_info(fname_kit_raw), 304, 'KIT'),
                          (read_info(fname_bti_raw), 304, 'Magnes'),
                          (read_info(fname_ctf_raw), 342, 'CTF'),
                          (new_info, 102, 'unknown'),
                          (artemis_info, 102, 'ARTEMIS123')
                          ]:
        with catch_logging() as log:
            helmet = get_meg_helmet_surf(info, trans, verbose=True)
        log = log.getvalue()
        assert name in log
        assert_equal(len(helmet['rr']), n)
        assert_equal(len(helmet['rr']), len(helmet['nn']))
Esempio n. 17
0
def test_calculate_chpi_positions():
    """Test calculation of cHPI positions
    """
    trans, rot, t = get_chpi_positions(pos_fname)
    with warnings.catch_warnings(record=True):
        raw = Raw(raw_fif_fname, allow_maxshield=True, preload=True)
    t -= raw.first_samp / raw.info['sfreq']
    trans_est, rot_est, t_est = _calculate_chpi_positions(raw, verbose='debug')
    _compare_positions((trans, rot, t), (trans_est, rot_est, t_est))

    # degenerate conditions
    raw_no_chpi = Raw(test_fif_fname)
    assert_raises(RuntimeError, _calculate_chpi_positions, raw_no_chpi)
    raw_bad = raw.copy()
    for d in raw_bad.info['dig']:
        if d['kind'] == FIFF.FIFFV_POINT_HPI:
            d['coord_frame'] = 999
            break
    assert_raises(RuntimeError, _calculate_chpi_positions, raw_bad)
    raw_bad = raw.copy()
    for d in raw_bad.info['dig']:
        if d['kind'] == FIFF.FIFFV_POINT_HPI:
            d['r'] = np.ones(3)
    raw_bad.crop(0, 1., copy=False)
    with catch_logging() as log_file:
        _calculate_chpi_positions(raw_bad)
    for line in log_file.getvalue().split('\n')[:-1]:
        assert_true('0/5 acceptable' in line)
Esempio n. 18
0
def test_notch_filters():
    """Test notch filters
    """
    # let's use an ugly, prime sfreq for fun
    sfreq = 487.0
    sig_len_secs = 20
    t = np.arange(0, int(sig_len_secs * sfreq)) / sfreq
    freqs = np.arange(60, 241, 60)

    # make a "signal"
    rng = np.random.RandomState(0)
    a = rng.randn(int(sig_len_secs * sfreq))
    orig_power = np.sqrt(np.mean(a ** 2))
    # make line noise
    a += np.sum([np.sin(2 * np.pi * f * t) for f in freqs], axis=0)

    # only allow None line_freqs with 'spectrum_fit' mode
    assert_raises(ValueError, notch_filter, a, sfreq, None, "fft")
    assert_raises(ValueError, notch_filter, a, sfreq, None, "iir")
    methods = ["spectrum_fit", "spectrum_fit", "fft", "fft", "iir"]
    filter_lengths = [None, None, None, 8192, None]
    line_freqs = [None, freqs, freqs, freqs, freqs]
    tols = [2, 1, 1, 1]
    for meth, lf, fl, tol in zip(methods, line_freqs, filter_lengths, tols):
        with catch_logging() as log_file:
            b = notch_filter(a, sfreq, lf, filter_length=fl, method=meth, verbose="INFO")

        if lf is None:
            out = log_file.getvalue().split("\n")[:-1]
            if len(out) != 2:
                raise ValueError("Detected frequencies not logged properly")
            out = np.fromstring(out[1], sep=", ")
            assert_array_almost_equal(out, freqs)
        new_power = np.sqrt(sum_squared(b) / b.size)
        assert_almost_equal(new_power, orig_power, tol)
def test_cache_dir():
    """Test use of cache dir
    """
    tempdir = _TempDir()
    orig_dir = os.getenv('MNE_CACHE_DIR', None)
    orig_size = os.getenv('MNE_MEMMAP_MIN_SIZE', None)
    rng = np.random.RandomState(0)
    X = rng.randn(9, 2, 10)
    try:
        os.environ['MNE_MEMMAP_MIN_SIZE'] = '1K'
        os.environ['MNE_CACHE_DIR'] = tempdir
        # Fix error for #1507: in-place when memmapping
        with catch_logging() as log_file:
            permutation_cluster_1samp_test(
                X, buffer_size=None, n_jobs=2, n_permutations=1,
                seed=0, stat_fun=ttest_1samp_no_p, verbose=False)
            # ensure that non-independence yields warning
            stat_fun = partial(ttest_1samp_no_p, sigma=1e-3)
            assert_true('independently' not in log_file.getvalue())
            with warnings.catch_warnings(record=True):  # independently
                permutation_cluster_1samp_test(
                    X, buffer_size=10, n_jobs=2, n_permutations=1,
                    seed=0, stat_fun=stat_fun, verbose=False)
            assert_true('independently' in log_file.getvalue())
    finally:
        if orig_dir is not None:
            os.environ['MNE_CACHE_DIR'] = orig_dir
        else:
            del os.environ['MNE_CACHE_DIR']
        if orig_size is not None:
            os.environ['MNE_MEMMAP_MIN_SIZE'] = orig_size
        else:
            del os.environ['MNE_MEMMAP_MIN_SIZE']
Esempio n. 20
0
def test_calculate_chpi_positions():
    """Test calculation of cHPI positions
    """
    trans, rot, t = head_pos_to_trans_rot_t(read_head_pos(pos_fname))
    raw = Raw(chpi_fif_fname, allow_maxshield="yes", preload=True)
    t -= raw.first_samp / raw.info["sfreq"]
    quats = _calculate_chpi_positions(raw, verbose="debug")
    trans_est, rot_est, t_est = head_pos_to_trans_rot_t(quats)
    _compare_positions((trans, rot, t), (trans_est, rot_est, t_est), 0.003)

    # degenerate conditions
    raw_no_chpi = Raw(test_fif_fname)
    assert_raises(RuntimeError, _calculate_chpi_positions, raw_no_chpi)
    raw_bad = raw.copy()
    for d in raw_bad.info["dig"]:
        if d["kind"] == FIFF.FIFFV_POINT_HPI:
            d["coord_frame"] = 999
            break
    assert_raises(RuntimeError, _calculate_chpi_positions, raw_bad)
    raw_bad = raw.copy()
    for d in raw_bad.info["dig"]:
        if d["kind"] == FIFF.FIFFV_POINT_HPI:
            d["r"] = np.ones(3)
    raw_bad.crop(0, 1.0, copy=False)
    with warnings.catch_warnings(record=True):  # bad pos
        with catch_logging() as log_file:
            _calculate_chpi_positions(raw_bad, verbose=True)
    # ignore HPI info header and [done] footer
    for line in log_file.getvalue().strip().split("\n")[4:-1]:
        assert_true("0/5 good" in line)

    # half the rate cuts off cHPI coils
    with warnings.catch_warnings(record=True):  # uint cast suggestion
        raw.resample(300.0, npad="auto")
    assert_raises_regex(RuntimeError, "above the", _calculate_chpi_positions, raw)
Esempio n. 21
0
def test_notch_filters():
    """Test notch filters."""
    # let's use an ugly, prime sfreq for fun
    sfreq = 487.0
    sig_len_secs = 20
    t = np.arange(0, int(sig_len_secs * sfreq)) / sfreq
    freqs = np.arange(60, 241, 60)

    # make a "signal"
    a = rng.randn(int(sig_len_secs * sfreq))
    orig_power = np.sqrt(np.mean(a ** 2))
    # make line noise
    a += np.sum([np.sin(2 * np.pi * f * t) for f in freqs], axis=0)

    # only allow None line_freqs with 'spectrum_fit' mode
    assert_raises(ValueError, notch_filter, a, sfreq, None, 'fft')
    assert_raises(ValueError, notch_filter, a, sfreq, None, 'iir')
    methods = ['spectrum_fit', 'spectrum_fit', 'fft', 'fft', 'iir']
    filter_lengths = ['auto', 'auto', 'auto', 8192, 'auto']
    line_freqs = [None, freqs, freqs, freqs, freqs]
    tols = [2, 1, 1, 1]
    for meth, lf, fl, tol in zip(methods, line_freqs, filter_lengths, tols):
        with catch_logging() as log_file:
            with warnings.catch_warnings(record=True):
                b = notch_filter(a, sfreq, lf, fl, method=meth, verbose=True)
        if lf is None:
            out = log_file.getvalue().split('\n')[:-1]
            if len(out) != 2 and len(out) != 3:  # force_serial: len(out) == 3
                raise ValueError('Detected frequencies not logged properly')
            out = np.fromstring(out[-1], sep=', ')
            assert_array_almost_equal(out, freqs)
        new_power = np.sqrt(sum_squared(b) / b.size)
        assert_almost_equal(new_power, orig_power, tol)
Esempio n. 22
0
def test_check_compensation_consistency():
    """Test check picks compensation."""
    raw = read_raw_ctf(ctf_fname, preload=False)
    events = make_fixed_length_events(raw, 99999)
    picks = pick_types(raw.info, meg=True, exclude=[], ref_meg=True)
    pick_ch_names = [raw.info['ch_names'][idx] for idx in picks]
    for (comp, expected_result) in zip([0, 1], [False, False]):
        raw.apply_gradient_compensation(comp)
        ret, missing = _bad_chans_comp(raw.info, pick_ch_names)
        assert ret == expected_result
        assert len(missing) == 0
        Epochs(raw, events, None, -0.2, 0.2, preload=False, picks=picks)

    picks = pick_types(raw.info, meg=True, exclude=[], ref_meg=False)
    pick_ch_names = [raw.info['ch_names'][idx] for idx in picks]

    for (comp, expected_result) in zip([0, 1], [False, True]):
        raw.apply_gradient_compensation(comp)
        ret, missing = _bad_chans_comp(raw.info, pick_ch_names)
        assert ret == expected_result
        assert len(missing) == 17
        with catch_logging() as log:
            Epochs(raw, events, None, -0.2, 0.2, preload=False,
                   picks=picks, verbose=True)
            assert'Removing 5 compensators' in log.getvalue()
Esempio n. 23
0
def test_cuda():
    """Test CUDA-based filtering"""
    # NOTE: don't make test_cuda() the last test, or pycuda might spew
    # some warnings about clean-up failing
    # Also, using `n_jobs='cuda'` on a non-CUDA system should be fine,
    # as it should fall back to using n_jobs=1.
    sfreq = 500
    sig_len_secs = 20
    a = rng.randn(sig_len_secs * sfreq)

    with catch_logging() as log_file:
        for fl in ['auto', '10s', 2048]:
            bp = band_pass_filter(a, sfreq, 4, 8, fl, 1.0, 1.0, n_jobs=1,
                                  phase='zero')
            bs = band_stop_filter(a, sfreq, 4 - 1.0, 8 + 1.0, fl, 1.0, 1.0,
                                  n_jobs=1, phase='zero')
            lp = low_pass_filter(a, sfreq, 8, fl, 1.0, n_jobs=1, phase='zero')
            hp = high_pass_filter(lp, sfreq, 4, fl, 1.0, n_jobs=1,
                                  phase='zero')

            bp_c = band_pass_filter(a, sfreq, 4, 8, fl, 1.0, 1.0,
                                    n_jobs='cuda', verbose='INFO',
                                    phase='zero')
            bs_c = band_stop_filter(a, sfreq, 4 - 1.0, 8 + 1.0, fl, 1.0, 1.0,
                                    n_jobs='cuda', verbose='INFO',
                                    phase='zero')
            lp_c = low_pass_filter(a, sfreq, 8, fl, 1.0,
                                   n_jobs='cuda', verbose='INFO',
                                   phase='zero')
            hp_c = high_pass_filter(lp, sfreq, 4, fl, 1.0,
                                    n_jobs='cuda', verbose='INFO',
                                    phase='zero')

            assert_array_almost_equal(bp, bp_c, 12)
            assert_array_almost_equal(bs, bs_c, 12)
            assert_array_almost_equal(lp, lp_c, 12)
            assert_array_almost_equal(hp, hp_c, 12)

    # check to make sure we actually used CUDA
    out = log_file.getvalue().split('\n')[:-1]
    # triage based on whether or not we actually expected to use CUDA
    from mne.cuda import _cuda_capable  # allow above funs to set it
    tot = 12 if _cuda_capable else 0
    assert_true(sum(['Using CUDA for FFT FIR filtering' in o
                     for o in out]) == tot)

    # check resampling
    for window in ('boxcar', 'triang'):
        for N in (997, 1000):  # one prime, one even
            a = rng.randn(2, N)
            for fro, to in ((1, 2), (2, 1), (1, 3), (3, 1)):
                a1 = resample(a, fro, to, n_jobs=1, npad='auto',
                              window=window)
                a2 = resample(a, fro, to, n_jobs='cuda', npad='auto',
                              window=window)
                assert_allclose(a1, a2, rtol=1e-7, atol=1e-14)
    assert_array_almost_equal(a1, a2, 14)
    assert_array_equal(resample([0, 0], 2, 1, n_jobs='cuda'), [0., 0., 0., 0.])
    assert_array_equal(resample(np.zeros(2, np.float32), 2, 1, n_jobs='cuda'),
                       [0., 0., 0., 0.])
Esempio n. 24
0
def test_make_sphere_model():
    """Test making a sphere model."""
    info = read_info(fname_raw)
    pytest.raises(ValueError, make_sphere_model, 'foo', 'auto', info)
    pytest.raises(ValueError, make_sphere_model, 'auto', 'auto', None)
    pytest.raises(ValueError, make_sphere_model, 'auto', 'auto', info,
                  relative_radii=(), sigmas=())
    pytest.raises(ValueError, make_sphere_model, 'auto', 'auto', info,
                  relative_radii=(1,))  # wrong number of radii
    # here we just make sure it works -- the functionality is actually
    # tested more extensively e.g. in the forward and dipole code
    with catch_logging() as log:
        bem = make_sphere_model('auto', 'auto', info, verbose=True)
    log = log.getvalue()
    assert ' RV = ' in log
    for line in log.split('\n'):
        if ' RV = ' in line:
            val = float(line.split()[-2])
            assert val < 0.01  # actually decent fitting
            break
    assert '3 layers' in repr(bem)
    assert 'Sphere ' in repr(bem)
    assert ' mm' in repr(bem)
    bem = make_sphere_model('auto', None, info)
    assert 'no layers' in repr(bem)
    assert 'Sphere ' in repr(bem)
    pytest.raises(ValueError, make_sphere_model, sigmas=(0.33,),
                  relative_radii=(1.0,))
Esempio n. 25
0
def test_calculate_chpi_positions():
    """Test calculation of cHPI positions."""
    trans, rot, t = head_pos_to_trans_rot_t(read_head_pos(pos_fname))
    raw = read_raw_fif(chpi_fif_fname, allow_maxshield='yes', preload=True,
                       add_eeg_ref=False)
    t -= raw.first_samp / raw.info['sfreq']
    quats = _calculate_chpi_positions(raw, verbose='debug')
    trans_est, rot_est, t_est = head_pos_to_trans_rot_t(quats)
    _compare_positions((trans, rot, t), (trans_est, rot_est, t_est), 0.003)

    # degenerate conditions
    raw_no_chpi = read_raw_fif(test_fif_fname, add_eeg_ref=False)
    assert_raises(RuntimeError, _calculate_chpi_positions, raw_no_chpi)
    raw_bad = raw.copy()
    for d in raw_bad.info['dig']:
        if d['kind'] == FIFF.FIFFV_POINT_HPI:
            d['coord_frame'] = 999
            break
    assert_raises(RuntimeError, _calculate_chpi_positions, raw_bad)
    raw_bad = raw.copy()
    for d in raw_bad.info['dig']:
        if d['kind'] == FIFF.FIFFV_POINT_HPI:
            d['r'] = np.ones(3)
    raw_bad.crop(0, 1., copy=False)
    with warnings.catch_warnings(record=True):  # bad pos
        with catch_logging() as log_file:
            _calculate_chpi_positions(raw_bad, verbose=True)
    # ignore HPI info header and [done] footer
    assert_true('0/5 good' in log_file.getvalue().strip().split('\n')[-2])

    # half the rate cuts off cHPI coils
    with warnings.catch_warnings(record=True):  # uint cast suggestion
        raw.resample(300., npad='auto')
    assert_raises_regex(RuntimeError, 'above the',
                        _calculate_chpi_positions, raw)
Esempio n. 26
0
def test_reporting_fir(phase, fir_window, btype):
    """Test FIR filter reporting."""
    l_freq = 1. if btype == 'bandpass' else None
    fs = 1000.
    with catch_logging() as log:
        x = create_filter(None, fs, l_freq, 40, method='fir',
                          phase=phase, fir_window=fir_window, verbose=True)
    n_taps = len(x)
    log = log.getvalue()
    keys = ['FIR',
            btype,
            fir_window.capitalize(),
            'Filter length: %d samples' % (n_taps,),
            'passband ripple',
            'stopband attenuation',
            ]
    if phase == 'minimum':
        keys += [' causal ']
    else:
        keys += [' non-causal ', ' dB cutoff frequency: 45.00 Hz']
        if btype == 'bandpass':
            keys += [' dB cutoff frequency: 0.50 Hz']
    for key in keys:
        assert key in log
    if phase == 'zero':
        assert '-6 dB cutoff' in log
    elif phase == 'zero-double':
        assert '-12 dB cutoff' in log
    else:
        # XXX Eventually we should figure out where the resulting point is,
        # since the minimum-phase process will change it. For now we don't
        # report it.
        assert phase == 'minimum'
    # Verify some of the filter properties
    if phase == 'zero-double':
        x = np.convolve(x, x)  # effectively what happens
    w, h = freqz(x, worN=10000)
    w *= fs / (2 * np.pi)
    h = np.abs(h)
    # passband
    passes = [np.argmin(np.abs(w - f)) for f in (1, 20, 40)]
    # stopband
    stops = [np.argmin(np.abs(w - 50.))]
    # transition
    mids = [np.argmin(np.abs(w - 45.))]
    # put these where they belong based on filter type
    assert w[0] == 0.
    idx_0 = 0
    idx_0p5 = np.argmin(np.abs(w - 0.5))
    if btype == 'bandpass':
        stops += [idx_0]
        mids += [idx_0p5]
    else:
        passes += [idx_0, idx_0p5]
    assert_allclose(h[passes], 1., atol=0.01)
    attenuation = -20 if phase == 'minimum' else -50
    assert_allclose(h[stops], 0., atol=10 ** (attenuation / 20.))
    if phase != 'minimum':  # haven't worked out the math for this yet
        expected = 0.25 if phase == 'zero-double' else 0.5
        assert_allclose(h[mids], expected, atol=0.01)
Esempio n. 27
0
def test_inverse_residual():
    """Test MNE inverse application."""
    # use fname_inv as it will be faster than fname_full (fewer verts and chs)
    evoked = _get_evoked().pick_types()
    inv = read_inverse_operator(fname_inv_fixed_depth)
    fwd = read_forward_solution(fname_fwd)
    fwd = convert_forward_solution(fwd, force_fixed=True, surf_ori=True)
    fwd = pick_channels_forward(fwd, evoked.ch_names)
    matcher = re.compile(r'.* ([0-9]?[0-9]?[0-9]?\.[0-9])% variance.*')
    for method in ('MNE', 'dSPM', 'sLORETA'):
        with catch_logging() as log:
            stc, residual = apply_inverse(
                evoked, inv, method=method, return_residual=True, verbose=True)
        log = log.getvalue()
        match = matcher.match(log.replace('\n', ' '))
        assert match is not None
        match = float(match.group(1))
        assert 45 < match < 50
        if method == 'MNE':  # must be first!
            recon = apply_forward(fwd, stc, evoked.info)
            proj_op = make_projector(evoked.info['projs'], evoked.ch_names)[0]
            recon.data[:] = np.dot(proj_op, recon.data)
            residual_fwd = evoked.copy()
            residual_fwd.data -= recon.data
        corr = np.corrcoef(residual_fwd.data.ravel(),
                           residual.data.ravel())[0, 1]
        assert corr > 0.999
    with catch_logging() as log:
        _, residual = apply_inverse(
            evoked, inv, 0., 'MNE', return_residual=True, verbose=True)
    log = log.getvalue()
    match = matcher.match(log.replace('\n', ' '))
    assert match is not None
    match = float(match.group(1))
    assert match == 100.
    assert_array_less(np.abs(residual.data), 1e-15)

    # Degenerate: we don't have the right representation for eLORETA for this
    with pytest.raises(ValueError, match='eLORETA does not .* support .*'):
        apply_inverse(evoked, inv, method="eLORETA", return_residual=True)
Esempio n. 28
0
def test_inverse_operator_channel_ordering(evoked, noise_cov):
    """Test MNE inverse computation is immune to channel reorderings."""
    # These are with original ordering
    evoked_orig = evoked.copy()
    fwd_orig = make_forward_solution(evoked.info, fname_trans, src_fname,
                                     fname_bem, eeg=True, mindist=5.0)
    fwd_orig = convert_forward_solution(fwd_orig, surf_ori=True)
    depth = dict(exp=0.8, limit_depth_chs=False)
    with catch_logging() as log:
        inv_orig = make_inverse_operator(evoked.info, fwd_orig, noise_cov,
                                         loose=0.2, depth=depth, verbose=True)
    log = log.getvalue()
    assert 'limit = 1/%s' % fwd_orig['nsource'] in log
    stc_1 = apply_inverse(evoked, inv_orig, lambda2, "dSPM")

    # Assume that a raw reordering applies to both evoked and noise_cov,
    # so we don't need to create those from scratch. Just reorder them,
    # then try to apply the original inverse operator
    new_order = np.arange(len(evoked.info['ch_names']))
    randomiser = np.random.RandomState(42)
    randomiser.shuffle(new_order)
    evoked.data = evoked.data[new_order]
    evoked.info['chs'] = [evoked.info['chs'][n] for n in new_order]
    evoked.info._update_redundant()
    evoked.info._check_consistency()

    cov_ch_reorder = [c for c in evoked.info['ch_names']
                      if (c in noise_cov.ch_names)]

    new_order_cov = [noise_cov.ch_names.index(name) for name in cov_ch_reorder]
    noise_cov['data'] = noise_cov.data[np.ix_(new_order_cov, new_order_cov)]
    noise_cov['names'] = [noise_cov['names'][idx] for idx in new_order_cov]

    fwd_reorder = make_forward_solution(evoked.info, fname_trans, src_fname,
                                        fname_bem, eeg=True, mindist=5.0)
    fwd_reorder = convert_forward_solution(fwd_reorder, surf_ori=True)
    inv_reorder = make_inverse_operator(evoked.info, fwd_reorder, noise_cov,
                                        loose=0.2, depth=depth)

    stc_2 = apply_inverse(evoked, inv_reorder, lambda2, "dSPM")

    assert_equal(stc_1.subject, stc_2.subject)
    assert_array_equal(stc_1.times, stc_2.times)
    assert_allclose(stc_1.data, stc_2.data, rtol=1e-5, atol=1e-5)
    assert (inv_orig['units'] == inv_reorder['units'])

    # Reload with original ordering & apply reordered inverse
    evoked = evoked_orig
    noise_cov = read_cov(fname_cov)

    stc_3 = apply_inverse(evoked, inv_reorder, lambda2, "dSPM")
    assert_allclose(stc_1.data, stc_3.data, rtol=1e-5, atol=1e-5)
Esempio n. 29
0
def test_cuda():
    """Test CUDA-based filtering
    """
    # NOTE: don't make test_cuda() the last test, or pycuda might spew
    # some warnings about clean-up failing
    # Also, using `n_jobs='cuda'` on a non-CUDA system should be fine,
    # as it should fall back to using n_jobs=1.
    sfreq = 500
    sig_len_secs = 20
    a = rng.randn(sig_len_secs * sfreq)

    with catch_logging() as log_file:
        for fl in ['10s', None, 2048]:
            bp = band_pass_filter(a, sfreq, 4, 8, n_jobs=1, filter_length=fl)
            bs = band_stop_filter(a, sfreq, 4 - 0.5, 8 + 0.5, n_jobs=1,
                                  filter_length=fl)
            lp = low_pass_filter(a, sfreq, 8, n_jobs=1, filter_length=fl)
            hp = high_pass_filter(lp, sfreq, 4, n_jobs=1, filter_length=fl)

            bp_c = band_pass_filter(a, sfreq, 4, 8, n_jobs='cuda',
                                    filter_length=fl, verbose='INFO')
            bs_c = band_stop_filter(a, sfreq, 4 - 0.5, 8 + 0.5, n_jobs='cuda',
                                    filter_length=fl, verbose='INFO')
            lp_c = low_pass_filter(a, sfreq, 8, n_jobs='cuda',
                                   filter_length=fl, verbose='INFO')
            hp_c = high_pass_filter(lp, sfreq, 4, n_jobs='cuda',
                                    filter_length=fl, verbose='INFO')

            assert_array_almost_equal(bp, bp_c, 12)
            assert_array_almost_equal(bs, bs_c, 12)
            assert_array_almost_equal(lp, lp_c, 12)
            assert_array_almost_equal(hp, hp_c, 12)

    # check to make sure we actually used CUDA
    out = log_file.getvalue().split('\n')[:-1]
    # triage based on whether or not we actually expected to use CUDA
    from mne.cuda import _cuda_capable  # allow above funs to set it
    tot = 12 if _cuda_capable else 0
    assert_true(sum(['Using CUDA for FFT FIR filtering' in o
                     for o in out]) == tot)

    # check resampling
    a = rng.randn(3, sig_len_secs * sfreq)
    a1 = resample(a, 1, 2, n_jobs=2, npad=0)
    a2 = resample(a, 1, 2, n_jobs='cuda', npad=0)
    a3 = resample(a, 2, 1, n_jobs=2, npad=0)
    a4 = resample(a, 2, 1, n_jobs='cuda', npad=0)
    assert_array_almost_equal(a3, a4, 14)
    assert_array_almost_equal(a1, a2, 14)
    assert_array_equal(resample([0, 0], 2, 1, n_jobs='cuda'), [0., 0., 0., 0.])
    assert_array_equal(resample(np.zeros(2, np.float32), 2, 1, n_jobs='cuda'),
                       [0., 0., 0., 0.])
Esempio n. 30
0
def test_get_data_reject():
    """Test if reject_by_annotation is working correctly."""
    fs = 256
    ch_names = ["C3", "Cz", "C4"]
    info = create_info(ch_names, sfreq=fs)
    raw = RawArray(np.zeros((len(ch_names), 10 * fs)), info)
    raw.set_annotations(Annotations(onset=[2, 4], duration=[3, 2],
                                    description="bad"))

    with catch_logging() as log:
        data = raw.get_data(reject_by_annotation="omit", verbose=True)
        msg = ('Omitting 1024 of 2560 (40.00%) samples, retaining 1536' +
               ' (60.00%) samples.')
        assert log.getvalue().strip() == msg
    assert data.shape == (len(ch_names), 1536)
    with catch_logging() as log:
        data = raw.get_data(reject_by_annotation="nan", verbose=True)
        msg = ('Setting 1024 of 2560 (40.00%) samples to NaN, retaining 1536' +
               ' (60.00%) samples.')
        assert log.getvalue().strip() == msg
    assert data.shape == (len(ch_names), 2560)  # shape doesn't change
    assert np.isnan(data).sum() == 3072  # but NaNs are introduced instead
def test_cache_dir(tmpdir, numba_conditional):
    """Test use of cache dir."""
    tempdir = str(tmpdir)
    orig_dir = os.getenv('MNE_CACHE_DIR', None)
    orig_size = os.getenv('MNE_MEMMAP_MIN_SIZE', None)
    rng = np.random.RandomState(0)
    X = rng.randn(9, 2, 10)
    try:
        os.environ['MNE_MEMMAP_MIN_SIZE'] = '1K'
        os.environ['MNE_CACHE_DIR'] = tempdir
        # Fix error for #1507: in-place when memmapping
        with catch_logging() as log_file:
            permutation_cluster_1samp_test(X,
                                           buffer_size=None,
                                           n_jobs=2,
                                           n_permutations=1,
                                           seed=0,
                                           stat_fun=ttest_1samp_no_p,
                                           verbose=False,
                                           out_type='mask')
        assert 'independently' not in log_file.getvalue()
        # ensure that non-independence yields warning
        stat_fun = partial(ttest_1samp_no_p, sigma=1e-3)
        if check_version('numpy', '1.17'):
            random_state = np.random.default_rng(0)
        else:
            random_state = 0
        with pytest.warns(RuntimeWarning, match='independently'):
            permutation_cluster_1samp_test(X,
                                           buffer_size=10,
                                           n_jobs=2,
                                           n_permutations=1,
                                           seed=random_state,
                                           stat_fun=stat_fun,
                                           verbose=False,
                                           out_type='mask')
    finally:
        if orig_dir is not None:
            os.environ['MNE_CACHE_DIR'] = orig_dir
        else:
            del os.environ['MNE_CACHE_DIR']
        if orig_size is not None:
            os.environ['MNE_MEMMAP_MIN_SIZE'] = orig_size
        else:
            del os.environ['MNE_MEMMAP_MIN_SIZE']
Esempio n. 32
0
def test_make_inverse_operator_fixed():
    """Test MNE inverse computation (fixed orientation)."""
    fwd = read_forward_solution_meg(fname_fwd)
    evoked = _get_evoked()
    noise_cov = read_cov(fname_cov)

    # can't make fixed inv with depth weighting without free ori fwd
    fwd_fixed = convert_forward_solution(fwd, force_fixed=True,
                                         use_cps=True)
    pytest.raises(ValueError, make_inverse_operator, evoked.info, fwd_fixed,
                  noise_cov, depth=0.8, fixed=True)

    # now compare to C solution
    # note that the forward solution must not be surface-oriented
    # to get equivalency (surf_ori=True changes the normals)
    with catch_logging() as log:
        inv_op = make_inverse_operator(  # test depth=0. alias for depth=None
            evoked.info, fwd, noise_cov, depth=0., fixed=True,
            use_cps=False, verbose=True)
    log = log.getvalue()
    assert 'rank 302 (3 small eigenvalues omitted)' in log
    assert 'EEG channels: 0' in repr(inv_op)
    assert 'MEG channels: 305' in repr(inv_op)
    del fwd_fixed
    inverse_operator_nodepth = read_inverse_operator(fname_inv_fixed_nodepth)
    # XXX We should have this but we don't (MNE-C doesn't restrict info):
    # assert 'EEG channels: 0' in repr(inverse_operator_nodepth)
    assert 'MEG channels: 305' in repr(inverse_operator_nodepth)
    _compare_inverses_approx(inverse_operator_nodepth, inv_op, evoked,
                             rtol=1e-5, atol=1e-4)
    # Inverse has 306 channels - 6 proj = 302
    assert (compute_rank_inverse(inverse_operator_nodepth) == 302)
    # Now with depth
    fwd_surf = convert_forward_solution(fwd, surf_ori=True)  # not fixed
    for kwargs, use_fwd in zip([dict(fixed=True), dict(loose=0.)],
                               [fwd, fwd_surf]):  # Should be equiv.
        inv_op_depth = make_inverse_operator(
            evoked.info, use_fwd, noise_cov, depth=0.8, use_cps=True,
            **kwargs)
        inverse_operator_depth = read_inverse_operator(fname_inv_fixed_depth)
        # Normals should be the adjusted ones
        assert_allclose(inverse_operator_depth['source_nn'],
                        fwd_surf['source_nn'][2::3], atol=1e-5)
        _compare_inverses_approx(inverse_operator_depth, inv_op_depth, evoked,
                                 rtol=1e-3, atol=1e-4)
Esempio n. 33
0
def test_plot_volume_source_estimates(mode, stype, init_t, want_t, init_p,
                                      want_p, bg_img):
    """Test interactive plotting of volume source estimates."""
    forward = read_forward_solution(fwd_fname)
    sample_src = forward['src']
    if init_p is not None:
        init_p = np.array(init_p) / 1000.

    vertices = [s['vertno'] for s in sample_src]
    n_verts = sum(len(v) for v in vertices)
    n_time = 2
    data = np.random.RandomState(0).rand(n_verts, n_time)

    if stype == 'vec':
        stc = VolVectorSourceEstimate(np.tile(data[:, np.newaxis], (1, 3, 1)),
                                      vertices, 1, 1)
    else:
        assert stype == 's'
        stc = VolSourceEstimate(data, vertices, 1, 1)
    with pytest.warns(None):  # sometimes get scalars/index warning
        with catch_logging() as log:
            fig = stc.plot(sample_src,
                           subject='sample',
                           subjects_dir=subjects_dir,
                           mode=mode,
                           initial_time=init_t,
                           initial_pos=init_p,
                           bg_img=bg_img,
                           verbose=True)
    log = log.getvalue()
    want_str = 't = %0.3f s' % want_t
    assert want_str in log, (want_str, init_t)
    want_str = '(%0.1f, %0.1f, %0.1f) mm' % want_p
    assert want_str in log, (want_str, init_p)
    for ax_idx in [0, 2, 3, 4]:
        _fake_click(fig, fig.axes[ax_idx], (0.3, 0.5))
    fig.canvas.key_press_event('left')
    fig.canvas.key_press_event('shift+right')
    if bg_img is not None:
        with pytest.raises(FileNotFoundError, match='MRI file .* not found'):
            stc.plot(sample_src,
                     subject='sample',
                     subjects_dir=subjects_dir,
                     mode='stat_map',
                     bg_img='junk.mgz')
Esempio n. 34
0
def test_make_forward_solution():
    """Test making M-EEG forward solution from python."""
    with catch_logging() as log:
        fwd_py = make_forward_solution(fname_raw,
                                       fname_trans,
                                       fname_src,
                                       fname_bem,
                                       mindist=5.,
                                       verbose=True)
    log = log.getvalue()
    assert 'Total 258/258 points inside the surface' in log
    assert (isinstance(fwd_py, Forward))
    fwd = read_forward_solution(fname_meeg)
    assert (isinstance(fwd, Forward))
    _compare_forwards(fwd, fwd_py, 366, 1494, meg_rtol=1e-3)
    # Homogeneous model
    with pytest.raises(RuntimeError, match='homogeneous.*1-layer.*EEG'):
        make_forward_solution(fname_raw, fname_trans, fname_src, fname_bem_meg)
Esempio n. 35
0
def test_plot_alignment_fnirs(renderer, tmp_path):
    """Test fNIRS plotting."""
    # Here we use subjects_dir=tmp_path, since no surfaces should actually
    # be loaded!

    # fNIRS (default is pairs)
    info = read_raw_nirx(nirx_fname).info
    assert info['nchan'] == 26
    kwargs = dict(trans='fsaverage', subject='fsaverage', surfaces=(),
                  verbose=True, subjects_dir=tmp_path)
    with catch_logging() as log:
        fig = plot_alignment(info, **kwargs)
    log = log.getvalue()
    assert f'fnirs_cw_amplitude: {info["nchan"]}' in log
    _assert_n_actors(fig, renderer, info['nchan'])

    fig = plot_alignment(
        info, fnirs=['channels', 'sources', 'detectors'], **kwargs)
    _assert_n_actors(fig, renderer, 3)
Esempio n. 36
0
def test_add_noise():
    """Test noise addition."""
    rng = np.random.RandomState(0)
    raw = read_raw_fif(raw_fname)
    raw.del_proj()
    picks = pick_types(raw.info, eeg=True, exclude=())
    cov = compute_raw_covariance(raw, picks=picks)
    with pytest.raises(RuntimeError, match='to be loaded'):
        add_noise(raw, cov)
    raw.crop(0, 1).load_data()
    with pytest.raises(TypeError, match='Raw, Epochs, or Evoked'):
        add_noise(0., cov)
    with pytest.raises(TypeError, match='Covariance'):
        add_noise(raw, 0.)
    # test a no-op (data preserved)
    orig_data = raw[:][0]
    zero_cov = cov.copy()
    zero_cov['data'].fill(0)
    add_noise(raw, zero_cov)
    new_data = raw[:][0]
    assert_allclose(orig_data, new_data, atol=1e-30)
    # set to zero to make comparisons easier
    raw._data[:] = 0.
    epochs = EpochsArray(np.zeros((1, len(raw.ch_names), 100)),
                         raw.info.copy())
    epochs.info['bads'] = []
    evoked = epochs.average(picks=np.arange(len(raw.ch_names)))
    for inst in (raw, epochs, evoked):
        with catch_logging() as log:
            add_noise(inst, cov, random_state=rng, verbose=True)
        log = log.getvalue()
        want = ('to {0}/{1} channels ({0}'.format(len(cov['names']),
                                                  len(raw.ch_names)))
        assert want in log
        if inst is evoked:
            inst = EpochsArray(inst.data[np.newaxis], inst.info)
        if inst is raw:
            cov_new = compute_raw_covariance(inst, picks=picks)
        else:
            cov_new = compute_covariance(inst)
        assert cov['names'] == cov_new['names']
        r = np.corrcoef(cov['data'].ravel(), cov_new['data'].ravel())[0, 1]
        assert r > 0.99
Esempio n. 37
0
def test_non_convergence():
    """Test non-convergence of MxNE solver to catch unexpected bugs."""
    n, p, t, alpha = 30, 40, 20, 1.
    rng = np.random.RandomState(0)
    G = rng.randn(n, p)
    G /= np.std(G, axis=0)[None, :]
    X = np.zeros((p, t))
    X[0] = 3
    X[4] = -2
    M = np.dot(G, X)

    # Impossible to converge with only 1 iteration and tol 1e-12
    # In case of non-convegence, we test that no error is returned.
    args = (M, G, alpha, 1, 1e-12)
    with catch_logging() as log:
        mixed_norm_solver(*args, active_set_size=None, debias=True,
                          solver='bcd', verbose=True)
    log = log.getvalue()
    assert 'Convergence reached' not in log
Esempio n. 38
0
def test_make_morph_maps():
    """Test reading and creating morph maps."""
    # make a new fake subjects_dir
    tempdir = _TempDir()
    for subject in ('sample', 'sample_ds', 'fsaverage_ds'):
        os.mkdir(op.join(tempdir, subject))
        os.mkdir(op.join(tempdir, subject, 'surf'))
        regs = ('reg',
                'left_right') if subject == 'fsaverage_ds' else ('reg', )
        for hemi in ['lh', 'rh']:
            for reg in regs:
                args = [subject, 'surf', hemi + '.sphere.' + reg]
                copyfile(op.join(subjects_dir, *args), op.join(tempdir, *args))

    for subject_from, subject_to, xhemi in (('fsaverage_ds', 'sample_ds',
                                             False), ('fsaverage_ds',
                                                      'fsaverage_ds', True)):
        # trigger the creation of morph-maps dir and create the map
        with catch_logging() as log:
            mmap = read_morph_map(subject_from,
                                  subject_to,
                                  tempdir,
                                  xhemi=xhemi,
                                  verbose=True)
        log = log.getvalue()
        assert 'does not exist' in log
        assert 'Creating' in log
        mmap2 = read_morph_map(subject_from,
                               subject_to,
                               subjects_dir,
                               xhemi=xhemi)
        assert_equal(len(mmap), len(mmap2))
        for m1, m2 in zip(mmap, mmap2):
            # deal with sparse matrix stuff
            diff = (m1 - m2).data
            assert_allclose(diff, np.zeros_like(diff), atol=1e-3, rtol=0)

    # This will also trigger creation, but it's trivial
    with pytest.warns(None):
        mmap = read_morph_map('sample', 'sample', subjects_dir=tempdir)
    for mm in mmap:
        assert (mm - sparse.eye(mm.shape[0], mm.shape[0])).sum() == 0
Esempio n. 39
0
def test_apply_function_verbose():
    """Test apply function verbosity
    """
    n_chan = 2
    n_times = 3
    ch_names = [str(ii) for ii in range(n_chan)]
    raw = RawArray(np.zeros((n_chan, n_times)),
                   create_info(ch_names, 1., 'mag'))
    # test return types in both code paths (parallel / 1 job)
    assert_raises(TypeError, raw.apply_function, bad_1, None, None, 1)
    assert_raises(ValueError, raw.apply_function, bad_2, None, None, 1)
    assert_raises(TypeError, raw.apply_function, bad_1, None, None, 2)
    assert_raises(ValueError, raw.apply_function, bad_2, None, None, 2)

    # check our arguments
    with catch_logging() as sio:
        raw.apply_function(printer, None, None, 1, verbose=False)
        assert_equal(len(sio.getvalue()), 0)
        raw.apply_function(printer, None, None, 1, verbose=True)
        assert_equal(sio.getvalue().count('\n'), n_chan)
Esempio n. 40
0
def test_apply_function_verbose():
    """Test apply function verbosity."""
    n_chan = 2
    n_times = 3
    ch_names = [str(ii) for ii in range(n_chan)]
    raw = RawArray(np.zeros((n_chan, n_times)),
                   create_info(ch_names, 1., 'mag'))
    # test return types in both code paths (parallel / 1 job)
    pytest.raises(TypeError, raw.apply_function, bad_1)
    pytest.raises(ValueError, raw.apply_function, bad_2)
    pytest.raises(TypeError, raw.apply_function, bad_1, n_jobs=2)
    pytest.raises(ValueError, raw.apply_function, bad_2, n_jobs=2)

    # check our arguments
    with catch_logging() as sio:
        out = raw.apply_function(printer, verbose=False)
        assert len(sio.getvalue()) == 0
        assert out is raw
        raw.apply_function(printer, verbose=True)
        assert sio.getvalue().count('\n') == n_chan
Esempio n. 41
0
def test_cache_dir():
    """Test use of cache dir
    """
    tempdir = _TempDir()
    orig_dir = os.getenv('MNE_CACHE_DIR', None)
    orig_size = os.getenv('MNE_MEMMAP_MIN_SIZE', None)
    rng = np.random.RandomState(0)
    X = rng.randn(9, 2, 10)
    try:
        os.environ['MNE_MEMMAP_MIN_SIZE'] = '1K'
        os.environ['MNE_CACHE_DIR'] = tempdir
        # Fix error for #1507: in-place when memmapping
        with catch_logging() as log_file:
            permutation_cluster_1samp_test(X,
                                           buffer_size=None,
                                           n_jobs=2,
                                           n_permutations=1,
                                           seed=0,
                                           stat_fun=ttest_1samp_no_p,
                                           verbose=False)
            # ensure that non-independence yields warning
            stat_fun = partial(ttest_1samp_no_p, sigma=1e-3)
            assert_true('independently' not in log_file.getvalue())
            with warnings.catch_warnings(record=True):  # independently
                permutation_cluster_1samp_test(X,
                                               buffer_size=10,
                                               n_jobs=2,
                                               n_permutations=1,
                                               seed=0,
                                               stat_fun=stat_fun,
                                               verbose=False)
            assert_true('independently' in log_file.getvalue())
    finally:
        if orig_dir is not None:
            os.environ['MNE_CACHE_DIR'] = orig_dir
        else:
            del os.environ['MNE_CACHE_DIR']
        if orig_size is not None:
            os.environ['MNE_MEMMAP_MIN_SIZE'] = orig_size
        else:
            del os.environ['MNE_MEMMAP_MIN_SIZE']
Esempio n. 42
0
def test_plot_volume_source_estimates_morph():
    """Test interactive plotting of volume source estimates with morph."""
    forward = read_forward_solution(fwd_fname)
    sample_src = forward['src']
    vertices = [s['vertno'] for s in sample_src]
    n_verts = sum(len(v) for v in vertices)
    n_time = 2
    data = np.random.RandomState(0).rand(n_verts, n_time)
    stc = VolSourceEstimate(data, vertices, 1, 1)
    sample_src[0]['subject_his_id'] = 'sample'  # old src
    morph = compute_source_morph(sample_src,
                                 'sample',
                                 'fsaverage',
                                 zooms=5,
                                 subjects_dir=subjects_dir)
    initial_pos = (-0.05, -0.01, -0.006)
    # sometimes get scalars/index warning
    with _record_warnings():
        with catch_logging() as log:
            stc.plot(morph,
                     subjects_dir=subjects_dir,
                     mode='glass_brain',
                     initial_pos=initial_pos,
                     verbose=True)
    log = log.getvalue()
    assert 't = 1.000 s' in log
    assert '(-52.0, -8.0, -7.0) mm' in log

    with pytest.raises(ValueError, match='Allowed values are'):
        stc.plot(sample_src, 'sample', subjects_dir, mode='abcd')
    vertices.append([])
    surface_stc = SourceEstimate(data, vertices, 1, 1)
    with pytest.raises(TypeError, match='an instance of VolSourceEstimate'):
        plot_volume_source_estimates(surface_stc, sample_src, 'sample',
                                     subjects_dir)
    with pytest.raises(ValueError, match='Negative colormap limits'):
        stc.plot(sample_src,
                 'sample',
                 subjects_dir,
                 clim=dict(lims=[-1, 2, 3], kind='value'))
Esempio n. 43
0
def test_notch_filters():
    """Test notch filters"""
    # let's use an ugly, prime sfreq for fun
    sfreq = 487.0
    sig_len_secs = 20
    t = np.arange(0, int(sig_len_secs * sfreq)) / sfreq
    freqs = np.arange(60, 241, 60)

    # make a "signal"
    a = rng.randn(int(sig_len_secs * sfreq))
    orig_power = np.sqrt(np.mean(a**2))
    # make line noise
    a += np.sum([np.sin(2 * np.pi * f * t) for f in freqs], axis=0)

    # only allow None line_freqs with 'spectrum_fit' mode
    assert_raises(ValueError, notch_filter, a, sfreq, None, 'fft')
    assert_raises(ValueError, notch_filter, a, sfreq, None, 'iir')
    methods = ['spectrum_fit', 'spectrum_fit', 'fft', 'fft', 'iir']
    filter_lengths = [None, None, None, 8192, None]
    line_freqs = [None, freqs, freqs, freqs, freqs]
    tols = [2, 1, 1, 1]
    for meth, lf, fl, tol in zip(methods, line_freqs, filter_lengths, tols):
        with catch_logging() as log_file:
            with warnings.catch_warnings(record=True):  # filter_length=None
                b = notch_filter(a,
                                 sfreq,
                                 lf,
                                 filter_length=fl,
                                 method=meth,
                                 phase='zero',
                                 verbose=True)

        if lf is None:
            out = log_file.getvalue().split('\n')[:-1]
            if len(out) != 2 and len(out) != 3:  # force_serial: len(out) == 3
                raise ValueError('Detected frequencies not logged properly')
            out = np.fromstring(out[-1], sep=', ')
            assert_array_almost_equal(out, freqs)
        new_power = np.sqrt(sum_squared(b) / b.size)
        assert_almost_equal(new_power, orig_power, tol)
Esempio n. 44
0
def test_cuda_fir():
    """Test CUDA-based filtering."""
    # Using `n_jobs='cuda'` on a non-CUDA system should be fine,
    # as it should fall back to using n_jobs=None.
    rng = np.random.RandomState(0)
    sfreq = 500
    sig_len_secs = 20
    a = rng.randn(sig_len_secs * sfreq)
    kwargs = dict(fir_design='firwin')

    with catch_logging() as log_file:
        for fl in ['auto', '10s', 2048]:
            args = [a, sfreq, 4, 8, None, fl, 1.0, 1.0]
            bp = filter_data(*args, **kwargs)
            bp_c = filter_data(*args, n_jobs='cuda', verbose='info', **kwargs)
            assert_array_almost_equal(bp, bp_c, 12)

            args = [a, sfreq, 8 + 1.0, 4 - 1.0, None, fl, 1.0, 1.0]
            bs = filter_data(*args, **kwargs)
            bs_c = filter_data(*args, n_jobs='cuda', verbose='info', **kwargs)
            assert_array_almost_equal(bs, bs_c, 12)

            args = [a, sfreq, None, 8, None, fl, 1.0]
            lp = filter_data(*args, **kwargs)
            lp_c = filter_data(*args, n_jobs='cuda', verbose='info', **kwargs)
            assert_array_almost_equal(lp, lp_c, 12)

            args = [lp, sfreq, 4, None, None, fl, 1.0]
            hp = filter_data(*args, **kwargs)
            hp_c = filter_data(*args, n_jobs='cuda', verbose='info', **kwargs)
            assert_array_almost_equal(hp, hp_c, 12)

    # check to make sure we actually used CUDA
    out = log_file.getvalue().split('\n')[:-1]
    # triage based on whether or not we actually expected to use CUDA
    from mne.cuda import _cuda_capable  # allow above funs to set it
    tot = 12 if _cuda_capable else 0
    assert sum(['Using CUDA for FFT FIR filtering' in o for o in out]) == tot
    if not _cuda_capable:
        pytest.skip('CUDA not enabled')
Esempio n. 45
0
def test_make_sphere_model():
    """Test making a sphere model."""
    info = read_info(fname_raw)
    pytest.raises(ValueError, make_sphere_model, 'foo', 'auto', info)
    pytest.raises(ValueError, make_sphere_model, 'auto', 'auto', None)
    pytest.raises(ValueError,
                  make_sphere_model,
                  'auto',
                  'auto',
                  info,
                  relative_radii=(),
                  sigmas=())
    pytest.raises(ValueError,
                  make_sphere_model,
                  'auto',
                  'auto',
                  info,
                  relative_radii=(1, ))  # wrong number of radii
    # here we just make sure it works -- the functionality is actually
    # tested more extensively e.g. in the forward and dipole code
    with catch_logging() as log:
        bem = make_sphere_model('auto', 'auto', info, verbose=True)
    log = log.getvalue()
    assert ' RV = ' in log
    for line in log.split('\n'):
        if ' RV = ' in line:
            val = float(line.split()[-2])
            assert val < 0.01  # actually decent fitting
            break
    assert '3 layers' in repr(bem)
    assert 'Sphere ' in repr(bem)
    assert ' mm' in repr(bem)
    bem = make_sphere_model('auto', None, info)
    assert 'no layers' in repr(bem)
    assert 'Sphere ' in repr(bem)
    pytest.raises(ValueError,
                  make_sphere_model,
                  sigmas=(0.33, ),
                  relative_radii=(1.0, ))
Esempio n. 46
0
def test_notch_filters(method, filter_length, line_freq, tol):
    """Test notch filters."""
    # let's use an ugly, prime sfreq for fun
    rng = np.random.RandomState(0)
    sfreq = 487
    sig_len_secs = 21
    t = np.arange(0, int(round(sig_len_secs * sfreq))) / sfreq

    # make a "signal"
    a = rng.randn(int(sig_len_secs * sfreq))
    orig_power = np.sqrt(np.mean(a**2))
    # make line noise
    a += np.sum([np.sin(2 * np.pi * f * t) for f in line_freqs], axis=0)

    # only allow None line_freqs with 'spectrum_fit' mode
    pytest.raises(ValueError, notch_filter, a, sfreq, None, 'fft')
    pytest.raises(ValueError, notch_filter, a, sfreq, None, 'iir')
    if method == 'spectrum_fit' and filter_length == 'auto':
        ctx = pytest.deprecated_call(match='will change to 10.')
    else:
        ctx = nullcontext()
    with catch_logging() as log_file:
        with ctx:
            b = notch_filter(a,
                             sfreq,
                             line_freq,
                             filter_length,
                             method=method,
                             verbose=True)
    if line_freq is None:
        out = [
            line.strip().split(':')[0]
            for line in log_file.getvalue().split('\n') if line.startswith(' ')
        ]
        assert len(out) == 4, 'Detected frequencies not logged properly'
        out = np.array(out, float)
        assert_array_almost_equal(out, line_freqs)
    new_power = np.sqrt(sum_squared(b) / b.size)
    assert_almost_equal(new_power, orig_power, tol)
Esempio n. 47
0
def test_make_bem_model(tmpdir, kwargs, fname):
    """Test BEM model creation from Python with I/O."""
    fname_temp = tmpdir.join('temp-bem.fif')
    with catch_logging() as log:
        model = make_bem_model('sample', ico=2, subjects_dir=subjects_dir,
                               verbose=True, **kwargs)
    log = log.getvalue()
    if len(kwargs.get('conductivity', (0, 0, 0))) == 1:
        assert 'distance' not in log
    else:
        assert re.search(r'urfaces is approximately *3\.4 mm', log) is not None
    assert re.search(r'inner skull CM is *0\.65 *-9\.62 *43\.85 mm',
                     log) is not None
    model_c = read_bem_surfaces(fname)
    _compare_bem_surfaces(model, model_c)
    write_bem_surfaces(fname_temp, model)
    model_read = read_bem_surfaces(fname_temp)
    _compare_bem_surfaces(model, model_c)
    _compare_bem_surfaces(model_read, model_c)
    # bad conductivity
    with pytest.raises(ValueError, match='conductivity must be'):
        make_bem_model('sample', 4, [0.3, 0.006], subjects_dir=subjects_dir)
Esempio n. 48
0
def test_ica_reject_buffer():
    """Test ICA data raw buffer rejection."""
    raw = read_raw_fif(raw_fname).crop(1.5, stop).load_data()
    picks = pick_types(raw.info,
                       meg=True,
                       stim=False,
                       ecg=False,
                       eog=False,
                       exclude='bads')
    ica = ICA(n_components=3, max_pca_components=4, n_pca_components=4)
    raw._data[2, 1000:1005] = 5e-12
    with catch_logging() as drop_log:
        with warnings.catch_warnings(record=True):
            ica.fit(raw,
                    picks[:5],
                    reject=dict(mag=2.5e-12),
                    decim=2,
                    tstep=0.01,
                    verbose=True)
        assert_true(raw._data[:5, ::2].shape[1] - 4 == ica.n_samples_)
    log = [l for l in drop_log.getvalue().split('\n') if 'detected' in l]
    assert_equal(len(log), 1)
Esempio n. 49
0
def test_saving_picked():
    """Test saving picked CTF instances."""
    temp_dir = _TempDir()
    out_fname = op.join(temp_dir, 'test_py_raw.fif')
    raw = read_raw_ctf(op.join(ctf_dir, ctf_fname_1_trial))
    raw.crop(0, 1).load_data()
    assert raw.compensation_grade == get_current_comp(raw.info) == 0
    assert len(raw.info['comps']) == 5
    pick_kwargs = dict(meg=True, ref_meg=False, verbose=True)
    with catch_logging() as log:
        raw_pick = raw.copy().pick_types(**pick_kwargs)
    assert len(raw.info['comps']) == 5
    assert len(raw_pick.info['comps']) == 0
    log = log.getvalue()
    assert 'Removing 5 compensators' in log
    raw_pick.save(out_fname)  # should work
    read_raw_fif(out_fname)
    read_raw_fif(out_fname, preload=True)
    # If comp is applied, picking should error
    raw.apply_gradient_compensation(1)
    assert raw.compensation_grade == get_current_comp(raw.info) == 1
    with pytest.raises(RuntimeError, match='Compensation grade 1 has been'):
        raw.copy().pick_types(**pick_kwargs)
Esempio n. 50
0
def test_rap_music_sphere():
    """Test RAP-MUSIC with real data, sphere model, MEG only."""
    evoked, noise_cov = _get_data(ch_decim=8)
    sphere = mne.make_sphere_model(r0=(0., 0., 0.04))
    src = mne.setup_volume_source_space(subject=None,
                                        pos=10.,
                                        sphere=(0.0, 0.0, 40, 65.0),
                                        mindist=5.0,
                                        exclude=0.0,
                                        sphere_units='mm')
    forward = mne.make_forward_solution(evoked.info,
                                        trans=None,
                                        src=src,
                                        bem=sphere)

    with catch_logging() as log:
        dipoles = rap_music(evoked,
                            forward,
                            noise_cov,
                            n_dipoles=2,
                            verbose=True)
    assert_var_exp_log(log.getvalue(), 47, 49)
    # Test that there is one dipole on each hemisphere
    pos = np.array([dip.pos[0] for dip in dipoles])
    assert pos.shape == (2, 3)
    assert (pos[:, 0] < 0).sum() == 1
    assert (pos[:, 0] > 0).sum() == 1
    # Check the amplitude scale
    assert (1e-10 < dipoles[0].amplitude[0] < 1e-7)
    # Check the orientation
    dip_fit = mne.fit_dipole(evoked, noise_cov, sphere)[0]
    assert (np.max(np.abs(np.dot(dip_fit.ori, dipoles[0].ori[0]))) > 0.99)
    assert (np.max(np.abs(np.dot(dip_fit.ori, dipoles[1].ori[0]))) > 0.99)
    idx = dip_fit.gof.argmax()
    dist = np.linalg.norm(dipoles[0].pos[idx] - dip_fit.pos[idx])
    assert 0.004 <= dist < 0.007
    assert_allclose(dipoles[0].gof[idx], dip_fit.gof[idx], atol=3)
Esempio n. 51
0
def test_calculate_chpi_positions():
    """Test calculation of cHPI positions."""
    trans, rot, t = head_pos_to_trans_rot_t(read_head_pos(pos_fname))
    raw = read_raw_fif(chpi_fif_fname,
                       allow_maxshield='yes',
                       preload=True,
                       add_eeg_ref=False)
    t -= raw.first_samp / raw.info['sfreq']
    quats = _calculate_chpi_positions(raw, verbose='debug')
    trans_est, rot_est, t_est = head_pos_to_trans_rot_t(quats)
    _compare_positions((trans, rot, t), (trans_est, rot_est, t_est), 0.003)

    # degenerate conditions
    raw_no_chpi = read_raw_fif(test_fif_fname, add_eeg_ref=False)
    assert_raises(RuntimeError, _calculate_chpi_positions, raw_no_chpi)
    raw_bad = raw.copy()
    for d in raw_bad.info['dig']:
        if d['kind'] == FIFF.FIFFV_POINT_HPI:
            d['coord_frame'] = 999
            break
    assert_raises(RuntimeError, _calculate_chpi_positions, raw_bad)
    raw_bad = raw.copy()
    for d in raw_bad.info['dig']:
        if d['kind'] == FIFF.FIFFV_POINT_HPI:
            d['r'] = np.ones(3)
    raw_bad.crop(0, 1., copy=False)
    with warnings.catch_warnings(record=True):  # bad pos
        with catch_logging() as log_file:
            _calculate_chpi_positions(raw_bad, verbose=True)
    # ignore HPI info header and [done] footer
    assert_true('0/5 good' in log_file.getvalue().strip().split('\n')[-2])

    # half the rate cuts off cHPI coils
    with warnings.catch_warnings(record=True):  # uint cast suggestion
        raw.resample(300., npad='auto')
    assert_raises_regex(RuntimeError, 'above the', _calculate_chpi_positions,
                        raw)
Esempio n. 52
0
def test_read_raw_curry_rfDC(fname, tol, mock_dev_head_t, tmpdir):
    """Test reading CURRY files."""
    if mock_dev_head_t:
        if 'Curry 7' in fname:  # not supported yet
            return
        # copy files to tmpdir
        base = op.splitext(fname)[0]
        for ext in ('.cdt', '.cdt.dpa'):
            src = base + ext
            dst = op.join(tmpdir, op.basename(base) + ext)
            copyfile(src, dst)
            if ext == '.cdt.dpa':
                with open(dst, 'a') as fid:
                    fid.write(LM_CONTENT)
        fname = op.join(tmpdir, op.basename(fname))
        with open(fname + '.hpi', 'w') as fid:
            fid.write(HPI_CONTENT)

    # check data
    bti_rfDC = read_raw_bti(pdf_fname=bti_rfDC_file, head_shape_fname=None)
    with catch_logging() as log:
        raw = read_raw_curry(fname, verbose=True)
    log = log.getvalue()
    if mock_dev_head_t:
        assert 'Composing device' in log
    else:
        assert 'Leaving device' in log
        assert 'no landmark' in log

    # test on the eeg chans, since these were not renamed by curry
    eeg_names = [
        ch["ch_name"] for ch in raw.info["chs"]
        if ch["kind"] == FIFF.FIFFV_EEG_CH
    ]

    assert_allclose(raw.get_data(eeg_names),
                    bti_rfDC.get_data(eeg_names),
                    rtol=tol)
    assert bti_rfDC.info['dev_head_t'] is not None  # XXX probably a BTI bug
    if mock_dev_head_t:
        assert raw.info['dev_head_t'] is not None
        assert_allclose(raw.info['dev_head_t']['trans'], WANT_TRANS, atol=1e-5)
    else:
        assert raw.info['dev_head_t'] is None

    # check that most MEG sensors are approximately oriented outward from
    # the device origin
    n_meg = n_eeg = n_other = 0
    pos = list()
    nn = list()
    for ch in raw.info['chs']:
        if ch['kind'] == FIFF.FIFFV_MEG_CH:
            assert ch['coil_type'] == FIFF.FIFFV_COIL_CTF_GRAD
            t = _loc_to_coil_trans(ch['loc'])
            pos.append(t[:3, 3])
            nn.append(t[:3, 2])
            assert_allclose(np.linalg.norm(nn[-1]), 1.)
            n_meg += 1
        elif ch['kind'] == FIFF.FIFFV_EEG_CH:
            assert ch['coil_type'] == FIFF.FIFFV_COIL_EEG
            n_eeg += 1
        else:
            assert ch['coil_type'] == FIFF.FIFFV_COIL_NONE
            n_other += 1
    assert n_meg == 148
    assert n_eeg == 31
    assert n_other == 15
    pos = np.array(pos)
    nn = np.array(nn)
    rad, origin = _fit_sphere(pos, disp=False)
    assert 0.11 < rad < 0.13
    pos -= origin
    pos /= np.linalg.norm(pos, axis=1, keepdims=True)
    angles = np.abs(np.rad2deg(np.arccos((pos * nn).sum(-1))))
    assert (angles < 20).sum() > 100
Esempio n. 53
0
def test_other_systems():
    """Test Maxwell filtering on KIT, BTI, and CTF files."""
    # KIT
    kit_dir = op.join(io_dir, 'kit', 'tests', 'data')
    sqd_path = op.join(kit_dir, 'test.sqd')
    mrk_path = op.join(kit_dir, 'test_mrk.sqd')
    elp_path = op.join(kit_dir, 'test_elp.txt')
    hsp_path = op.join(kit_dir, 'test_hsp.txt')
    raw_kit = read_raw_kit(sqd_path, mrk_path, elp_path, hsp_path)
    with warnings.catch_warnings(record=True):  # head fit
        assert_raises(RuntimeError, maxwell_filter, raw_kit)
    raw_sss = maxwell_filter(raw_kit, origin=(0., 0., 0.04), ignore_ref=True)
    _assert_n_free(raw_sss, 65, 65)
    raw_sss_auto = maxwell_filter(raw_kit,
                                  origin=(0., 0., 0.04),
                                  ignore_ref=True,
                                  mag_scale='auto')
    assert_allclose(raw_sss._data, raw_sss_auto._data)
    # XXX this KIT origin fit is terrible! Eventually we should get a
    # corrected HSP file with proper coverage
    with warnings.catch_warnings(record=True):
        with catch_logging() as log_file:
            assert_raises(RuntimeError,
                          maxwell_filter,
                          raw_kit,
                          ignore_ref=True,
                          regularize=None)  # bad condition
            raw_sss = maxwell_filter(raw_kit,
                                     origin='auto',
                                     ignore_ref=True,
                                     bad_condition='warning',
                                     verbose='warning')
    log_file = log_file.getvalue()
    assert_true('badly conditioned' in log_file)
    assert_true('more than 20 mm from' in log_file)
    # fits can differ slightly based on scipy version, so be lenient here
    _assert_n_free(raw_sss, 28, 34)  # bad origin == brutal reg
    # Let's set the origin
    with warnings.catch_warnings(record=True):
        with catch_logging() as log_file:
            raw_sss = maxwell_filter(raw_kit,
                                     origin=(0., 0., 0.04),
                                     ignore_ref=True,
                                     bad_condition='warning',
                                     regularize=None,
                                     verbose='warning')
    log_file = log_file.getvalue()
    assert_true('badly conditioned' in log_file)
    _assert_n_free(raw_sss, 80)
    # Now with reg
    with warnings.catch_warnings(record=True):
        with catch_logging() as log_file:
            raw_sss = maxwell_filter(raw_kit,
                                     origin=(0., 0., 0.04),
                                     ignore_ref=True,
                                     verbose=True)
    log_file = log_file.getvalue()
    assert_true('badly conditioned' not in log_file)
    _assert_n_free(raw_sss, 65)

    # BTi
    bti_dir = op.join(io_dir, 'bti', 'tests', 'data')
    bti_pdf = op.join(bti_dir, 'test_pdf_linux')
    bti_config = op.join(bti_dir, 'test_config_linux')
    bti_hs = op.join(bti_dir, 'test_hs_linux')
    with warnings.catch_warnings(record=True):  # weght table
        raw_bti = read_raw_bti(bti_pdf, bti_config, bti_hs, preload=False)
    picks = pick_types(raw_bti.info, meg='mag', exclude=())
    power = np.sqrt(np.sum(raw_bti[picks][0]**2))
    raw_sss = maxwell_filter(raw_bti)
    _assert_n_free(raw_sss, 70)
    _assert_shielding(raw_sss, power, 0.5)
    raw_sss_auto = maxwell_filter(raw_bti, mag_scale='auto', verbose=True)
    _assert_shielding(raw_sss_auto, power, 0.7)

    # CTF
    raw_ctf = read_crop(fname_ctf_raw)
    assert_equal(raw_ctf.compensation_grade, 3)
    assert_raises(RuntimeError, maxwell_filter, raw_ctf)  # compensated
    raw_ctf.apply_gradient_compensation(0)
    assert_raises(ValueError, maxwell_filter, raw_ctf)  # cannot fit headshape
    raw_sss = maxwell_filter(raw_ctf, origin=(0., 0., 0.04))
    _assert_n_free(raw_sss, 68)
    _assert_shielding(raw_sss, raw_ctf, 1.8)
    raw_sss = maxwell_filter(raw_ctf, origin=(0., 0., 0.04), ignore_ref=True)
    _assert_n_free(raw_sss, 70)
    _assert_shielding(raw_sss, raw_ctf, 12)
    raw_sss_auto = maxwell_filter(raw_ctf,
                                  origin=(0., 0., 0.04),
                                  ignore_ref=True,
                                  mag_scale='auto')
    assert_allclose(raw_sss._data, raw_sss_auto._data)
Esempio n. 54
0
def test_plot_evoked():
    """Test plotting of evoked."""
    import matplotlib.pyplot as plt
    rng = np.random.RandomState(0)
    evoked = _get_epochs().average()
    fig = evoked.plot(proj=True, hline=[1], exclude=[], window_title='foo',
                      time_unit='s')
    # Test a click
    ax = fig.get_axes()[0]
    line = ax.lines[0]
    _fake_click(fig, ax,
                [line.get_xdata()[0], line.get_ydata()[0]], 'data')
    _fake_click(fig, ax,
                [ax.get_xlim()[0], ax.get_ylim()[1]], 'data')
    # plot with bad channels excluded & spatial_colors & zorder
    evoked.plot(exclude='bads', time_unit='s')

    # test selective updating of dict keys is working.
    evoked.plot(hline=[1], units=dict(mag='femto foo'), time_unit='s')
    evoked_delayed_ssp = _get_epochs_delayed_ssp().average()
    evoked_delayed_ssp.plot(proj='interactive', time_unit='s')
    evoked_delayed_ssp.apply_proj()
    assert_raises(RuntimeError, evoked_delayed_ssp.plot,
                  proj='interactive', time_unit='s')
    evoked_delayed_ssp.info['projs'] = []
    assert_raises(RuntimeError, evoked_delayed_ssp.plot,
                  proj='interactive', time_unit='s')
    assert_raises(RuntimeError, evoked_delayed_ssp.plot,
                  proj='interactive', axes='foo', time_unit='s')
    plt.close('all')

    # test GFP only
    evoked.plot(gfp='only', time_unit='s')
    assert_raises(ValueError, evoked.plot, gfp='foo', time_unit='s')

    evoked.plot_image(proj=True, time_unit='ms')
    # test mask
    evoked.plot_image(picks=[1, 2], mask=evoked.data > 0, time_unit='s')
    evoked.plot_image(picks=[1, 2], mask_cmap=None, colorbar=False,
                      mask=np.ones(evoked.data.shape).astype(bool),
                      time_unit='s')

    with warnings.catch_warnings(record=True) as w:
        evoked.plot_image(picks=[1, 2], mask=None, mask_style="both",
                          time_unit='s')
    assert len(w) == 2
    assert_raises(ValueError, evoked.plot_image, mask=evoked.data[1:, 1:] > 0,
                  time_unit='s')

    # plot with bad channels excluded
    evoked.plot_image(exclude='bads', cmap='interactive', time_unit='s')
    evoked.plot_image(exclude=evoked.info['bads'], time_unit='s')  # same thing
    plt.close('all')

    assert_raises(ValueError, evoked.plot_image, picks=[0, 0],
                  time_unit='s')  # duplicates

    evoked.plot_topo()  # should auto-find layout
    _line_plot_onselect(0, 200, ['mag', 'grad'], evoked.info, evoked.data,
                        evoked.times)
    plt.close('all')

    cov = read_cov(cov_fname)
    cov['method'] = 'empirical'
    cov['projs'] = []  # avoid warnings
    # test rank param.
    evoked.plot_white(cov, rank={'mag': 101, 'grad': 201}, time_unit='s')
    evoked.plot_white(cov, rank={'mag': 101}, time_unit='s')  # test rank param
    evoked.plot_white(cov, rank={'grad': 201}, time_unit='s')
    assert_raises(
        ValueError, evoked.plot_white, cov,
        rank={'mag': 101, 'grad': 201, 'meg': 306}, time_unit='s')
    assert_raises(
        ValueError, evoked.plot_white, cov, rank={'meg': 306}, time_unit='s')

    evoked.plot_white([cov, cov], time_unit='s')

    # plot_compare_evokeds: test condition contrast, CI, color assignment
    plot_compare_evokeds(evoked.copy().pick_types(meg='mag'))
    plot_compare_evokeds(
        evoked.copy().pick_types(meg='grad'), picks=[1, 2],
        show_sensors="upper right", show_legend="upper left")
    evokeds = [evoked.copy() for _ in range(10)]
    for evoked in evokeds:
        evoked.data += (rng.randn(*evoked.data.shape) *
                        np.std(evoked.data, axis=-1, keepdims=True))
    for picks in ([0], [1], [2], [0, 2], [1, 2], [0, 1, 2],):
        figs = plot_compare_evokeds([evokeds], picks=picks, ci=0.95)
        if not isinstance(figs, list):
            figs = [figs]
        for fig in figs:
            ext = fig.axes[0].collections[0].get_paths()[0].get_extents()
            xs, ylim = ext.get_points().T
            assert_allclose(xs, evoked.times[[0, -1]])
            line = fig.axes[0].lines[0]
            xs = line.get_xdata()
            assert_allclose(xs, evoked.times)
            ys = line.get_ydata()
            assert (ys < ylim[1]).all()
            assert (ys > ylim[0]).all()
        plt.close('all')

    evoked.rename_channels({'MEG 2142': "MEG 1642"})
    assert len(plot_compare_evokeds(evoked)) == 2
    colors = dict(red='r', blue='b')
    linestyles = dict(red='--', blue='-')
    red, blue = evoked.copy(), evoked.copy()
    red.data *= 1.1
    blue.data *= 0.9
    plot_compare_evokeds([red, blue], picks=3)  # list of evokeds
    plot_compare_evokeds([red, blue], picks=3, truncate_yaxis=True)
    plot_compare_evokeds([[red, evoked], [blue, evoked]],
                         picks=3)  # list of lists
    # test picking & plotting grads
    contrast = dict()
    contrast["red/stim"] = list((evoked.copy(), red))
    contrast["blue/stim"] = list((evoked.copy(), blue))
    # test a bunch of params at once
    for evokeds_ in (evoked.copy().pick_types(meg='mag'), contrast,
                     [red, blue], [[red, evoked], [blue, evoked]]):
        plot_compare_evokeds(evokeds_, picks=0, ci=True)  # also tests CI
    plt.close('all')
    # test styling +  a bunch of other params at once
    colors, linestyles = dict(red='r', blue='b'), dict(red='--', blue='-')
    plot_compare_evokeds(contrast, colors=colors, linestyles=linestyles,
                         picks=[0, 2], vlines=[.01, -.04], invert_y=True,
                         truncate_yaxis=False, ylim=dict(mag=(-10, 10)),
                         styles={"red/stim": {"linewidth": 1}},
                         show_sensors=True)
    # various bad styles
    params = [dict(picks=3, colors=dict(fake=1)),
              dict(picks=3, styles=dict(fake=1)), dict(picks=3, gfp=True),
              dict(picks=3, show_sensors="a"),
              dict(colors=dict(red=10., blue=-2))]
    for param in params:
        assert_raises(ValueError, plot_compare_evokeds, evoked, **param)
    assert_raises(TypeError, plot_compare_evokeds, evoked, picks='str')
    assert_raises(TypeError, plot_compare_evokeds, evoked, vlines='x')
    plt.close('all')
    # `evoked` must contain Evokeds
    assert_raises(TypeError, plot_compare_evokeds, [[1, 2], [3, 4]])
    # `ci` must be float or None
    assert_raises(TypeError, plot_compare_evokeds, contrast, ci='err')
    # test all-positive ylim
    contrast["red/stim"], contrast["blue/stim"] = red, blue
    plot_compare_evokeds(contrast, picks=[0], colors=['r', 'b'],
                         ylim=dict(mag=(1, 10)), ci=_parametric_ci,
                         truncate_yaxis='max_ticks', show_sensors=False,
                         show_legend=False)

    # sequential colors
    evokeds = (evoked, blue, red)
    contrasts = {"a{}/b".format(ii): ev for ii, ev in
                 enumerate(evokeds)}
    colors = {"a" + str(ii): ii for ii, _ in enumerate(evokeds)}
    contrasts["a1/c"] = evoked.copy()
    for split in (True, False):
        for linestyles in (["-"], {"b": "-", "c": ":"}):
            plot_compare_evokeds(
                contrasts, colors=colors, picks=[0], cmap='Reds',
                split_legend=split, linestyles=linestyles,
                ci=False, show_sensors=False)
    colors = {"a" + str(ii): ii / len(evokeds)
              for ii, _ in enumerate(evokeds)}
    plot_compare_evokeds(
        contrasts, colors=colors, picks=[0], cmap='Reds',
        split_legend=split, linestyles=linestyles, ci=False,
        show_sensors=False)
    red.info["chs"][0]["loc"][:2] = 0  # test plotting channel at zero
    plot_compare_evokeds(red, picks=[0],
                         ci=lambda x: [x.std(axis=0), -x.std(axis=0)])
    plot_compare_evokeds([red, blue], picks=[0], cmap="summer", ci=None,
                         split_legend=None)
    plot_compare_evokeds([red, blue], cmap=None, split_legend=True)
    assert_raises(ValueError, plot_compare_evokeds, [red] * 20)
    assert_raises(ValueError, plot_compare_evokeds, contrasts,
                  cmap='summer')

    plt.close('all')

    # Hack to test plotting of maxfiltered data
    evoked_sss = evoked.copy()
    sss = dict(sss_info=dict(in_order=80, components=np.arange(80)))
    evoked_sss.info['proc_history'] = [dict(max_info=sss)]
    evoked_sss.plot_white(cov, rank={'meg': 64}, time_unit='s')
    assert_raises(
        ValueError, evoked_sss.plot_white, cov, rank={'grad': 201},
        time_unit='s')
    evoked_sss.plot_white(cov, time_unit='s')

    # plot with bad channels excluded, spatial_colors, zorder & pos. layout
    evoked.rename_channels({'MEG 0133': 'MEG 0000'})
    evoked.plot(exclude=evoked.info['bads'], spatial_colors=True, gfp=True,
                zorder='std', time_unit='s')
    evoked.plot(exclude=[], spatial_colors=True, zorder='unsorted',
                time_unit='s')
    assert_raises(TypeError, evoked.plot, zorder='asdf', time_unit='s')
    plt.close('all')

    evoked.plot_sensors()  # Test plot_sensors
    plt.close('all')

    evoked.pick_channels(evoked.ch_names[:4])
    with catch_logging() as log_file:
        evoked.plot(verbose=True, time_unit='s')
    assert_true('Need more than one' in log_file.getvalue())
Esempio n. 55
0
def test_plot_source_estimates(renderer_interactive, all_src_types_inv_evoked,
                               pick_ori, kind, brain_gc):
    """Test plotting of scalar and vector source estimates."""
    backend = renderer_interactive._get_3d_backend()
    is_pyvista = backend != 'mayavi'
    invs, evoked = all_src_types_inv_evoked
    inv = invs[kind]
    with pytest.warns(None):  # PCA mag
        stc = apply_inverse(evoked, inv, pick_ori=pick_ori)
    stc.data[1] *= -1  # make it signed
    meth_key = 'plot_3d' if isinstance(stc, _BaseVolSourceEstimate) else 'plot'
    stc.subject = 'sample'
    meth = getattr(stc, meth_key)
    kwargs = dict(
        subjects_dir=subjects_dir,
        time_viewer=False,
        show_traces=False,  # for speed
        smoothing_steps=1,
        verbose='error',
        src=inv['src'],
        volume_options=dict(resolution=None),  # for speed
    )
    if pick_ori != 'vector':
        kwargs['surface'] = 'white'
        kwargs['backend'] = backend
    # Mayavi can't handle non-surface
    if kind != 'surface' and not is_pyvista:
        with pytest.raises(RuntimeError, match='PyVista'):
            meth(**kwargs)
        return
    brain = meth(**kwargs)
    brain.close()
    del brain

    these_kwargs = kwargs.copy()
    these_kwargs['show_traces'] = 'foo'
    with pytest.raises(ValueError, match='show_traces'):
        meth(**these_kwargs)
    del these_kwargs
    if pick_ori == 'vector':
        with pytest.raises(ValueError, match='use "pos_lims"'):
            meth(**kwargs, clim=dict(pos_lims=[1, 2, 3]))
    if kind in ('volume', 'mixed'):
        with pytest.raises(TypeError, match='when stc is a mixed or vol'):
            these_kwargs = kwargs.copy()
            these_kwargs.pop('src')
            meth(**these_kwargs)

    with pytest.raises(ValueError, match='cannot be used'):
        these_kwargs = kwargs.copy()
        these_kwargs.update(show_traces=True, time_viewer=False)
        meth(**these_kwargs)
    if not is_pyvista:
        with pytest.raises(ValueError, match='view_layout must be'):
            meth(view_layout='horizontal', **kwargs)

    # flatmaps (mostly a lot of error checking)
    these_kwargs = kwargs.copy()
    these_kwargs.update(surface='flat',
                        views='auto',
                        hemi='both',
                        verbose='debug')
    if kind == 'surface' and pick_ori != 'vector' and is_pyvista:
        with catch_logging() as log:
            with pytest.raises(FileNotFoundError, match='flatmap'):
                meth(**these_kwargs)  # sample does not have them
        log = log.getvalue()
        assert 'offset: 0' in log
    fs_stc = stc.copy()
    fs_stc.subject = 'fsaverage'  # this is wrong, but don't have to care
    flat_meth = getattr(fs_stc, meth_key)
    these_kwargs.pop('src')
    if pick_ori == 'vector':
        pass  # can't even pass "surface" variable
    elif kind != 'surface':
        with pytest.raises(TypeError, match='SourceEstimate when a flatmap'):
            flat_meth(**these_kwargs)
    elif not is_pyvista:
        with pytest.raises(RuntimeError, match='PyVista 3D backend.*flatmap'):
            flat_meth(**these_kwargs)
    else:
        brain = flat_meth(**these_kwargs)
        brain.close()
        del brain
        these_kwargs.update(surface='inflated', views='flat')
        with pytest.raises(ValueError, match='surface="flat".*views="flat"'):
            flat_meth(**these_kwargs)

    # just test one for speed
    if kind != 'mixed':
        return
    assert is_pyvista
    brain = meth(views=['lat', 'med', 'ven'],
                 hemi='lh',
                 view_layout='horizontal',
                 **kwargs)
    brain.close()
    assert brain._subplot_shape == (1, 3)
    del brain
    these_kwargs = kwargs.copy()
    these_kwargs['volume_options'] = dict(blending='foo')
    with pytest.raises(ValueError, match='mip'):
        meth(**these_kwargs)
    these_kwargs['volume_options'] = dict(badkey='foo')
    with pytest.raises(ValueError, match='unknown'):
        meth(**these_kwargs)
    # with resampling (actually downsampling but it's okay)
    these_kwargs['volume_options'] = dict(resolution=20., surface_alpha=0.)
    brain = meth(**these_kwargs)
    brain.close()
    del brain
Esempio n. 56
0
def test_plot_alignment_basic(tmpdir, renderer, mixed_fwd_cov_evoked):
    """Test plotting of -trans.fif files and MEG sensor layouts."""
    # generate fiducials file for testing
    tempdir = str(tmpdir)
    fiducials_path = op.join(tempdir, 'fiducials.fif')
    fid = [{
        'coord_frame': 5,
        'ident': 1,
        'kind': 1,
        'r': [-0.08061612, -0.02908875, -0.04131077]
    }, {
        'coord_frame': 5,
        'ident': 2,
        'kind': 1,
        'r': [0.00146763, 0.08506715, -0.03483611]
    }, {
        'coord_frame': 5,
        'ident': 3,
        'kind': 1,
        'r': [0.08436285, -0.02850276, -0.04127743]
    }]
    write_dig(fiducials_path, fid, 5)
    evoked = read_evokeds(evoked_fname)[0]
    info = evoked.info

    sample_src = read_source_spaces(src_fname)
    pytest.raises(TypeError,
                  plot_alignment,
                  'foo',
                  trans_fname,
                  subject='sample',
                  subjects_dir=subjects_dir)
    pytest.raises(OSError,
                  plot_alignment,
                  info,
                  trans_fname,
                  subject='sample',
                  subjects_dir=subjects_dir,
                  src='foo')
    pytest.raises(ValueError,
                  plot_alignment,
                  info,
                  trans_fname,
                  subject='fsaverage',
                  subjects_dir=subjects_dir,
                  src=sample_src)
    sample_src.plot(subjects_dir=subjects_dir,
                    head=True,
                    skull=True,
                    brain='white')
    # mixed source space
    mixed_src = mixed_fwd_cov_evoked[0]['src']
    assert mixed_src.kind == 'mixed'
    plot_alignment(info,
                   meg=['helmet', 'sensors'],
                   dig=True,
                   coord_frame='head',
                   trans=Path(trans_fname),
                   subject='sample',
                   mri_fiducials=fiducials_path,
                   subjects_dir=subjects_dir,
                   src=mixed_src)
    renderer.backend._close_all()
    # no-head version
    renderer.backend._close_all()
    # trans required
    with pytest.raises(ValueError, match='transformation matrix is required'):
        plot_alignment(info, trans=None, src=src_fname)
    with pytest.raises(ValueError, match='transformation matrix is required'):
        plot_alignment(info, trans=None, mri_fiducials=True)
    with pytest.raises(ValueError, match='transformation matrix is required'):
        plot_alignment(info, trans=None, surfaces=['brain'])
    # all coord frames
    plot_alignment(info)  # works: surfaces='auto' default
    for coord_frame in ('meg', 'head', 'mri'):
        fig = plot_alignment(info,
                             meg=['helmet', 'sensors'],
                             dig=True,
                             coord_frame=coord_frame,
                             trans=Path(trans_fname),
                             subject='sample',
                             mri_fiducials=fiducials_path,
                             subjects_dir=subjects_dir,
                             src=src_fname)
    renderer.backend._close_all()
    # EEG only with strange options
    evoked_eeg_ecog_seeg = evoked.copy().pick_types(meg=False, eeg=True)
    evoked_eeg_ecog_seeg.info['projs'] = []  # "remove" avg proj
    evoked_eeg_ecog_seeg.set_channel_types({
        'EEG 001': 'ecog',
        'EEG 002': 'seeg'
    })
    with catch_logging() as log:
        plot_alignment(evoked_eeg_ecog_seeg.info,
                       subject='sample',
                       trans=trans_fname,
                       subjects_dir=subjects_dir,
                       surfaces=['white', 'outer_skin', 'outer_skull'],
                       meg=['helmet', 'sensors'],
                       eeg=['original', 'projected'],
                       ecog=True,
                       seeg=True,
                       verbose=True)
    log = log.getvalue()
    assert 'ecog: 1' in log
    assert 'seeg: 1' in log
    renderer.backend._close_all()

    sphere = make_sphere_model(info=info, r0='auto', head_radius='auto')
    bem_sol = read_bem_solution(
        op.join(subjects_dir, 'sample', 'bem',
                'sample-1280-1280-1280-bem-sol.fif'))
    bem_surfs = read_bem_surfaces(
        op.join(subjects_dir, 'sample', 'bem',
                'sample-1280-1280-1280-bem.fif'))
    sample_src[0]['coord_frame'] = 4  # hack for coverage
    plot_alignment(
        info,
        trans_fname,
        subject='sample',
        eeg='projected',
        meg='helmet',
        bem=sphere,
        dig=True,
        surfaces=['brain', 'inner_skull', 'outer_skull', 'outer_skin'])
    plot_alignment(info,
                   subject='sample',
                   meg='helmet',
                   subjects_dir=subjects_dir,
                   eeg='projected',
                   bem=sphere,
                   surfaces=['head', 'brain'],
                   src=sample_src)
    # no trans okay, no mri surfaces
    plot_alignment(info, bem=sphere, surfaces=['brain'])
    with pytest.raises(ValueError, match='A head surface is required'):
        plot_alignment(info,
                       trans=trans_fname,
                       subject='sample',
                       subjects_dir=subjects_dir,
                       eeg='projected',
                       surfaces=[])
    with pytest.raises(RuntimeError, match='No brain surface found'):
        plot_alignment(info,
                       trans=trans_fname,
                       subject='foo',
                       subjects_dir=subjects_dir,
                       surfaces=['brain'])
    assert all(surf['coord_frame'] == FIFF.FIFFV_COORD_MRI
               for surf in bem_sol['surfs'])
    plot_alignment(info,
                   trans_fname,
                   subject='sample',
                   meg=[],
                   subjects_dir=subjects_dir,
                   bem=bem_sol,
                   eeg=True,
                   surfaces=['head', 'inflated', 'outer_skull', 'inner_skull'])
    assert all(surf['coord_frame'] == FIFF.FIFFV_COORD_MRI
               for surf in bem_sol['surfs'])
    plot_alignment(info,
                   trans_fname,
                   subject='sample',
                   meg=True,
                   subjects_dir=subjects_dir,
                   surfaces=['head', 'inner_skull'],
                   bem=bem_surfs)
    # single-layer BEM can still plot head surface
    assert bem_surfs[-1]['id'] == FIFF.FIFFV_BEM_SURF_ID_BRAIN
    bem_sol_homog = read_bem_solution(
        op.join(subjects_dir, 'sample', 'bem', 'sample-1280-bem-sol.fif'))
    for use_bem in (bem_surfs[-1:], bem_sol_homog):
        with catch_logging() as log:
            plot_alignment(info,
                           trans_fname,
                           subject='sample',
                           meg=True,
                           subjects_dir=subjects_dir,
                           surfaces=['head', 'inner_skull'],
                           bem=use_bem,
                           verbose=True)
        log = log.getvalue()
        assert 'not find the surface for head in the provided BEM model' in log
    # sphere model
    sphere = make_sphere_model('auto', 'auto', info)
    src = setup_volume_source_space(sphere=sphere)
    plot_alignment(
        info,
        trans=Transform('head', 'mri'),
        eeg='projected',
        meg='helmet',
        bem=sphere,
        src=src,
        dig=True,
        surfaces=['brain', 'inner_skull', 'outer_skull', 'outer_skin'])
    sphere = make_sphere_model('auto', None, info)  # one layer
    # if you ask for a brain surface with a 1-layer sphere model it's an error
    with pytest.raises(RuntimeError, match='Sphere model does not have'):
        fig = plot_alignment(trans=trans_fname,
                             subject='sample',
                             subjects_dir=subjects_dir,
                             surfaces=['brain'],
                             bem=sphere)
    # but you can ask for a specific brain surface, and
    # no info is permitted
    fig = plot_alignment(trans=trans_fname,
                         subject='sample',
                         meg=False,
                         coord_frame='mri',
                         subjects_dir=subjects_dir,
                         surfaces=['white'],
                         bem=sphere,
                         show_axes=True)
    renderer.backend._close_all()
    if renderer._get_3d_backend() == 'mayavi':
        import mayavi  # noqa: F401 analysis:ignore
        assert isinstance(fig, mayavi.core.scene.Scene)
    # 3D coil with no defined draw (ConvexHull)
    info_cube = pick_info(info, np.arange(6))
    info['dig'] = None
    info_cube['chs'][0]['coil_type'] = 9999
    info_cube['chs'][1]['coil_type'] = 9998
    with pytest.raises(RuntimeError, match='coil definition not found'):
        plot_alignment(info_cube, meg='sensors', surfaces=())
    coil_def_fname = op.join(tempdir, 'temp')
    with open(coil_def_fname, 'w') as fid:
        fid.write(coil_3d)
    # make sure our other OPMs can be plotted, too
    for ii, kind in enumerate(
        ('QUSPIN_ZFOPM_MAG', 'QUSPIN_ZFOPM_MAG2', 'FIELDLINE_OPM_MAG_GEN1',
         'KERNEL_OPM_MAG_GEN1'), 2):
        info_cube['chs'][ii]['coil_type'] = getattr(FIFF, f'FIFFV_COIL_{kind}')
    with use_coil_def(coil_def_fname):
        with catch_logging() as log:
            plot_alignment(info_cube,
                           meg='sensors',
                           surfaces=(),
                           dig=True,
                           verbose='debug')
    log = log.getvalue()
    assert 'planar geometry' in log

    # one layer bem with skull surfaces:
    with pytest.raises(RuntimeError, match='Sphere model does not.*boundary'):
        plot_alignment(info=info,
                       trans=trans_fname,
                       subject='sample',
                       subjects_dir=subjects_dir,
                       surfaces=['brain', 'head', 'inner_skull'],
                       bem=sphere)
    # wrong eeg value:
    with pytest.raises(ValueError, match='Invalid value for the .eeg'):
        plot_alignment(info=info,
                       trans=trans_fname,
                       subject='sample',
                       subjects_dir=subjects_dir,
                       eeg='foo')
    # wrong meg value:
    with pytest.raises(ValueError, match='Invalid value for the .meg'):
        plot_alignment(info=info,
                       trans=trans_fname,
                       subject='sample',
                       subjects_dir=subjects_dir,
                       meg='bar')
    # multiple brain surfaces:
    with pytest.raises(ValueError, match='Only one brain surface can be plot'):
        plot_alignment(info=info,
                       trans=trans_fname,
                       subject='sample',
                       subjects_dir=subjects_dir,
                       surfaces=['white', 'pial'])
    with pytest.raises(TypeError, match='surfaces.*must be'):
        plot_alignment(info=info,
                       trans=trans_fname,
                       subject='sample',
                       subjects_dir=subjects_dir,
                       surfaces=[1])
    with pytest.raises(ValueError, match='Unknown surface type'):
        plot_alignment(info=info,
                       trans=trans_fname,
                       subject='sample',
                       subjects_dir=subjects_dir,
                       surfaces=['foo'])
    with pytest.raises(TypeError, match="must be an instance of "):
        plot_alignment(info=info,
                       trans=trans_fname,
                       subject='sample',
                       subjects_dir=subjects_dir,
                       surfaces=dict(brain='super clear'))
    with pytest.raises(ValueError, match="must be between 0 and 1"):
        plot_alignment(info=info,
                       trans=trans_fname,
                       subject='sample',
                       subjects_dir=subjects_dir,
                       surfaces=dict(brain=42))
    fwd_fname = op.join(data_dir, 'MEG', 'sample',
                        'sample_audvis_trunc-meg-eeg-oct-4-fwd.fif')
    fwd = read_forward_solution(fwd_fname)
    plot_alignment(subject='sample',
                   subjects_dir=subjects_dir,
                   trans=trans_fname,
                   fwd=fwd,
                   surfaces='white',
                   coord_frame='head')
    fwd = convert_forward_solution(fwd, force_fixed=True)
    plot_alignment(subject='sample',
                   subjects_dir=subjects_dir,
                   trans=trans_fname,
                   fwd=fwd,
                   surfaces='white',
                   coord_frame='head')
    fwd['coord_frame'] = FIFF.FIFFV_COORD_MRI  # check required to get to MRI
    with pytest.raises(ValueError, match='transformation matrix is required'):
        plot_alignment(info, trans=None, fwd=fwd)
    # surfaces as dict
    plot_alignment(subject='sample',
                   coord_frame='head',
                   trans=trans_fname,
                   subjects_dir=subjects_dir,
                   surfaces={
                       'white': 0.4,
                       'outer_skull': 0.6,
                       'head': None
                   })
Esempio n. 57
0
def test_plot_evoked():
    """Test evoked.plot."""
    epochs = _get_epochs()
    evoked = epochs.average()
    assert evoked.proj is False
    fig = evoked.plot(proj=True,
                      hline=[1],
                      exclude=[],
                      window_title='foo',
                      time_unit='s')
    amplitudes = _get_amplitudes(fig)
    assert len(amplitudes) == len(default_picks)
    assert evoked.proj is False
    # Test a click
    ax = fig.get_axes()[0]
    line = ax.lines[0]
    _fake_click(fig, ax, [line.get_xdata()[0], line.get_ydata()[0]], 'data')
    _fake_click(fig, ax, [ax.get_xlim()[0], ax.get_ylim()[1]], 'data')
    # plot with bad channels excluded & spatial_colors & zorder
    evoked.plot(exclude='bads', time_unit='s')

    # test selective updating of dict keys is working.
    evoked.plot(hline=[1], units=dict(mag='femto foo'), time_unit='s')
    evoked_delayed_ssp = _get_epochs_delayed_ssp().average()
    evoked_delayed_ssp.plot(proj='interactive', time_unit='s')
    evoked_delayed_ssp.apply_proj()
    pytest.raises(RuntimeError,
                  evoked_delayed_ssp.plot,
                  proj='interactive',
                  time_unit='s')
    with evoked_delayed_ssp.info._unlock():
        evoked_delayed_ssp.info['projs'] = []
    pytest.raises(RuntimeError,
                  evoked_delayed_ssp.plot,
                  proj='interactive',
                  time_unit='s')
    pytest.raises(RuntimeError,
                  evoked_delayed_ssp.plot,
                  proj='interactive',
                  axes='foo',
                  time_unit='s')
    plt.close('all')

    # test `gfp='only'`: GFP (EEG) and RMS (MEG)
    fig, ax = plt.subplots(3)
    evoked.plot(gfp='only', time_unit='s', axes=ax)

    assert len(ax[0].lines) == len(ax[1].lines) == len(ax[2].lines) == 1

    assert ax[0].get_title() == 'EEG (3 channels)'
    assert ax[0].texts[0].get_text() == 'GFP'

    assert ax[1].get_title() == 'Gradiometers (9 channels)'
    assert ax[1].texts[0].get_text() == 'RMS'

    assert ax[2].get_title() == 'Magnetometers (2 channels)'
    assert ax[1].texts[0].get_text() == 'RMS'

    plt.close('all')

    # Test invalid `gfp`
    with pytest.raises(ValueError):
        evoked.plot(gfp='foo', time_unit='s')

    # plot with bad channels excluded, spatial_colors, zorder & pos. layout
    evoked.rename_channels({'MEG 0133': 'MEG 0000'})
    evoked.plot(exclude=evoked.info['bads'],
                spatial_colors=True,
                gfp=True,
                zorder='std',
                time_unit='s')
    evoked.plot(exclude=[],
                spatial_colors=True,
                zorder='unsorted',
                time_unit='s')
    pytest.raises(TypeError, evoked.plot, zorder='asdf', time_unit='s')
    plt.close('all')

    evoked.plot_sensors()  # Test plot_sensors
    plt.close('all')

    evoked.pick_channels(evoked.ch_names[:4])
    with catch_logging() as log_file:
        evoked.plot(verbose=True, time_unit='s')
    assert 'Need more than one' in log_file.getvalue()
Esempio n. 58
0
def test_reporting_fir(phase, fir_window, btype):
    """Test FIR filter reporting."""
    l_freq = 1. if btype == 'bandpass' else None
    fs = 1000.
    with catch_logging() as log:
        x = create_filter(None,
                          fs,
                          l_freq,
                          40,
                          method='fir',
                          phase=phase,
                          fir_window=fir_window,
                          verbose=True)
    n_taps = len(x)
    log = log.getvalue()
    keys = [
        'FIR',
        btype,
        fir_window.capitalize(),
        'Filter length: %d samples' % (n_taps, ),
        'passband ripple',
        'stopband attenuation',
    ]
    if phase == 'minimum':
        keys += [' causal ']
    else:
        keys += [' non-causal ', ' dB cutoff frequency: 45.00 Hz']
        if btype == 'bandpass':
            keys += [' dB cutoff frequency: 0.50 Hz']
    for key in keys:
        assert key in log
    if phase == 'zero':
        assert '-6 dB cutoff' in log
    elif phase == 'zero-double':
        assert '-12 dB cutoff' in log
    else:
        # XXX Eventually we should figure out where the resulting point is,
        # since the minimum-phase process will change it. For now we don't
        # report it.
        assert phase == 'minimum'
    # Verify some of the filter properties
    if phase == 'zero-double':
        x = np.convolve(x, x)  # effectively what happens
    w, h = freqz(x, worN=10000)
    w *= fs / (2 * np.pi)
    h = np.abs(h)
    # passband
    passes = [np.argmin(np.abs(w - f)) for f in (1, 20, 40)]
    # stopband
    stops = [np.argmin(np.abs(w - 50.))]
    # transition
    mids = [np.argmin(np.abs(w - 45.))]
    # put these where they belong based on filter type
    assert w[0] == 0.
    idx_0 = 0
    idx_0p5 = np.argmin(np.abs(w - 0.5))
    if btype == 'bandpass':
        stops += [idx_0]
        mids += [idx_0p5]
    else:
        passes += [idx_0, idx_0p5]
    assert_allclose(h[passes], 1., atol=0.01)
    attenuation = -20 if phase == 'minimum' else -50
    assert_allclose(h[stops], 0., atol=10**(attenuation / 20.))
    if phase != 'minimum':  # haven't worked out the math for this yet
        expected = 0.25 if phase == 'zero-double' else 0.5
        assert_allclose(h[mids], expected, atol=0.01)
Esempio n. 59
0
def test_reporting_iir(ftype, btype, order, output):
    """Test IIR filter reporting."""
    fs = 1000.
    l_freq = 1. if btype == 'bandpass' else None
    iir_params = dict(ftype=ftype, order=order, output=output)
    rs = 20 if order == 1 else 80
    if ftype == 'ellip':
        iir_params['rp'] = 3  # dB
        iir_params['rs'] = rs  # attenuation
        pass_tol = np.log10(iir_params['rp']) + 0.01
    else:
        pass_tol = 0.2
    with catch_logging() as log:
        x = create_filter(None,
                          fs,
                          l_freq,
                          40.,
                          method='iir',
                          iir_params=iir_params,
                          verbose=True)
    order_eff = order * (1 + (btype == 'bandpass'))
    if output == 'ba':
        assert len(x['b']) == order_eff + 1
    log = log.getvalue()
    keys = [
        'IIR',
        'zero-phase',
        'two-pass forward and reverse',
        'non-causal',
        btype,
        ftype,
        'Filter order %d' % (order_eff * 2, ),
        'Cutoff ' if btype == 'lowpass' else 'Cutoffs ',
    ]
    dB_decade = -27.74
    if ftype == 'ellip':
        dB_cutoff = -6.0
    elif order == 1 or ftype == 'butter':
        dB_cutoff = -6.02
    else:
        assert ftype == 'bessel'
        assert order == 4
        dB_cutoff = -15.16
    if btype == 'lowpass':
        keys += ['%0.2f dB' % (dB_cutoff, )]
    for key in keys:
        assert key.lower() in log.lower()
    # Verify some of the filter properties
    if output == 'ba':
        w, h = freqz(x['b'], x['a'], worN=10000)
    else:
        w, h = sosfreqz(x['sos'], worN=10000)
    w *= fs / (2 * np.pi)
    h = np.abs(h)
    # passband
    passes = [np.argmin(np.abs(w - 20))]
    # stopband
    decades = [np.argmin(np.abs(w - 400.))]  # one decade
    # transition
    edges = [np.argmin(np.abs(w - 40.))]
    # put these where they belong based on filter type
    assert w[0] == 0.
    idx_0p1 = np.argmin(np.abs(w - 0.1))
    idx_1 = np.argmin(np.abs(w - 1.))
    if btype == 'bandpass':
        edges += [idx_1]
        decades += [idx_0p1]
    else:
        passes += [idx_0p1, idx_1]

    edge_val = 10**(dB_cutoff / 40.)
    assert_allclose(h[edges], edge_val, atol=0.01)
    assert_allclose(h[passes], 1., atol=pass_tol)
    if ftype == 'butter' and btype == 'lowpass':
        attenuation = dB_decade * order
        assert_allclose(h[decades], 10**(attenuation / 20.), rtol=0.01)
    elif ftype == 'ellip':
        assert_array_less(h[decades], 10**(-rs / 20))
Esempio n. 60
0
def test_coreg_class_gui_match():
    """Test that using Coregistration matches mne coreg."""
    fiducials, _ = read_fiducials(fid_fname)
    info = read_info(raw_fname)
    coreg = Coregistration(info,
                           subject='sample',
                           subjects_dir=subjects_dir,
                           fiducials=fiducials)
    assert_allclose(coreg.trans['trans'], np.eye(4), atol=1e-6)
    # mne coreg -s sample -d subjects -f MEG/sample/sample_audvis_trunc_raw.fif
    # then "Fit Fid.", Save... to get trans, read_trans:
    want_trans = [
        [9.99428809e-01, 2.94733196e-02, 1.65350307e-02, -8.76054692e-04],
        [-1.92420650e-02, 8.98512006e-01, -4.38526988e-01, 9.39774036e-04],
        [-2.77817696e-02, 4.37958330e-01, 8.98565888e-01, -8.29207990e-03],
        [0, 0, 0, 1]
    ]
    coreg.set_fid_match('matched')
    coreg.fit_fiducials(verbose=True)
    assert_allclose(coreg.trans['trans'], want_trans, atol=1e-6)
    # Set ICP iterations to one, click "Fit ICP"
    want_trans = [
        [9.99512792e-01, 2.80128177e-02, 1.37659665e-02, 6.08855276e-04],
        [-1.91694051e-02, 8.98992002e-01, -4.37545270e-01, 9.66848747e-04],
        [-2.46323701e-02, 4.37068194e-01, 8.99091005e-01, -1.44129358e-02],
        [0, 0, 0, 1]
    ]
    coreg.fit_icp(1, verbose=True)
    assert_allclose(coreg.trans['trans'], want_trans, atol=1e-6)
    # Set ICP iterations to 20, click "Fit ICP"
    with catch_logging() as log:
        coreg.fit_icp(20, verbose=True)
    log = log.getvalue()
    want_trans = [
        [9.97582495e-01, 2.12266613e-02, 6.61706254e-02, -5.07694029e-04],
        [1.81089472e-02, 8.39900672e-01, -5.42437911e-01, 7.81218382e-03],
        [-6.70908988e-02, 5.42324841e-01, 8.37485850e-01, -2.50057746e-02],
        [0, 0, 0, 1]
    ]
    assert_allclose(coreg.trans['trans'], want_trans, atol=1e-6)
    assert 'ICP 19' in log
    assert 'ICP 20' not in log  # converged on 19
    # Change to uniform scale mode, "Fit Fiducials" in scale UI
    coreg.set_scale_mode('uniform')
    coreg.fit_fiducials()
    want_scale = [0.975] * 3
    want_trans = [
        [9.99428809e-01, 2.94733196e-02, 1.65350307e-02, -9.25998494e-04],
        [-1.92420650e-02, 8.98512006e-01, -4.38526988e-01, -1.03350170e-03],
        [-2.77817696e-02, 4.37958330e-01, 8.98565888e-01, -9.03170835e-03],
        [0, 0, 0, 1]
    ]
    assert_allclose(coreg.scale, want_scale, atol=5e-4)
    assert_allclose(coreg.trans['trans'], want_trans, atol=1e-6)
    # Click "Fit ICP" in scale UI
    with catch_logging() as log:
        coreg.fit_icp(20, verbose=True)
    log = log.getvalue()
    assert 'ICP 18' in log
    assert 'ICP 19' not in log
    want_scale = [1.036] * 3
    want_trans = [
        [9.98992383e-01, 1.72388796e-02, 4.14364934e-02, 6.19427126e-04],
        [6.80460501e-03, 8.54430079e-01, -5.19521892e-01, 5.58008114e-03],
        [-4.43605632e-02, 5.19280374e-01, 8.53451848e-01, -2.03358755e-02],
        [0, 0, 0, 1]
    ]
    assert_allclose(coreg.scale, want_scale, atol=5e-4)
    assert_allclose(coreg.trans['trans'], want_trans, atol=1e-6)
    # Change scale mode to 3-axis, click "Fit ICP" in scale UI
    coreg.set_scale_mode('3-axis')
    with catch_logging() as log:
        coreg.fit_icp(20, verbose=True)
    log = log.getvalue()
    assert 'ICP  7' in log
    assert 'ICP  8' not in log
    want_scale = [1.025, 1.010, 1.121]
    want_trans = [
        [9.98387098e-01, 2.04762165e-02, 5.29526398e-02, 4.97257097e-05],
        [1.13287698e-02, 8.42087150e-01, -5.39222538e-01, 7.09863892e-03],
        [-5.56319728e-02, 5.38952649e-01, 8.40496957e-01, -1.46372067e-02],
        [0, 0, 0, 1]
    ]
    assert_allclose(coreg.scale, want_scale, atol=5e-4)
    assert_allclose(coreg.trans['trans'], want_trans, atol=1e-6)