Esempio n. 1
0
def test_same_behaviour_in_init_and_set_montage():
    """Test that __init__ and set_montage lead to equal results.

    This is a regression test to help refactor Digitization.
    """
    montage = 'biosemi256'
    with pytest.warns(RuntimeWarning) as init_warns:
        raw_montage = read_raw_edf(edf_path, montage=montage)

    raw_none = read_raw_edf(edf_path, montage=None)
    assert raw_none.info['dig'] is None

    with pytest.warns((RuntimeWarning)) as set_montage_warns:
        raw_none.set_montage(montage)

    # Assert equal objects
    assert object_diff(raw_none.info['chs'], raw_montage.info['chs']) == ''
    assert object_diff(raw_none.info['dig'], raw_montage.info['dig']) == ''

    # Assert equal warnings
    assert len(init_warns) == len(set_montage_warns)
    for ii in range(len(init_warns)):
        msg_a = init_warns[ii].message.args[0]
        msg_b = set_montage_warns[ii].message.args[0]
        assert msg_a == msg_b
Esempio n. 2
0
def test_object_diff_with_nan():
    """Test object diff can handle NaNs."""
    d0 = np.array([1, np.nan, 0])
    d1 = np.array([1, np.nan, 0])
    d2 = np.array([np.nan, 1, 0])

    assert object_diff(d0, d1) == ''
    assert object_diff(d0, d2) != ''
Esempio n. 3
0
def test_object_diff_with_nan():
    """Test object diff can handle NaNs."""
    d0 = np.array([1, np.nan, 0])
    d1 = np.array([1, np.nan, 0])
    d2 = np.array([np.nan, 1, 0])

    assert object_diff(d0, d1) == ''
    assert object_diff(d0, d2) != ''
    assert object_diff(np.nan, np.nan) == ''
    assert object_diff(np.nan, 3.5) == ' value mismatch (nan, 3.5)\n'
Esempio n. 4
0
def test_parse_impedance():
    """Test case for parsing the impedances from header."""
    expected_imp_meas_time = datetime.datetime(2013, 11, 13, 16, 12, 27,
                                               tzinfo=datetime.timezone.utc)
    expected_imp_unit = 'kOhm'
    expected_electrodes = [
        'FP1', 'FP2', 'F3', 'F4', 'C3', 'C4', 'P3', 'P4', 'O1', 'O2', 'F7',
        'F8', 'P7', 'P8', 'Fz', 'FCz', 'Cz', 'CPz', 'Pz', 'POz', 'FC1', 'FC2',
        'CP1', 'CP2', 'FC5', 'FC6', 'CP5', 'CP6', 'HL', 'HR', 'Vb', 'ReRef',
        'Ref', 'Gnd'
    ]
    n_electrodes = len(expected_electrodes)
    expected_imps = [np.nan] * (n_electrodes - 2) + [0., 4.]
    expected_imp_lower_bound = 0.
    expected_imp_upper_bound = [100.] * (n_electrodes - 2) + [10., 10.]

    expected_impedances = {elec: {
        'imp': expected_imps[i],
        'imp_unit': expected_imp_unit,
        'imp_meas_time': expected_imp_meas_time,
        'imp_lower_bound': expected_imp_lower_bound,
        'imp_upper_bound': expected_imp_upper_bound[i],
        'imp_range_unit': expected_imp_unit,
    } for i, elec in enumerate(expected_electrodes)}

    raw = read_raw_brainvision(vhdr_path, eog=eog)
    assert object_diff(expected_impedances, raw.impedances) == ''

    # Test "Impedances Imported from actiCAP Control Software"
    expected_imp_meas_time = expected_imp_meas_time.replace(hour=10,
                                                            minute=17,
                                                            second=2)
    tmpidx = expected_electrodes.index('CP6')
    expected_electrodes = expected_electrodes[:tmpidx] + [
        'CP 6', 'ECG+', 'ECG-', 'HEOG+', 'HEOG-', 'VEOG+', 'VEOG-', 'ReRef',
        'Ref', 'Gnd'
    ]
    n_electrodes = len(expected_electrodes)
    expected_imps = [np.nan] * (n_electrodes - 9) + [
        35., 46., 6., 8., 3., 4., 0., 8., 2.5
    ]
    expected_impedances = {elec: {
        'imp': expected_imps[i],
        'imp_unit': expected_imp_unit,
        'imp_meas_time': expected_imp_meas_time,
    } for i, elec in enumerate(expected_electrodes)}

    with pytest.warns(RuntimeWarning, match='different .*pass filters'):
        raw = read_raw_brainvision(vhdr_mixed_lowpass_path,
                                   eog=['HEOG', 'VEOG'], misc=['ECG'])
    assert object_diff(expected_impedances, raw.impedances) == ''
Esempio n. 5
0
def test_montage():
    """Test montage."""
    fname = op.join(base_dir, 'test_raw.set')

    raw_none = read_raw_eeglab(input_fname=fname, montage=None, preload=False)
    montage = _fake_montage(raw_none.info['ch_names'])

    raw_montage = read_raw_eeglab(input_fname=fname, montage=montage,
                                  preload=False)
    raw_none.set_montage(montage)

    # Check they are the same
    assert_array_equal(raw_none.get_data(), raw_montage.get_data())
    assert object_diff(raw_none.info['dig'], raw_montage.info['dig']) == ''
    assert object_diff(raw_none.info['chs'], raw_montage.info['chs']) == ''
Esempio n. 6
0
def check_info_fields(expected, actual, has_raw_info, ignore_long=True):
    """
    Check if info fields are equal.

    Some fields are ignored.
    """
    expected = expected.info.copy()
    actual = actual.info.copy()

    if not has_raw_info:
        _remove_ignored_info_fields(expected)
        _remove_ignored_info_fields(actual)

    _remove_long_info_fields(expected)
    _remove_long_info_fields(actual)

    # we annoyingly have two ways of representing this, so just always use
    # an empty list here
    for obj in (expected, actual):
        if obj['dig'] is None:
            with obj._unlock():
                obj['dig'] = []

    d = object_diff(actual, expected, allclose=True)
    assert d == '', d
Esempio n. 7
0
def test_io_surface(tmp_path):
    """Test reading and writing of Freesurfer surface mesh files."""
    tempdir = str(tmp_path)
    fname_quad = op.join(data_path, 'subjects', 'bert', 'surf',
                         'lh.inflated.nofix')
    fname_tri = op.join(data_path, 'subjects', 'sample', 'bem',
                        'inner_skull.surf')
    for fname in (fname_quad, fname_tri):
        with _record_warnings():  # no volume info
            pts, tri, vol_info = read_surface(fname, read_metadata=True)
        write_surface(op.join(tempdir, 'tmp'), pts, tri, volume_info=vol_info,
                      overwrite=True)
        with _record_warnings():  # no volume info
            c_pts, c_tri, c_vol_info = read_surface(op.join(tempdir, 'tmp'),
                                                    read_metadata=True)
        assert_array_equal(pts, c_pts)
        assert_array_equal(tri, c_tri)
        assert_equal(object_diff(vol_info, c_vol_info), '')
        if fname != fname_tri:  # don't bother testing wavefront for the bigger
            continue

        # Test writing/reading a Wavefront .obj file
        write_surface(op.join(tempdir, 'tmp.obj'), pts, tri, volume_info=None,
                      overwrite=True)
        c_pts, c_tri = read_surface(op.join(tempdir, 'tmp.obj'),
                                    read_metadata=False)
        assert_array_equal(pts, c_pts)
        assert_array_equal(tri, c_tri)

    # reading patches (just a smoke test, let the flatmap viz tests be more
    # complete)
    fname_patch = op.join(
        data_path, 'subjects', 'fsaverage', 'surf', 'rh.cortex.patch.flat')
    _read_patch(fname_patch)
Esempio n. 8
0
def test_montage_when_reading_and_setting(read_raw, fname):
    """Test montage.

    This is a regression test to help refactor Digitization.
    """
    raw_none = read_raw(fname, montage=None, preload=False)
    # raw_none_copy = deepcopy(raw_none)
    montage = _fake_montage(raw_none.info['ch_names'])

    raw_montage = read_raw(fname, montage=montage, preload=False)
    raw_none.set_montage(montage)

    # Check that reading with montage or setting the montage is the same
    assert_array_equal(raw_none.get_data(), raw_montage.get_data())
    assert object_diff(raw_none.info['dig'], raw_montage.info['dig']) == ''
    assert object_diff(raw_none.info['chs'], raw_montage.info['chs']) == ''
Esempio n. 9
0
def test_cross_talk():
    """Test Maxwell filter cross-talk cancellation"""
    raw = Raw(raw_fname, allow_maxshield='yes').crop(0., 1., False)
    raw.info['bads'] = bads
    sss_ctc = Raw(sss_ctc_fname)
    raw_sss = maxwell_filter(raw, cross_talk=ctc_fname,
                             origin=mf_head_origin, regularize=None,
                             bad_condition='ignore')
    assert_meg_snr(raw_sss, sss_ctc, 275.)
    py_ctc = raw_sss.info['proc_history'][0]['max_info']['sss_ctc']
    assert_true(len(py_ctc) > 0)
    assert_raises(ValueError, maxwell_filter, raw, cross_talk=raw)
    assert_raises(ValueError, maxwell_filter, raw, cross_talk=raw_fname)
    mf_ctc = sss_ctc.info['proc_history'][0]['max_info']['sss_ctc']
    del mf_ctc['block_id']  # we don't write this
    assert_equal(object_diff(py_ctc, mf_ctc), '')
    raw_ctf = Raw(fname_ctf_raw)
    assert_raises(ValueError, maxwell_filter, raw_ctf)  # cannot fit headshape
    raw_sss = maxwell_filter(raw_ctf, origin=(0., 0., 0.04))
    _assert_n_free(raw_sss, 68)
    raw_sss = maxwell_filter(raw_ctf, origin=(0., 0., 0.04), ignore_ref=True)
    _assert_n_free(raw_sss, 70)
    raw_missing = raw.crop(0, 0.1, copy=True).load_data().pick_channels(
        [raw.ch_names[pi] for pi in pick_types(raw.info, meg=True,
                                               exclude=())[3:]])
    with warnings.catch_warnings(record=True) as w:
        maxwell_filter(raw_missing, cross_talk=ctc_fname)
    assert_equal(len(w), 1)
    assert_true('Not all cross-talk channels in raw' in str(w[0].message))
    # MEG channels not in cross-talk
    assert_raises(RuntimeError, maxwell_filter, raw_ctf, origin=(0., 0., 0.04),
                  cross_talk=ctc_fname)
Esempio n. 10
0
def test_snirf_write(fname, tmpdir):
    """Test reading NIRX files."""
    raw_orig = read_raw_nirx(fname, preload=True)
    write_raw_snirf(raw_orig, tmpdir.join('test_raw.snirf'))
    raw = read_raw_snirf(tmpdir.join('test_raw.snirf'))

    # Check annotations are the same
    assert_allclose(raw.annotations.onset, raw_orig.annotations.onset)
    assert_allclose([float(d) for d in raw.annotations.description],
                    [float(d) for d in raw_orig.annotations.description])
    assert_allclose(raw.annotations.duration, raw_orig.annotations.duration)

    # Check data is the same
    assert_allclose(raw.get_data(), raw_orig.get_data())

    assert abs(raw_orig.info["meas_date"] - raw.info["meas_date"]) < \
           datetime.timedelta(seconds=1)

    # Check info object is the same
    obj_diff = object_diff(raw.info, raw_orig.info)
    diffs = ''
    for line in obj_diff.splitlines():
        if ('logno' not in line) and ('scanno' not in line) and\
                ('datetime mismatch' not in line):
            # logno and scanno are not used in processing
            diffs += f'\n{line}'
    assert diffs == ''
Esempio n. 11
0
def test_cross_talk():
    """Test Maxwell filter cross-talk cancellation."""
    raw = read_crop(raw_fname, (0., 1.))
    raw.info['bads'] = bads
    sss_ctc = read_crop(sss_ctc_fname)
    raw_sss = maxwell_filter(raw, cross_talk=ctc_fname,
                             origin=mf_head_origin, regularize=None,
                             bad_condition='ignore')
    assert_meg_snr(raw_sss, sss_ctc, 275.)
    py_ctc = raw_sss.info['proc_history'][0]['max_info']['sss_ctc']
    assert_true(len(py_ctc) > 0)
    assert_raises(ValueError, maxwell_filter, raw, cross_talk=raw)
    assert_raises(ValueError, maxwell_filter, raw, cross_talk=raw_fname)
    mf_ctc = sss_ctc.info['proc_history'][0]['max_info']['sss_ctc']
    del mf_ctc['block_id']  # we don't write this
    assert_equal(object_diff(py_ctc, mf_ctc), '')
    raw_ctf = read_crop(fname_ctf_raw).apply_gradient_compensation(0)
    assert_raises(ValueError, maxwell_filter, raw_ctf)  # cannot fit headshape
    raw_sss = maxwell_filter(raw_ctf, origin=(0., 0., 0.04))
    _assert_n_free(raw_sss, 68)
    raw_sss = maxwell_filter(raw_ctf, origin=(0., 0., 0.04), ignore_ref=True)
    _assert_n_free(raw_sss, 70)
    raw_missing = raw.copy().crop(0, 0.1).load_data().pick_channels(
        [raw.ch_names[pi] for pi in pick_types(raw.info, meg=True,
                                               exclude=())[3:]])
    with warnings.catch_warnings(record=True) as w:
        maxwell_filter(raw_missing, cross_talk=ctc_fname)
    assert_equal(len(w), 1)
    assert_true('Not all cross-talk channels in raw' in str(w[0].message))
    # MEG channels not in cross-talk
    assert_raises(RuntimeError, maxwell_filter, raw_ctf, origin=(0., 0., 0.04),
                  cross_talk=ctc_fname)
Esempio n. 12
0
def test_export_evokeds_to_mff(tmpdir, fmt, do_history):
    """Test exporting evoked dataset to MFF."""
    evoked = read_evokeds_mff(egi_evoked_fname)
    export_fname = op.join(str(tmpdir), 'evoked.mff')
    history = [{
        'name': 'Test Segmentation',
        'method': 'Segmentation',
        'settings': ['Setting 1', 'Setting 2'],
        'results': ['Result 1', 'Result 2']
    }, {
        'name': 'Test Averaging',
        'method': 'Averaging',
        'settings': ['Setting 1', 'Setting 2'],
        'results': ['Result 1', 'Result 2']
    }]
    if do_history:
        export_evokeds_mff(export_fname, evoked, history=history)
    else:
        export_evokeds(export_fname, evoked)
    # Drop non-EEG channels
    evoked = [ave.drop_channels(['ECG', 'EMG']) for ave in evoked]
    evoked_exported = read_evokeds_mff(export_fname)
    assert len(evoked) == len(evoked_exported)
    for ave, ave_exported in zip(evoked, evoked_exported):
        # Compare infos
        assert object_diff(ave_exported.info, ave.info) == ''
        # Compare data
        assert_allclose(ave_exported.data, ave.data)
        # Compare properties
        assert ave_exported.nave == ave.nave
        assert ave_exported.kind == ave.kind
        assert ave_exported.comment == ave.comment
        assert_allclose(ave_exported.times, ave.times)
Esempio n. 13
0
def test_io_surface():
    """Test reading and writing of Freesurfer surface mesh files."""
    tempdir = _TempDir()
    fname_quad = op.join(data_path, 'subjects', 'bert', 'surf',
                         'lh.inflated.nofix')
    fname_tri = op.join(data_path, 'subjects', 'sample', 'bem',
                        'inner_skull.surf')
    for fname in (fname_quad, fname_tri):
        with pytest.warns(None):  # no volume info
            pts, tri, vol_info = read_surface(fname, read_metadata=True)
        write_surface(op.join(tempdir, 'tmp'),
                      pts,
                      tri,
                      volume_info=vol_info,
                      overwrite=True)
        with pytest.warns(None):  # no volume info
            c_pts, c_tri, c_vol_info = read_surface(op.join(tempdir, 'tmp'),
                                                    read_metadata=True)
        assert_array_equal(pts, c_pts)
        assert_array_equal(tri, c_tri)
        assert_equal(object_diff(vol_info, c_vol_info), '')
        if fname != fname_tri:  # don't bother testing wavefront for the bigger
            continue

        # Test writing/reading a Wavefront .obj file
        write_surface(op.join(tempdir, 'tmp.obj'),
                      pts,
                      tri,
                      volume_info=None,
                      overwrite=True)
        c_pts, c_tri = read_surface(op.join(tempdir, 'tmp.obj'),
                                    read_metadata=False)
        assert_array_equal(pts, c_pts)
        assert_array_equal(tri, c_tri)
Esempio n. 14
0
def test_hash():
    """Test dictionary hashing and comparison functions"""
    # does hashing all of these types work:
    # {dict, list, tuple, ndarray, str, float, int, None}
    d0 = dict(a=dict(a=0.1, b='fo', c=1), b=[1, 'b'], c=(), d=np.ones(3))
    d0[1] = None
    d0[2.] = b'123'

    d1 = deepcopy(d0)
    print(object_diff(d0, d1))
    assert_equal(object_hash(d0), object_hash(d1))

    # change values slightly
    d1['data'] = np.ones(3, int)
    assert_not_equal(object_hash(d0), object_hash(d1))

    d1 = deepcopy(d0)
    print(object_diff(d0, d1))
    assert_equal(object_hash(d0), object_hash(d1))
    d1['a']['a'] = 0.11
    object_diff(d0, d1)
    assert_not_equal(object_hash(d0), object_hash(d1))

    d1 = deepcopy(d0)
    print(object_diff(d0, d1))
    assert_equal(object_hash(d0), object_hash(d1))
    d1[1] = 2
    object_diff(d0, d1)
    assert_not_equal(object_hash(d0), object_hash(d1))
    # generators (and other types) not supported
    d1[1] = (x for x in d0)
    assert_raises(RuntimeError, object_hash, d1)
Esempio n. 15
0
def test_hash():
    """Test dictionary hashing and comparison functions"""
    # does hashing all of these types work:
    # {dict, list, tuple, ndarray, str, float, int, None}
    d0 = dict(a=dict(a=0.1, b='fo', c=1), b=[1, 'b'], c=(), d=np.ones(3))
    d0[1] = None
    d0[2.] = b'123'

    d1 = deepcopy(d0)
    print(object_diff(d0, d1))
    assert_equal(object_hash(d0), object_hash(d1))

    # change values slightly
    d1['data'] = np.ones(3, int)
    assert_not_equal(object_hash(d0), object_hash(d1))

    d1 = deepcopy(d0)
    print(object_diff(d0, d1))
    assert_equal(object_hash(d0), object_hash(d1))
    d1['a']['a'] = 0.11
    object_diff(d0, d1)
    assert_not_equal(object_hash(d0), object_hash(d1))

    d1 = deepcopy(d0)
    print(object_diff(d0, d1))
    assert_equal(object_hash(d0), object_hash(d1))
    d1[1] = 2
    object_diff(d0, d1)
    assert_not_equal(object_hash(d0), object_hash(d1))
    # generators (and other types) not supported
    d1[1] = (x for x in d0)
    assert_raises(RuntimeError, object_hash, d1)
Esempio n. 16
0
def test_montage():
    """Test montage."""
    raw_none = read_raw_nicolet(input_fname=fname,
                                ch_type='eeg',
                                montage=None,
                                preload=False)
    montage = _fake_montage(raw_none.info['ch_names'])

    raw_montage = read_raw_nicolet(input_fname=fname,
                                   ch_type='eeg',
                                   montage=montage,
                                   preload=False)
    raw_none.set_montage(montage)

    # Check they are the same
    assert_array_equal(raw_none.get_data(), raw_montage.get_data())
    assert object_diff(raw_none.info['dig'], raw_montage.info['dig']) == ''
    assert object_diff(raw_none.info['chs'], raw_montage.info['chs']) == ''
Esempio n. 17
0
def test_montage():
    """Test montage."""
    base_dir = op.join(testing.data_path(download=False), 'EEGLAB')
    fname = op.join(base_dir, 'test_raw.set')
    # montage = op.join(base_dir, 'test_chans.locs')

    raw_none = read_raw_eeglab(input_fname=fname, montage=None, preload=False)
    montage = _fake_montage(raw_none.info['ch_names'])

    raw_montage = read_raw_eeglab(input_fname=fname,
                                  montage=montage,
                                  preload=False)
    raw_none.set_montage(montage)
    assert object_diff(raw_none.info['dig'], raw_montage.info['dig']) == ''
    # assert object_diff(raw_none.info['chs'], raw_montage.info['chs']) == ''
    diff = object_diff(raw_none.info['chs'],
                       raw_montage.info['chs']).splitlines()
    for dd in diff:
        assert 'coord_frame' in dd
Esempio n. 18
0
def test_export_evokeds_to_mff(tmp_path, fmt, do_history):
    """Test exporting evoked dataset to MFF."""
    evoked = read_evokeds_mff(egi_evoked_fname)
    export_fname = op.join(str(tmp_path), 'evoked.mff')
    history = [{
        'name': 'Test Segmentation',
        'method': 'Segmentation',
        'settings': ['Setting 1', 'Setting 2'],
        'results': ['Result 1', 'Result 2']
    }, {
        'name': 'Test Averaging',
        'method': 'Averaging',
        'settings': ['Setting 1', 'Setting 2'],
        'results': ['Result 1', 'Result 2']
    }]
    if do_history:
        export_evokeds_mff(export_fname, evoked, history=history)
    else:
        export_evokeds(export_fname, evoked, fmt=fmt)
    # Drop non-EEG channels
    evoked = [ave.drop_channels(['ECG', 'EMG']) for ave in evoked]
    evoked_exported = read_evokeds_mff(export_fname)
    assert len(evoked) == len(evoked_exported)
    for ave, ave_exported in zip(evoked, evoked_exported):
        # Compare infos
        assert object_diff(ave_exported.info, ave.info) == ''
        # Compare data
        assert_allclose(ave_exported.data, ave.data)
        # Compare properties
        assert ave_exported.nave == ave.nave
        assert ave_exported.kind == ave.kind
        assert ave_exported.comment == ave.comment
        assert_allclose(ave_exported.times, ave.times)

    # test overwrite
    with pytest.raises(FileExistsError, match='Destination file exists'):
        if do_history:
            export_evokeds_mff(export_fname,
                               evoked,
                               history=history,
                               overwrite=False)
        else:
            export_evokeds(export_fname, evoked, overwrite=False)

    if do_history:
        export_evokeds_mff(export_fname,
                           evoked,
                           history=history,
                           overwrite=True)
    else:
        export_evokeds(export_fname, evoked, overwrite=True)

    # test export from evoked directly
    evoked[0].export(export_fname, overwrite=True)
Esempio n. 19
0
def test_fif_dig_montage():
    """Test FIF dig montage support."""
    with pytest.deprecated_call():
        dig_montage = read_dig_montage(fif=fif_dig_montage_fname)

    # test round-trip IO
    temp_dir = _TempDir()
    fname_temp = op.join(temp_dir, 'test.fif')
    _check_roundtrip(dig_montage, fname_temp)

    # Make a BrainVision file like the one the user would have had
    raw_bv = read_raw_brainvision(bv_fname, preload=True)
    raw_bv_2 = raw_bv.copy()
    mapping = dict()
    for ii, ch_name in enumerate(raw_bv.ch_names):
        mapping[ch_name] = 'EEG%03d' % (ii + 1, )
    raw_bv.rename_channels(mapping)
    for ii, ch_name in enumerate(raw_bv_2.ch_names):
        mapping[ch_name] = 'EEG%03d' % (ii + 33, )
    raw_bv_2.rename_channels(mapping)
    raw_bv.add_channels([raw_bv_2])

    for ii in range(2):
        # Set the montage
        raw_bv.set_montage(dig_montage)

        # Check the result
        evoked = read_evokeds(evoked_fname)[0]

        assert_equal(len(raw_bv.ch_names), len(evoked.ch_names) - 1)
        for ch_py, ch_c in zip(raw_bv.info['chs'], evoked.info['chs'][:-1]):
            assert_equal(ch_py['ch_name'],
                         ch_c['ch_name'].replace('EEG ', 'EEG'))
            # C actually says it's unknown, but it's not (?):
            # assert_equal(ch_py['coord_frame'], ch_c['coord_frame'])
            assert_equal(ch_py['coord_frame'], FIFF.FIFFV_COORD_HEAD)
            c_loc = ch_c['loc'].copy()
            c_loc[c_loc == 0] = np.nan
            assert_allclose(ch_py['loc'], c_loc, atol=1e-7)
        assert_dig_allclose(raw_bv.info, evoked.info)

    # Roundtrip of non-FIF start
    names = ['nasion', 'lpa', 'rpa', '1', '2', '3', '4', '5']
    montage = read_dig_montage(hsp, hpi, elp, names, transform=False)
    pytest.raises(RuntimeError, montage.save, fname_temp)  # must be head coord
    montage = read_dig_montage(hsp, hpi, elp, names)
    _check_roundtrip(montage, fname_temp)

    # Test old way matches new way
    with pytest.deprecated_call():
        dig_montage = read_dig_montage(fif=fif_dig_montage_fname)
    dig_montage_fif = read_dig_fif(fif_dig_montage_fname)
    assert dig_montage.dig == dig_montage_fif.dig
    assert object_diff(dig_montage.ch_names, dig_montage_fif.ch_names) == ''
Esempio n. 20
0
def test_fine_cal_io(tmpdir, fname):
    """Test round trip reading/writing of fine calibration .dat file."""
    temp_fname = op.join(str(tmpdir), 'fine_cal_temp.dat')
    # Load fine calibration file
    fine_cal_dict = read_fine_calibration(fname)

    # Save temp version of fine calibration file
    write_fine_calibration(temp_fname, fine_cal_dict)
    fine_cal_dict_reload = read_fine_calibration(temp_fname)

    # Load temp version of fine calibration file and compare hashes
    assert object_diff(fine_cal_dict, fine_cal_dict_reload) == ''
Esempio n. 21
0
def test_io_egi_evokeds_mff(idx, cond, tmax, signals, bads):
    """Test reading evoked MFF file."""
    # Test reading all conditions from evokeds
    evokeds = read_evokeds_mff(egi_mff_evoked_fname)
    assert len(evokeds) == 2
    # Test reading list of conditions from evokeds
    evokeds = read_evokeds_mff(egi_mff_evoked_fname, condition=[0, 1])
    assert len(evokeds) == 2
    # Test invalid condition
    with pytest.raises(ValueError) as exc_info:
        read_evokeds_mff(egi_mff_evoked_fname, condition='Invalid Condition')
    message = "Invalid value for the 'condition' parameter provided as " \
              "category name. Allowed values are 'Category 1' and " \
              "'Category 2', but got 'Invalid Condition' instead."
    assert str(exc_info.value) == message
    with pytest.raises(ValueError) as exc_info:
        read_evokeds_mff(egi_mff_evoked_fname, condition=2)
    message = '"condition" parameter (2), provided as epoch index, ' \
              'is out of range for available epochs (2).'
    assert str(exc_info.value) == message
    with pytest.raises(TypeError) as exc_info:
        read_evokeds_mff(egi_mff_evoked_fname, condition=1.2)
    message = '"condition" parameter must be either int or str.'
    assert str(exc_info.value) == message
    # Test reading evoked data from single condition
    evoked_cond = read_evokeds_mff(egi_mff_evoked_fname, condition=cond)
    evoked_idx = read_evokeds_mff(egi_mff_evoked_fname, condition=idx)
    for evoked in [evoked_cond, evoked_idx]:
        assert evoked.comment == cond
        assert evoked.nave == 3
        assert evoked.tmin == 0.0
        assert evoked.tmax == tmax
    # Check signal data
    data = np.loadtxt(signals, ndmin=2).T * 1e-6  # convert to volts
    assert_allclose(evoked_cond.data, data, atol=1e-12)
    assert_allclose(evoked_idx.data, data, atol=1e-12)
    # Check info
    assert object_diff(evoked_cond.info, evoked_idx.info) == ''
    assert evoked_cond.info['description'] == cond
    assert evoked_cond.info['bads'] == bads
    assert len(evoked_cond.info['ch_names']) == 259
    assert 'ECG' in evoked_cond.info['ch_names']
    assert 'EMG' in evoked_cond.info['ch_names']
    assert 'ecg' in evoked_cond
    assert 'emg' in evoked_cond
    pick_eeg = pick_types(evoked_cond.info, eeg=True, exclude=[])
    assert len(pick_eeg) == 257
    assert evoked_cond.info['nchan'] == 259
    assert evoked_cond.info['sfreq'] == 250.0
    assert not evoked_cond.info['custom_ref_applied']
    assert len(evoked_cond.info['dig']) == 261
    assert evoked_cond.info['device_info']['type'] == 'HydroCel GSN 256 1.0'
Esempio n. 22
0
def test_hdf5():
    """Test HDF5 IO
    """
    test_file = op.join(tempdir, 'test.hdf5')
    x = dict(a=dict(b=np.zeros(3)), c=np.zeros(2, np.complex128),
             d=[dict(e=(1, -2., 'hello', u'goodbyeu\u2764')), None])
    write_hdf5(test_file, 1)
    assert_equal(read_hdf5(test_file), 1)
    assert_raises(IOError, write_hdf5, test_file, x)  # file exists
    write_hdf5(test_file, x, overwrite=True)
    assert_raises(IOError, read_hdf5, test_file + 'FOO')  # not found
    xx = read_hdf5(test_file)
    assert_true(object_diff(x, xx) == '')  # no assert_equal, ugly output
Esempio n. 23
0
def test_hdf5():
    """Test HDF5 IO
    """
    test_file = op.join(tempdir, 'test.hdf5')
    x = dict(a=dict(b=np.zeros(3)),
             c=np.zeros(2, np.complex128),
             d=[dict(e=(1, -2., 'hello', u'goodbyeu\u2764')), None])
    write_hdf5(test_file, 1)
    assert_equal(read_hdf5(test_file), 1)
    assert_raises(IOError, write_hdf5, test_file, x)  # file exists
    write_hdf5(test_file, x, overwrite=True)
    assert_raises(IOError, read_hdf5, test_file + 'FOO')  # not found
    xx = read_hdf5(test_file)
    assert_true(object_diff(x, xx) == '')  # no assert_equal, ugly output
Esempio n. 24
0
def test_edf_set_montage_none():
    """Test that using montage=None in init and set_montage differs."""
    raw = read_raw_edf(edf_path, montage=None)
    original_chs = deepcopy(raw.info['chs'])
    assert raw.info['dig'] is None

    raw.set_montage(None)
    assert object_diff(raw.info['chs'], original_chs)  # They differ

    # read_raw_edf initializes 0s and set_montage NaNs
    all_loc = np.array([ch['loc'] for ch in original_chs])
    assert_array_equal(all_loc, np.zeros_like(all_loc))
    assert_array_equal(np.array([ch['loc'] for ch in raw.info['chs']]),
                       np.full_like(all_loc, np.NaN))
Esempio n. 25
0
def test_cross_talk():
    """Test Maxwell filter cross-talk cancellation."""
    raw = read_crop(raw_fname, (0., 1.))
    raw.info['bads'] = bads
    sss_ctc = read_crop(sss_ctc_fname)
    raw_sss = maxwell_filter(raw,
                             cross_talk=ctc_fname,
                             origin=mf_head_origin,
                             regularize=None,
                             bad_condition='ignore')
    assert_meg_snr(raw_sss, sss_ctc, 275.)
    py_ctc = raw_sss.info['proc_history'][0]['max_info']['sss_ctc']
    assert (len(py_ctc) > 0)
    pytest.raises(ValueError, maxwell_filter, raw, cross_talk=raw)
    pytest.raises(ValueError, maxwell_filter, raw, cross_talk=raw_fname)
    mf_ctc = sss_ctc.info['proc_history'][0]['max_info']['sss_ctc']
    del mf_ctc['block_id']  # we don't write this
    assert isinstance(py_ctc['decoupler'], sparse.csc_matrix)
    assert isinstance(mf_ctc['decoupler'], sparse.csc_matrix)
    assert_array_equal(py_ctc['decoupler'].toarray(),
                       mf_ctc['decoupler'].toarray())
    # I/O roundtrip
    tempdir = _TempDir()
    fname = op.join(tempdir, 'test_sss_raw.fif')
    sss_ctc.save(fname)
    sss_ctc_read = read_raw_fif(fname)
    mf_ctc_read = sss_ctc_read.info['proc_history'][0]['max_info']['sss_ctc']
    assert isinstance(mf_ctc_read['decoupler'], sparse.csc_matrix)
    assert_array_equal(mf_ctc_read['decoupler'].toarray(),
                       mf_ctc['decoupler'].toarray())
    assert_equal(object_diff(py_ctc, mf_ctc), '')
    raw_ctf = read_crop(fname_ctf_raw).apply_gradient_compensation(0)
    pytest.raises(ValueError, maxwell_filter, raw_ctf)  # cannot fit headshape
    raw_sss = maxwell_filter(raw_ctf, origin=(0., 0., 0.04))
    _assert_n_free(raw_sss, 68)
    raw_sss = maxwell_filter(raw_ctf, origin=(0., 0., 0.04), ignore_ref=True)
    _assert_n_free(raw_sss, 70)
    raw_missing = raw.copy().crop(0, 0.1).load_data().pick_channels([
        raw.ch_names[pi]
        for pi in pick_types(raw.info, meg=True, exclude=())[3:]
    ])
    with pytest.warns(RuntimeWarning, match='Not all cross-talk channels'):
        maxwell_filter(raw_missing, cross_talk=ctc_fname)
    # MEG channels not in cross-talk
    pytest.raises(RuntimeError,
                  maxwell_filter,
                  raw_ctf,
                  origin=(0., 0., 0.04),
                  cross_talk=ctc_fname)
Esempio n. 26
0
def test_cross_talk():
    """Test Maxwell filter cross-talk cancellation"""
    with warnings.catch_warnings(record=True):  # maxshield
        raw = Raw(raw_fname, allow_maxshield=True).crop(0.0, 1.0, False)
    raw.info["bads"] = bads
    sss_ctc = Raw(sss_ctc_fname)
    raw_sss = maxwell_filter(raw, cross_talk=ctc_fname, origin=mf_head_origin, regularize=None, bad_condition="ignore")
    assert_meg_snr(raw_sss, sss_ctc, 275.0)
    py_ctc = raw_sss.info["proc_history"][0]["max_info"]["sss_ctc"]
    assert_true(len(py_ctc) > 0)
    assert_raises(ValueError, maxwell_filter, raw, cross_talk=raw)
    assert_raises(ValueError, maxwell_filter, raw, cross_talk=raw_fname)
    mf_ctc = sss_ctc.info["proc_history"][0]["max_info"]["sss_ctc"]
    del mf_ctc["block_id"]  # we don't write this
    assert_equal(object_diff(py_ctc, mf_ctc), "")
Esempio n. 27
0
def test_maxwell_filter_cross_talk():
    """Test Maxwell filter cross-talk cancellation"""
    with warnings.catch_warnings(record=True):  # maxshield
        raw = Raw(raw_fname, allow_maxshield=True).crop(0., 1., False)
    raw.info['bads'] = bads
    sss_ctc = Raw(sss_ctc_fname)
    raw_sss = maxwell_filter(raw, cross_talk=ctc_fname)
    _assert_snr(raw_sss, sss_ctc, 275.)
    py_ctc = raw_sss.info['proc_history'][0]['max_info']['sss_ctc']
    assert_true(len(py_ctc) > 0)
    assert_raises(ValueError, maxwell_filter, raw, cross_talk=raw)
    assert_raises(ValueError, maxwell_filter, raw, cross_talk=raw_fname)
    mf_ctc = sss_ctc.info['proc_history'][0]['max_info']['sss_ctc']
    del mf_ctc['block_id']  # we don't write this
    assert_equal(object_diff(py_ctc, mf_ctc), '')
Esempio n. 28
0
def test_io_surface():
    """Test reading and writing of Freesurfer surface mesh files."""
    tempdir = _TempDir()
    fname_quad = op.join(data_path, 'subjects', 'bert', 'surf',
                         'lh.inflated.nofix')
    fname_tri = op.join(data_path, 'subjects', 'fsaverage', 'surf',
                        'lh.inflated')
    for fname in (fname_quad, fname_tri):
        with pytest.warns(None):  # no volume info
            pts, tri, vol_info = read_surface(fname, read_metadata=True)
        write_surface(op.join(tempdir, 'tmp'), pts, tri, volume_info=vol_info)
        with pytest.warns(None):  # no volume info
            c_pts, c_tri, c_vol_info = read_surface(op.join(tempdir, 'tmp'),
                                                    read_metadata=True)
        assert_array_equal(pts, c_pts)
        assert_array_equal(tri, c_tri)
        assert_equal(object_diff(vol_info, c_vol_info), '')
def test_io_surface():
    """Test reading and writing of Freesurfer surface mesh files."""
    tempdir = _TempDir()
    fname_quad = op.join(data_path, 'subjects', 'bert', 'surf',
                         'lh.inflated.nofix')
    fname_tri = op.join(data_path, 'subjects', 'fsaverage', 'surf',
                        'lh.inflated')
    for fname in (fname_quad, fname_tri):
        with pytest.warns(None):  # no volume info
            pts, tri, vol_info = read_surface(fname, read_metadata=True)
        write_surface(op.join(tempdir, 'tmp'), pts, tri, volume_info=vol_info)
        with pytest.warns(None):  # no volume info
            c_pts, c_tri, c_vol_info = read_surface(op.join(tempdir, 'tmp'),
                                                    read_metadata=True)
        assert_array_equal(pts, c_pts)
        assert_array_equal(tri, c_tri)
        assert_equal(object_diff(vol_info, c_vol_info), '')
Esempio n. 30
0
def test_cross_talk():
    """Test Maxwell filter cross-talk cancellation."""
    raw = read_crop(raw_fname, (0., 1.))
    raw.info['bads'] = bads
    sss_ctc = read_crop(sss_ctc_fname)
    raw_sss = maxwell_filter(raw, cross_talk=ctc_fname,
                             origin=mf_head_origin, regularize=None,
                             bad_condition='ignore')
    assert_meg_snr(raw_sss, sss_ctc, 275.)
    py_ctc = raw_sss.info['proc_history'][0]['max_info']['sss_ctc']
    assert_true(len(py_ctc) > 0)
    assert_raises(ValueError, maxwell_filter, raw, cross_talk=raw)
    assert_raises(ValueError, maxwell_filter, raw, cross_talk=raw_fname)
    mf_ctc = sss_ctc.info['proc_history'][0]['max_info']['sss_ctc']
    del mf_ctc['block_id']  # we don't write this
    assert isinstance(py_ctc['decoupler'], sparse.csc_matrix)
    assert isinstance(mf_ctc['decoupler'], sparse.csc_matrix)
    assert_array_equal(py_ctc['decoupler'].toarray(),
                       mf_ctc['decoupler'].toarray())
    # I/O roundtrip
    tempdir = _TempDir()
    fname = op.join(tempdir, 'test_sss_raw.fif')
    sss_ctc.save(fname)
    sss_ctc_read = read_raw_fif(fname)
    mf_ctc_read = sss_ctc_read.info['proc_history'][0]['max_info']['sss_ctc']
    assert isinstance(mf_ctc_read['decoupler'], sparse.csc_matrix)
    assert_array_equal(mf_ctc_read['decoupler'].toarray(),
                       mf_ctc['decoupler'].toarray())
    assert_equal(object_diff(py_ctc, mf_ctc), '')
    raw_ctf = read_crop(fname_ctf_raw).apply_gradient_compensation(0)
    assert_raises(ValueError, maxwell_filter, raw_ctf)  # cannot fit headshape
    raw_sss = maxwell_filter(raw_ctf, origin=(0., 0., 0.04))
    _assert_n_free(raw_sss, 68)
    raw_sss = maxwell_filter(raw_ctf, origin=(0., 0., 0.04), ignore_ref=True)
    _assert_n_free(raw_sss, 70)
    raw_missing = raw.copy().crop(0, 0.1).load_data().pick_channels(
        [raw.ch_names[pi] for pi in pick_types(raw.info, meg=True,
                                               exclude=())[3:]])
    with warnings.catch_warnings(record=True) as w:
        maxwell_filter(raw_missing, cross_talk=ctc_fname)
    assert_equal(len(w), 1)
    assert_true('Not all cross-talk channels in raw' in str(w[0].message))
    # MEG channels not in cross-talk
    assert_raises(RuntimeError, maxwell_filter, raw_ctf, origin=(0., 0., 0.04),
                  cross_talk=ctc_fname)
Esempio n. 31
0
def test_io_surface():
    """Test reading and writing of Freesurfer surface mesh files."""
    tempdir = _TempDir()
    fname_quad = op.join(data_path, 'subjects', 'bert', 'surf',
                         'lh.inflated.nofix')
    fname_tri = op.join(data_path, 'subjects', 'fsaverage', 'surf',
                        'lh.inflated')
    for fname in (fname_quad, fname_tri):
        with warnings.catch_warnings(record=True) as w:
            pts, tri, vol_info = read_surface(fname, read_metadata=True)
        assert all('No volume info' in str(ww.message) for ww in w)
        write_surface(op.join(tempdir, 'tmp'), pts, tri, volume_info=vol_info)
        with warnings.catch_warnings(record=True) as w:  # No vol info
            c_pts, c_tri, c_vol_info = read_surface(op.join(tempdir, 'tmp'),
                                                    read_metadata=True)
        assert_array_equal(pts, c_pts)
        assert_array_equal(tri, c_tri)
        assert_equal(object_diff(vol_info, c_vol_info), '')
Esempio n. 32
0
def test_io_surface():
    """Test reading and writing of Freesurfer surface mesh files."""
    tempdir = _TempDir()
    fname_quad = op.join(data_path, 'subjects', 'bert', 'surf',
                         'lh.inflated.nofix')
    fname_tri = op.join(data_path, 'subjects', 'fsaverage', 'surf',
                        'lh.inflated')
    for fname in (fname_quad, fname_tri):
        with warnings.catch_warnings(record=True) as w:
            pts, tri, vol_info = read_surface(fname, read_metadata=True)
        assert_true(all('No volume info' in str(ww.message) for ww in w))
        write_surface(op.join(tempdir, 'tmp'), pts, tri, volume_info=vol_info)
        with warnings.catch_warnings(record=True) as w:  # No vol info
            c_pts, c_tri, c_vol_info = read_surface(op.join(tempdir, 'tmp'),
                                                    read_metadata=True)
        assert_array_equal(pts, c_pts)
        assert_array_equal(tri, c_tri)
        assert_equal(object_diff(vol_info, c_vol_info), '')
Esempio n. 33
0
def test_cross_talk():
    """Test Maxwell filter cross-talk cancellation"""
    with warnings.catch_warnings(record=True):  # maxshield
        raw = Raw(raw_fname, allow_maxshield=True).crop(0., 1., False)
    raw.info['bads'] = bads
    sss_ctc = Raw(sss_ctc_fname)
    raw_sss = maxwell_filter(raw,
                             cross_talk=ctc_fname,
                             origin=mf_head_origin,
                             regularize=None,
                             bad_condition='ignore')
    assert_meg_snr(raw_sss, sss_ctc, 275.)
    py_ctc = raw_sss.info['proc_history'][0]['max_info']['sss_ctc']
    assert_true(len(py_ctc) > 0)
    assert_raises(ValueError, maxwell_filter, raw, cross_talk=raw)
    assert_raises(ValueError, maxwell_filter, raw, cross_talk=raw_fname)
    mf_ctc = sss_ctc.info['proc_history'][0]['max_info']['sss_ctc']
    del mf_ctc['block_id']  # we don't write this
    assert_equal(object_diff(py_ctc, mf_ctc), '')
Esempio n. 34
0
def test_handle_coords_reading():
    """Test reading coordinates from BIDS files."""
    bids_root = _TempDir()

    data_path = op.join(testing.data_path(), 'EDF')
    raw_fname = op.join(data_path, 'test_reduced.edf')

    raw = mne.io.read_raw_edf(raw_fname)

    # ensure we are writing 'ecog'/'ieeg' data
    raw.set_channel_types({ch: 'ecog' for ch in raw.ch_names})

    # set a `random` montage
    ch_names = raw.ch_names
    elec_locs = np.random.random((len(ch_names), 3)).astype(float)
    ch_pos = dict(zip(ch_names, elec_locs))
    montage = mne.channels.make_dig_montage(ch_pos=ch_pos, coord_frame="mri")
    raw.set_montage(montage)
    write_raw_bids(raw, bids_basename, bids_root, overwrite=True)

    # read in the data and assert montage is the same
    bids_fname = bids_basename + "_ieeg.edf"
    raw_test = read_raw_bids(bids_fname, bids_root)

    # obtain the sensor positions
    orig_locs = raw.info['dig'][1]
    test_locs = raw_test.info['dig'][1]
    assert orig_locs == test_locs
    assert not object_diff(raw.info['chs'], raw_test.info['chs'])

    # test error message if electrodes don't match
    electrodes_fname = _find_matching_sidecar(bids_fname,
                                              bids_root,
                                              "electrodes.tsv",
                                              allow_fail=True)
    electrodes_dict = _from_tsv(electrodes_fname)
    # pop off 5 channels
    for key in electrodes_dict.keys():
        for i in range(5):
            electrodes_dict[key].pop()
    _to_tsv(electrodes_dict, electrodes_fname)
    with pytest.raises(RuntimeError, match='Channels do not correspond'):
        raw_test = read_raw_bids(bids_fname, bids_root)
Esempio n. 35
0
def test_params_io(tmpdir, fname):
    """Test params I/O round-trip."""
    import yaml
    assert op.isfile(fname)
    p = read_params(fname)
    assert '__default__' not in p.mf_prebad
    temp_fname = str(tmpdir.join('test.yml'))
    p.save(temp_fname)
    assert '__default__' not in p.mf_prebad

    # Look at our objects
    p2 = read_params(temp_fname)
    assert object_diff(p.__dict__, p2.__dict__) == ''

    # Look at the YAML to check out write order in the file is preserved
    with open(fname, 'r') as fid:
        orig = yaml.load(fid, Loader=yaml.SafeLoader)
    for ii, key in enumerate(orig.keys()):
        if ii != 0:
            break
        assert key == 'general'

    with open(temp_fname, 'r') as fid:
        read = yaml.load(fid, Loader=yaml.SafeLoader)
    for ii, key in enumerate(read.keys()):
        if ii != 0:
            break
        assert key == 'general'

    # We can do this because we currently write only keys that differ from
    # defaults, but we need to exclude the ones from funloc that we include
    # anyway. This also helps ensure that the funloc example mostly shows
    # deviations from defaults.
    del orig['general']['subjects_dir']
    del orig['scoring']['score']
    for key in ('int_order', 'ext_order', 'tsss_dur', 'st_correlation'):
        del orig['preprocessing']['sss'][key]
    del orig['epoching']['decim']
    del orig['forward']['bem_type']
    for key in orig.keys():
        assert orig[key] == read[key]
Esempio n. 36
0
def test_egi_dig_montage():
    """Test EGI MFF XML dig montage support."""
    with pytest.deprecated_call():
        dig_montage = read_dig_montage(egi=egi_dig_montage_fname, unit='m')

    # # test round-trip IO
    temp_dir = _TempDir()
    fname_temp = op.join(temp_dir, 'egi_test.fif')
    _check_roundtrip(dig_montage, fname_temp)

    with pytest.deprecated_call():
        # Test coordinate transform
        # dig_montage.transform_to_head()  # XXX: this call had no effect!!
        # nasion
        assert_almost_equal(dig_montage.nasion[0], 0)
        assert_almost_equal(dig_montage.nasion[2], 0)
        # lpa and rpa
        assert_allclose(dig_montage.lpa[1:], 0, atol=1e-16)
        assert_allclose(dig_montage.rpa[1:], 0, atol=1e-16)

    # Test accuracy and embedding within raw object
    raw_egi = read_raw_egi(egi_raw_fname, channel_naming='EEG %03d')
    raw_egi.set_montage(dig_montage)
    test_raw_egi = read_raw_fif(egi_fif_fname)

    assert_equal(len(raw_egi.ch_names), len(test_raw_egi.ch_names))
    for ch_raw, ch_test_raw in zip(raw_egi.info['chs'],
                                   test_raw_egi.info['chs']):
        assert_equal(ch_raw['ch_name'], ch_test_raw['ch_name'])
        assert_equal(ch_raw['coord_frame'], FIFF.FIFFV_COORD_HEAD)
        assert_allclose(ch_raw['loc'], ch_test_raw['loc'], atol=1e-7)
    assert_dig_allclose(raw_egi.info, test_raw_egi.info)

    # Test old way matches new way
    with pytest.deprecated_call():
        dig_montage = read_dig_montage(egi=egi_dig_montage_fname, unit='m')
    dig_montage_egi = read_dig_egi(egi_dig_montage_fname)
    dig_montage_egi = transform_to_head(dig_montage_egi)
    assert dig_montage.dig == dig_montage_egi.dig
    assert object_diff(dig_montage.ch_names, dig_montage_egi.ch_names) == ''
Esempio n. 37
0
def test_snirf_write(fname, tmpdir):
    """Test reading NIRX files."""
    raw_orig = read_raw_nirx(fname, preload=True)
    test_file = tmpdir.join('test_raw.snirf')
    write_raw_snirf(raw_orig, test_file)
    raw = read_raw_snirf(test_file)

    result = validateSnirf(str(test_file))
    if result.is_valid():
        result.display()
    assert result.is_valid()

    # Check annotations are the same
    assert_allclose(raw.annotations.onset, raw_orig.annotations.onset)
    assert_allclose([float(d) for d in raw.annotations.description],
                    [float(d) for d in raw_orig.annotations.description])
    assert_allclose(raw.annotations.duration, raw_orig.annotations.duration)

    # Check data is the same
    assert_allclose(raw.get_data(), raw_orig.get_data())

    assert abs(raw_orig.info['meas_date'] - raw.info['meas_date']) < \
           datetime.timedelta(seconds=1)

    # Check info object is the same
    obj_diff = object_diff(raw.info, raw_orig.info)
    diffs = ''
    for line in obj_diff.splitlines():
        if ('logno' not in line) and \
                ('scanno' not in line) and \
                ('his_id' not in line) and\
                ('datetime mismatch' not in line):
            # logno and scanno are not used in processing
            diffs += f'\n{line}'
    assert diffs == ''

    _verify_snirf_required_fields(test_file)
    _verify_snirf_version_str(test_file)
Esempio n. 38
0
def test_csd_fif():
    """Test applying CSD to FIF data."""
    raw = read_raw_fif(raw_fname).load_data()
    raw.info['bads'] = []
    picks = pick_types(raw.info, meg=False, eeg=True)
    assert 'csd' not in raw
    orig_eeg = raw.get_data('eeg')
    assert len(orig_eeg) == 60
    raw_csd = compute_current_source_density(raw)
    assert 'eeg' not in raw_csd
    new_eeg = raw_csd.get_data('csd')
    assert not (orig_eeg == new_eeg).any()

    # reset the only things that should change, and assert objects are the same
    assert raw_csd.info['custom_ref_applied'] == FIFF.FIFFV_MNE_CUSTOM_REF_CSD
    raw_csd.info['custom_ref_applied'] = 0
    for pick in picks:
        ch = raw_csd.info['chs'][pick]
        assert ch['coil_type'] == FIFF.FIFFV_COIL_EEG_CSD
        assert ch['unit'] == FIFF.FIFF_UNIT_V_M2
        ch.update(coil_type=FIFF.FIFFV_COIL_EEG, unit=FIFF.FIFF_UNIT_V)
        raw_csd._data[pick] = raw._data[pick]
    assert object_diff(raw.info, raw_csd.info) == ''
Esempio n. 39
0
def test_hash():
    """Test dictionary hashing and comparison functions."""
    # does hashing all of these types work:
    # {dict, list, tuple, ndarray, str, float, int, None}
    d0 = dict(a=dict(a=0.1, b='fo', c=1), b=[1, 'b'], c=(), d=np.ones(3),
              e=None)
    d0[1] = None
    d0[2.] = b'123'

    d1 = deepcopy(d0)
    assert_true(len(object_diff(d0, d1)) == 0)
    assert_true(len(object_diff(d1, d0)) == 0)
    assert_equal(object_hash(d0), object_hash(d1))

    # change values slightly
    d1['data'] = np.ones(3, int)
    d1['d'][0] = 0
    assert_not_equal(object_hash(d0), object_hash(d1))

    d1 = deepcopy(d0)
    assert_equal(object_hash(d0), object_hash(d1))
    d1['a']['a'] = 0.11
    assert_true(len(object_diff(d0, d1)) > 0)
    assert_true(len(object_diff(d1, d0)) > 0)
    assert_not_equal(object_hash(d0), object_hash(d1))

    d1 = deepcopy(d0)
    assert_equal(object_hash(d0), object_hash(d1))
    d1['a']['d'] = 0  # non-existent key
    assert_true(len(object_diff(d0, d1)) > 0)
    assert_true(len(object_diff(d1, d0)) > 0)
    assert_not_equal(object_hash(d0), object_hash(d1))

    d1 = deepcopy(d0)
    assert_equal(object_hash(d0), object_hash(d1))
    d1['b'].append(0)  # different-length lists
    assert_true(len(object_diff(d0, d1)) > 0)
    assert_true(len(object_diff(d1, d0)) > 0)
    assert_not_equal(object_hash(d0), object_hash(d1))

    d1 = deepcopy(d0)
    assert_equal(object_hash(d0), object_hash(d1))
    d1['e'] = 'foo'  # non-None
    assert_true(len(object_diff(d0, d1)) > 0)
    assert_true(len(object_diff(d1, d0)) > 0)
    assert_not_equal(object_hash(d0), object_hash(d1))

    d1 = deepcopy(d0)
    d2 = deepcopy(d0)
    d1['e'] = StringIO()
    d2['e'] = StringIO()
    d2['e'].write('foo')
    assert_true(len(object_diff(d0, d1)) > 0)
    assert_true(len(object_diff(d1, d0)) > 0)

    d1 = deepcopy(d0)
    d1[1] = 2
    assert_true(len(object_diff(d0, d1)) > 0)
    assert_true(len(object_diff(d1, d0)) > 0)
    assert_not_equal(object_hash(d0), object_hash(d1))

    # generators (and other types) not supported
    d1 = deepcopy(d0)
    d2 = deepcopy(d0)
    d1[1] = (x for x in d0)
    d2[1] = (x for x in d0)
    assert_raises(RuntimeError, object_diff, d1, d2)
    assert_raises(RuntimeError, object_hash, d1)

    x = sparse.eye(2, 2, format='csc')
    y = sparse.eye(2, 2, format='csr')
    assert_true('type mismatch' in object_diff(x, y))
    y = sparse.eye(2, 2, format='csc')
    assert_equal(len(object_diff(x, y)), 0)
    y[1, 1] = 2
    assert_true('elements' in object_diff(x, y))
    y = sparse.eye(3, 3, format='csc')
    assert_true('shape' in object_diff(x, y))
    y = 0
    assert_true('type mismatch' in object_diff(x, y))
Esempio n. 40
0
def test_make_lcmv(tmpdir):
    """Test LCMV with evoked data and single trials."""
    raw, epochs, evoked, data_cov, noise_cov, label, forward,\
        forward_surf_ori, forward_fixed, forward_vol = _get_data()

    for fwd in [forward, forward_vol]:
        filters = make_lcmv(evoked.info, fwd, data_cov, reg=0.01,
                            noise_cov=noise_cov)
        stc = apply_lcmv(evoked, filters, max_ori_out='signed')
        stc.crop(0.02, None)

        stc_pow = np.sum(np.abs(stc.data), axis=1)
        idx = np.argmax(stc_pow)
        max_stc = stc.data[idx]
        tmax = stc.times[np.argmax(max_stc)]

        assert 0.09 < tmax < 0.12, tmax
        assert 0.9 < np.max(max_stc) < 3., np.max(max_stc)

        if fwd is forward:
            # Test picking normal orientation (surface source space only).
            filters = make_lcmv(evoked.info, forward_surf_ori, data_cov,
                                reg=0.01, noise_cov=noise_cov,
                                pick_ori='normal', weight_norm=None)
            stc_normal = apply_lcmv(evoked, filters, max_ori_out='signed')
            stc_normal.crop(0.02, None)

            stc_pow = np.sum(np.abs(stc_normal.data), axis=1)
            idx = np.argmax(stc_pow)
            max_stc = stc_normal.data[idx]
            tmax = stc_normal.times[np.argmax(max_stc)]

            assert 0.04 < tmax < 0.13, tmax
            assert 3e-7 < np.max(max_stc) < 5e-7, np.max(max_stc)

            # No weight normalization was applied, so the amplitude of normal
            # orientation results should always be smaller than free
            # orientation results.
            assert (np.abs(stc_normal.data) <= stc.data).all()

        # Test picking source orientation maximizing output source power
        filters = make_lcmv(evoked.info, fwd, data_cov, reg=0.01,
                            noise_cov=noise_cov, pick_ori='max-power')
        stc_max_power = apply_lcmv(evoked, filters, max_ori_out='signed')
        stc_max_power.crop(0.02, None)
        stc_pow = np.sum(np.abs(stc_max_power.data), axis=1)
        idx = np.argmax(stc_pow)
        max_stc = np.abs(stc_max_power.data[idx])
        tmax = stc.times[np.argmax(max_stc)]

        assert 0.08 < tmax < 0.12, tmax
        assert 0.8 < np.max(max_stc) < 3., np.max(max_stc)

        stc_max_power.data[:, :] = np.abs(stc_max_power.data)

        if fwd is forward:
            # Maximum output source power orientation results should be
            # similar to free orientation results in areas with channel
            # coverage
            label = mne.read_label(fname_label)
            mean_stc = stc.extract_label_time_course(label, fwd['src'],
                                                     mode='mean')
            mean_stc_max_pow = \
                stc_max_power.extract_label_time_course(label, fwd['src'],
                                                        mode='mean')
            assert_array_less(np.abs(mean_stc - mean_stc_max_pow), 0.6)

        # Test NAI weight normalization:
        filters = make_lcmv(evoked.info, fwd, data_cov, reg=0.01,
                            noise_cov=noise_cov, pick_ori='max-power',
                            weight_norm='nai')
        stc_nai = apply_lcmv(evoked, filters, max_ori_out='signed')
        stc_nai.crop(0.02, None)

        # Test whether unit-noise-gain solution is a scaled version of NAI
        pearsoncorr = np.corrcoef(np.concatenate(np.abs(stc_nai.data)),
                                  np.concatenate(stc_max_power.data))
        assert_almost_equal(pearsoncorr[0, 1], 1.)

    # Test sphere head model with unit-noise gain beamformer and orientation
    # selection and rank reduction of the leadfield
    sphere = mne.make_sphere_model(r0=(0., 0., 0.), head_radius=0.080)
    src = mne.setup_volume_source_space(subject=None, pos=15., mri=None,
                                        sphere=(0.0, 0.0, 0.0, 80.0),
                                        bem=None, mindist=5.0, exclude=2.0)

    fwd_sphere = mne.make_forward_solution(evoked.info, trans=None, src=src,
                                           bem=sphere, eeg=False, meg=True)

    # Test that we get an error if not reducing rank
    with pytest.raises(ValueError):  # Singular matrix or complex spectrum
        make_lcmv(
            evoked.info, fwd_sphere, data_cov, reg=0.1,
            noise_cov=noise_cov, weight_norm='unit-noise-gain',
            pick_ori='max-power', reduce_rank=False, rank='full')

    # Now let's reduce it
    filters = make_lcmv(evoked.info, fwd_sphere, data_cov, reg=0.1,
                        noise_cov=noise_cov, weight_norm='unit-noise-gain',
                        pick_ori='max-power', reduce_rank=True)
    stc_sphere = apply_lcmv(evoked, filters, max_ori_out='signed')
    stc_sphere = np.abs(stc_sphere)
    stc_sphere.crop(0.02, None)

    stc_pow = np.sum(stc_sphere.data, axis=1)
    idx = np.argmax(stc_pow)
    max_stc = stc_sphere.data[idx]
    tmax = stc_sphere.times[np.argmax(max_stc)]

    assert 0.08 < tmax < 0.15, tmax
    assert 0.4 < np.max(max_stc) < 2., np.max(max_stc)

    # Test if spatial filter contains src_type
    assert 'src_type' in filters

    # __repr__
    assert 'LCMV' in repr(filters)
    assert 'unknown subject' not in repr(filters)
    assert '484' in repr(filters)
    assert '20' in repr(filters)
    assert 'rank 17' in repr(filters)

    # I/O
    fname = op.join(str(tmpdir), 'filters.h5')
    with pytest.warns(RuntimeWarning, match='-lcmv.h5'):
        filters.save(fname)
    filters_read = read_beamformer(fname)
    assert isinstance(filters, Beamformer)
    assert isinstance(filters_read, Beamformer)
    # deal with object_diff strictness
    filters_read['rank'] = int(filters_read['rank'])
    filters['rank'] = int(filters['rank'])
    assert object_diff(filters, filters_read) == ''

    # Test if fixed forward operator is detected when picking normal or
    # max-power orientation
    pytest.raises(ValueError, make_lcmv, evoked.info, forward_fixed, data_cov,
                  reg=0.01, noise_cov=noise_cov, pick_ori='normal')
    pytest.raises(ValueError, make_lcmv, evoked.info, forward_fixed, data_cov,
                  reg=0.01, noise_cov=noise_cov, pick_ori='max-power')

    # Test if non-surface oriented forward operator is detected when picking
    # normal orientation
    pytest.raises(ValueError, make_lcmv, evoked.info, forward, data_cov,
                  reg=0.01, noise_cov=noise_cov, pick_ori='normal')

    # Test if volume forward operator is detected when picking normal
    # orientation
    pytest.raises(ValueError, make_lcmv, evoked.info, forward_vol, data_cov,
                  reg=0.01, noise_cov=noise_cov, pick_ori='normal')

    # Test if missing of noise covariance matrix is detected when more than
    # one channel type is present in the data
    pytest.raises(ValueError, make_lcmv, evoked.info, forward_vol,
                  data_cov=data_cov, reg=0.01, noise_cov=None,
                  pick_ori='max-power')

    # Test if wrong channel selection is detected in application of filter
    evoked_ch = deepcopy(evoked)
    evoked_ch.pick_channels(evoked_ch.ch_names[1:])
    filters = make_lcmv(evoked.info, forward_vol, data_cov, reg=0.01,
                        noise_cov=noise_cov)
    pytest.raises(ValueError, apply_lcmv, evoked_ch, filters,
                  max_ori_out='signed')

    # Test if discrepancies in channel selection of data and fwd model are
    # handled correctly in apply_lcmv
    # make filter with data where first channel was removed
    filters = make_lcmv(evoked_ch.info, forward_vol, data_cov, reg=0.01,
                        noise_cov=noise_cov)
    # applying that filter to the full data set should automatically exclude
    # this channel from the data
    # also test here that no warnings are thrown - implemented to check whether
    # src should not be None warning occurs
    with pytest.warns(None) as w:
        stc = apply_lcmv(evoked, filters, max_ori_out='signed')
    assert len(w) == 0
    # the result should be equal to applying this filter to a dataset without
    # this channel:
    stc_ch = apply_lcmv(evoked_ch, filters, max_ori_out='signed')
    assert_array_almost_equal(stc.data, stc_ch.data)

    # Test if non-matching SSP projection is detected in application of filter
    raw_proj = deepcopy(raw)
    raw_proj.del_proj()
    pytest.raises(ValueError, apply_lcmv_raw, raw_proj, filters,
                  max_ori_out='signed')

    # Test if setting reduce_rank to True returns a NotImplementedError
    # when no orientation selection is done or pick_ori='normal'
    pytest.raises(NotImplementedError, make_lcmv, evoked.info, forward_vol,
                  data_cov, noise_cov=noise_cov, pick_ori=None,
                  weight_norm='nai', reduce_rank=True)
    pytest.raises(NotImplementedError, make_lcmv, evoked.info,
                  forward_surf_ori, data_cov, noise_cov=noise_cov,
                  pick_ori='normal', weight_norm='nai', reduce_rank=True)

    # Test if spatial filter contains src_type
    assert 'src_type' in filters

    # check whether a filters object without src_type throws expected warning
    del filters['src_type']  # emulate 0.16 behaviour to cause warning
    with pytest.warns(RuntimeWarning, match='spatial filter does not contain '
                      'src_type'):
        apply_lcmv(evoked, filters, max_ori_out='signed')

    # Now test single trial using fixed orientation forward solution
    # so we can compare it to the evoked solution
    filters = make_lcmv(epochs.info, forward_fixed, data_cov, reg=0.01,
                        noise_cov=noise_cov)
    stcs = apply_lcmv_epochs(epochs, filters, max_ori_out='signed')
    stcs_ = apply_lcmv_epochs(epochs, filters, return_generator=True,
                              max_ori_out='signed')
    assert_array_equal(stcs[0].data, next(stcs_).data)

    epochs.drop_bad()
    assert (len(epochs.events) == len(stcs))

    # average the single trial estimates
    stc_avg = np.zeros_like(stcs[0].data)
    for this_stc in stcs:
        stc_avg += this_stc.data
    stc_avg /= len(stcs)

    # compare it to the solution using evoked with fixed orientation
    filters = make_lcmv(evoked.info, forward_fixed, data_cov, reg=0.01,
                        noise_cov=noise_cov)
    stc_fixed = apply_lcmv(evoked, filters, max_ori_out='signed')
    assert_array_almost_equal(stc_avg, stc_fixed.data)

    # use a label so we have few source vertices and delayed computation is
    # not used
    filters = make_lcmv(epochs.info, forward_fixed, data_cov, reg=0.01,
                        noise_cov=noise_cov, label=label)
    stcs_label = apply_lcmv_epochs(epochs, filters, max_ori_out='signed')

    assert_array_almost_equal(stcs_label[0].data, stcs[0].in_label(label).data)

    # Test condition where the filters weights are zero. There should not be
    # any divide-by-zero errors
    zero_cov = data_cov.copy()
    zero_cov['data'][:] = 0
    filters = make_lcmv(epochs.info, forward_fixed, zero_cov, reg=0.01,
                        noise_cov=noise_cov)
    assert_array_equal(filters['weights'], 0)
Esempio n. 41
0
def test_make_dics(tmpdir):
    """Test making DICS beamformer filters."""
    # We only test proper handling of parameters here. Testing the results is
    # done in test_apply_dics_timeseries and test_apply_dics_csd.

    fwd_free, fwd_surf, fwd_fixed, fwd_vol, label = _load_forward()
    epochs, _, csd, _ = _simulate_data(fwd_fixed)

    raises(ValueError, make_dics, epochs.info, fwd_fixed, csd,
           pick_ori="notexistent")
    with raises(ValueError, match='rank, if str'):
        make_dics(epochs.info, fwd_fixed, csd, rank='foo')
    with raises(TypeError, match='rank must be'):
        make_dics(epochs.info, fwd_fixed, csd, rank=1.)

    # Test if fixed forward operator is detected when picking normal
    # orientation
    raises(ValueError, make_dics, epochs.info, fwd_fixed, csd,
           pick_ori="normal")

    # Test if non-surface oriented forward operator is detected when picking
    # normal orientation
    raises(ValueError, make_dics, epochs.info, fwd_free, csd,
           pick_ori="normal")

    # Test if volume forward operator is detected when picking normal
    # orientation
    raises(ValueError, make_dics, epochs.info, fwd_vol, csd, pick_ori="normal")

    # Test invalid combinations of parameters
    raises(NotImplementedError, make_dics, epochs.info, fwd_free, csd,
           reduce_rank=True, pick_ori=None)
    raises(NotImplementedError, make_dics, epochs.info, fwd_free, csd,
           reduce_rank=True, pick_ori='max-power', inversion='single')

    # Sanity checks on the returned filters
    n_freq = len(csd.frequencies)
    vertices = np.intersect1d(label.vertices, fwd_free['src'][0]['vertno'])
    n_verts = len(vertices)
    n_orient = 3
    n_channels = csd.n_channels

    # Test return values
    filters = make_dics(epochs.info, fwd_surf, csd, label=label, pick_ori=None,
                        weight_norm='unit-noise-gain')
    assert filters['weights'].shape == (n_freq, n_verts * n_orient, n_channels)
    assert np.iscomplexobj(filters['weights'])
    assert filters['csd'] == csd
    assert filters['ch_names'] == csd.ch_names
    assert_array_equal(filters['proj'], np.eye(n_channels))
    assert_array_equal(filters['vertices'][0], vertices)
    assert_array_equal(filters['vertices'][1], [])  # Label was on the LH
    assert filters['subject'] == fwd_free['src'][0]['subject_his_id']
    assert filters['pick_ori'] is None
    assert filters['n_orient'] == n_orient
    assert filters['inversion'] == 'single'
    assert filters['normalize_fwd']
    assert filters['weight_norm'] == 'unit-noise-gain'
    assert 'DICS' in repr(filters)
    assert 'subject "sample"' in repr(filters)
    assert '13' in repr(filters)
    assert '62' in repr(filters)
    assert 'rank' not in repr(filters)
    _test_weight_norm(filters)

    # Test picking orientations. Also test weight norming under these different
    # conditions.
    filters = make_dics(epochs.info, fwd_surf, csd, label=label,
                        pick_ori='normal', weight_norm='unit-noise-gain')
    n_orient = 1
    assert filters['weights'].shape == (n_freq, n_verts * n_orient, n_channels)
    assert filters['n_orient'] == n_orient
    _test_weight_norm(filters)

    filters = make_dics(epochs.info, fwd_surf, csd, label=label,
                        pick_ori='max-power', weight_norm='unit-noise-gain')
    n_orient = 1
    assert filters['weights'].shape == (n_freq, n_verts * n_orient, n_channels)
    assert filters['n_orient'] == n_orient
    _test_weight_norm(filters)

    # From here on, only work on a single frequency
    csd = csd[0]

    # Test using a real-valued filter
    filters = make_dics(epochs.info, fwd_surf, csd, label=label,
                        pick_ori='normal', real_filter=True)
    assert not np.iscomplexobj(filters['weights'])

    # Test forward normalization. When inversion='single', the power of a
    # unit-noise CSD should be 1, even without weight normalization.
    csd_noise = csd.copy()
    inds = np.triu_indices(csd.n_channels)
    # Using [:, :] syntax for in-place broadcasting
    csd_noise._data[:, :] = np.eye(csd.n_channels)[inds][:, np.newaxis]
    filters = make_dics(epochs.info, fwd_surf, csd_noise, label=label,
                        weight_norm=None, normalize_fwd=True)
    w = filters['weights'][0][:3]
    assert_allclose(np.diag(w.dot(w.T)), 1.0, rtol=1e-6, atol=0)

    # Test turning off both forward and weight normalization
    filters = make_dics(epochs.info, fwd_surf, csd, label=label,
                        weight_norm=None, normalize_fwd=False)
    w = filters['weights'][0][:3]
    assert not np.allclose(np.diag(w.dot(w.T)), 1.0, rtol=1e-2, atol=0)

    # Test neural-activity-index weight normalization. It should be a scaled
    # version of the unit-noise-gain beamformer.
    filters_nai = make_dics(epochs.info, fwd_surf, csd, label=label,
                            weight_norm='nai', normalize_fwd=False)
    w_nai = filters_nai['weights'][0]
    filters_ung = make_dics(epochs.info, fwd_surf, csd, label=label,
                            weight_norm='unit-noise-gain', normalize_fwd=False)
    w_ung = filters_ung['weights'][0]
    assert np.allclose(np.corrcoef(np.abs(w_nai).ravel(),
                                   np.abs(w_ung).ravel()), 1)

    # Test whether spatial filter contains src_type
    assert 'src_type' in filters

    fname = op.join(str(tmpdir), 'filters-dics.h5')
    filters.save(fname)
    filters_read = read_beamformer(fname)
    assert isinstance(filters, Beamformer)
    assert isinstance(filters_read, Beamformer)
    for key in ['tmin', 'tmax']:  # deal with strictness of object_diff
        setattr(filters['csd'], key, np.float(getattr(filters['csd'], key)))
    assert object_diff(filters, filters_read) == ''
Esempio n. 42
0
def test_hash():
    """Test dictionary hashing and comparison functions"""
    # does hashing all of these types work:
    # {dict, list, tuple, ndarray, str, float, int, None}
    d0 = dict(a=dict(a=0.1, b="fo", c=1), b=[1, "b"], c=(), d=np.ones(3), e=None)
    d0[1] = None
    d0[2.0] = b"123"

    d1 = deepcopy(d0)
    assert_true(len(object_diff(d0, d1)) == 0)
    assert_true(len(object_diff(d1, d0)) == 0)
    assert_equal(object_hash(d0), object_hash(d1))

    # change values slightly
    d1["data"] = np.ones(3, int)
    d1["d"][0] = 0
    assert_not_equal(object_hash(d0), object_hash(d1))

    d1 = deepcopy(d0)
    assert_equal(object_hash(d0), object_hash(d1))
    d1["a"]["a"] = 0.11
    assert_true(len(object_diff(d0, d1)) > 0)
    assert_true(len(object_diff(d1, d0)) > 0)
    assert_not_equal(object_hash(d0), object_hash(d1))

    d1 = deepcopy(d0)
    assert_equal(object_hash(d0), object_hash(d1))
    d1["a"]["d"] = 0  # non-existent key
    assert_true(len(object_diff(d0, d1)) > 0)
    assert_true(len(object_diff(d1, d0)) > 0)
    assert_not_equal(object_hash(d0), object_hash(d1))

    d1 = deepcopy(d0)
    assert_equal(object_hash(d0), object_hash(d1))
    d1["b"].append(0)  # different-length lists
    assert_true(len(object_diff(d0, d1)) > 0)
    assert_true(len(object_diff(d1, d0)) > 0)
    assert_not_equal(object_hash(d0), object_hash(d1))

    d1 = deepcopy(d0)
    assert_equal(object_hash(d0), object_hash(d1))
    d1["e"] = "foo"  # non-None
    assert_true(len(object_diff(d0, d1)) > 0)
    assert_true(len(object_diff(d1, d0)) > 0)
    assert_not_equal(object_hash(d0), object_hash(d1))

    d1 = deepcopy(d0)
    d2 = deepcopy(d0)
    d1["e"] = StringIO()
    d2["e"] = StringIO()
    d2["e"].write("foo")
    assert_true(len(object_diff(d0, d1)) > 0)
    assert_true(len(object_diff(d1, d0)) > 0)

    d1 = deepcopy(d0)
    d1[1] = 2
    assert_true(len(object_diff(d0, d1)) > 0)
    assert_true(len(object_diff(d1, d0)) > 0)
    assert_not_equal(object_hash(d0), object_hash(d1))

    # generators (and other types) not supported
    d1 = deepcopy(d0)
    d2 = deepcopy(d0)
    d1[1] = (x for x in d0)
    d2[1] = (x for x in d0)
    assert_raises(RuntimeError, object_diff, d1, d2)
    assert_raises(RuntimeError, object_hash, d1)

    x = sparse.eye(2, 2, format="csc")
    y = sparse.eye(2, 2, format="csr")
    assert_true("type mismatch" in object_diff(x, y))
    y = sparse.eye(2, 2, format="csc")
    assert_equal(len(object_diff(x, y)), 0)
    y[1, 1] = 2
    assert_true("elements" in object_diff(x, y))
    y = sparse.eye(3, 3, format="csc")
    assert_true("shape" in object_diff(x, y))
    y = 0
    assert_true("type mismatch" in object_diff(x, y))