Esempio n. 1
0
def test_cov_estimation_on_raw():
    """Test estimation from raw (typically empty room)"""
    tempdir = _TempDir()
    raw = Raw(raw_fname, preload=False)
    cov_mne = read_cov(erm_cov_fname)

    cov = compute_raw_covariance(raw, tstep=None)
    assert_equal(cov.ch_names, cov_mne.ch_names)
    assert_equal(cov.nfree, cov_mne.nfree)
    assert_snr(cov.data, cov_mne.data, 1e4)

    cov = compute_raw_covariance(raw)  # tstep=0.2 (default)
    assert_equal(cov.nfree, cov_mne.nfree - 119)  # cutoff some samples
    assert_snr(cov.data, cov_mne.data, 1e2)

    # test IO when computation done in Python
    cov.save(op.join(tempdir, 'test-cov.fif'))  # test saving
    cov_read = read_cov(op.join(tempdir, 'test-cov.fif'))
    assert_true(cov_read.ch_names == cov.ch_names)
    assert_true(cov_read.nfree == cov.nfree)
    assert_array_almost_equal(cov.data, cov_read.data)

    # test with a subset of channels
    picks = pick_channels(raw.ch_names, include=raw.ch_names[:5])
    cov = compute_raw_covariance(raw, picks=picks, tstep=None)
    assert_true(cov_mne.ch_names[:5] == cov.ch_names)
    assert_snr(cov.data, cov_mne.data[picks][:, picks], 1e4)
    cov = compute_raw_covariance(raw, picks=picks)
    assert_snr(cov.data, cov_mne.data[picks][:, picks], 90)  # cutoff samps
    # make sure we get a warning with too short a segment
    raw_2 = raw.crop(0, 1)
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter('always')
        cov = compute_raw_covariance(raw_2)
    assert_true(any('Too few samples' in str(ww.message) for ww in w))
Esempio n. 2
0
def test_cov_estimation_on_raw_segment():
    """Test estimation from raw on continuous recordings (typically empty room)
    """
    tempdir = _TempDir()
    raw = Raw(raw_fname, preload=False)
    cov = compute_raw_covariance(raw)
    cov_mne = read_cov(erm_cov_fname)
    assert_true(cov_mne.ch_names == cov.ch_names)
    assert_true(linalg.norm(cov.data - cov_mne.data, ord='fro') /
                linalg.norm(cov.data, ord='fro') < 1e-4)

    # test IO when computation done in Python
    cov.save(op.join(tempdir, 'test-cov.fif'))  # test saving
    cov_read = read_cov(op.join(tempdir, 'test-cov.fif'))
    assert_true(cov_read.ch_names == cov.ch_names)
    assert_true(cov_read.nfree == cov.nfree)
    assert_array_almost_equal(cov.data, cov_read.data)

    # test with a subset of channels
    picks = pick_channels(raw.ch_names, include=raw.ch_names[:5])
    cov = compute_raw_covariance(raw, picks=picks)
    assert_true(cov_mne.ch_names[:5] == cov.ch_names)
    assert_true(linalg.norm(cov.data - cov_mne.data[picks][:, picks],
                ord='fro') / linalg.norm(cov.data, ord='fro') < 1e-4)
    # make sure we get a warning with too short a segment
    raw_2 = raw.crop(0, 1)
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter('always')
        cov = compute_raw_covariance(raw_2)
    assert_true(len(w) == 1)
Esempio n. 3
0
def test_compute_whitener(proj, pca):
    """Test properties of compute_whitener."""
    raw = read_raw_fif(raw_fname).crop(0, 3).load_data()
    raw.pick_types(eeg=True, exclude=())
    if proj:
        raw.apply_proj()
    else:
        raw.del_proj()
    with pytest.warns(RuntimeWarning, match='Too few samples'):
        cov = compute_raw_covariance(raw)
    W, _, C = compute_whitener(cov, raw.info, pca=pca, return_colorer=True,
                               verbose='error')
    n_channels = len(raw.ch_names)
    n_reduced = len(raw.ch_names)
    rank = n_channels - len(raw.info['projs'])
    n_reduced = rank if pca is True else n_channels
    assert W.shape == C.shape[::-1] == (n_reduced, n_channels)
    # round-trip mults
    round_trip = np.dot(W, C)
    if pca is True:
        assert_allclose(round_trip, np.eye(n_reduced), atol=1e-7)
    elif pca == 'white':
        # Our first few rows/cols are zeroed out in the white space
        assert_allclose(round_trip[-rank:, -rank:],
                        np.eye(rank), atol=1e-7)
    else:
        assert pca is False
        assert_allclose(round_trip, np.eye(n_channels), atol=0.05)
Esempio n. 4
0
def test_compute_whitener(proj, pca):
    """Test properties of compute_whitener."""
    raw = read_raw_fif(raw_fname).crop(0, 3).load_data()
    raw.pick_types(eeg=True, exclude=())
    if proj:
        raw.apply_proj()
    else:
        raw.del_proj()
    with pytest.warns(RuntimeWarning, match='Too few samples'):
        cov = compute_raw_covariance(raw)
    W, _, C = compute_whitener(cov,
                               raw.info,
                               pca=pca,
                               return_colorer=True,
                               verbose='error')
    n_channels = len(raw.ch_names)
    n_reduced = len(raw.ch_names)
    rank = n_channels - len(raw.info['projs'])
    n_reduced = rank if pca is True else n_channels
    assert W.shape == C.shape[::-1] == (n_reduced, n_channels)
    # round-trip mults
    round_trip = np.dot(W, C)
    if pca is True:
        assert_allclose(round_trip, np.eye(n_reduced), atol=1e-7)
    elif pca == 'white':
        # Our first few rows/cols are zeroed out in the white space
        assert_allclose(round_trip[-rank:, -rank:], np.eye(rank), atol=1e-7)
    else:
        assert pca is False
        assert_allclose(round_trip, np.eye(n_channels), atol=0.05)
Esempio n. 5
0
def compute_noise_cov(subject, hcp_path, noise_cov_fname=''):
    if noise_cov_fname == '':
        noise_cov_fname = meg.NOISE_COV.format(cond='empty_room')
    if op.isfile(noise_cov_fname):
        noise_cov = mne.read_cov(noise_cov_fname)
        return noise_cov
    utils.make_dir(utils.get_parent_fol(noise_cov_fname))

    raw_noise = hcp.read_raw(subject=subject,
                             hcp_path=hcp_path,
                             data_type='noise_empty_room')
    raw_noise.load_data()
    # apply ref channel correction and drop ref channels
    preproc.apply_ref_correction(raw_noise)
    raw_noise.filter(0.50,
                     None,
                     method='iir',
                     iir_params=dict(order=4, ftype='butter'),
                     n_jobs=1)
    raw_noise.filter(None,
                     60,
                     method='iir',
                     iir_params=dict(order=4, ftype='butter'),
                     n_jobs=1)
    ##############################################################################
    # Note that using the empty room noise covariance will inflate the SNR of the
    # evkoked and renders comparisons  to `baseline` rather uninformative.
    noise_cov = mne.compute_raw_covariance(raw_noise, method='empirical')
    noise_cov.save(noise_cov_fname)
    return noise_cov
Esempio n. 6
0
def test_lcmv_raw():
    """Test LCMV with raw data
    """
    raw, _, _, _, noise_cov, label, forward, _, _, _ =\
        _get_data(all_forward=False, epochs=False, data_cov=False)

    tmin, tmax = 0, 20
    start, stop = raw.time_as_index([tmin, tmax])

    # use only the left-temporal MEG channels for LCMV
    left_temporal_channels = mne.read_selection('Left-temporal')
    picks = mne.pick_types(raw.info, meg=True, exclude='bads',
                           selection=left_temporal_channels)

    data_cov = mne.compute_raw_covariance(raw, tmin=tmin, tmax=tmax)

    stc = lcmv_raw(raw, forward, noise_cov, data_cov, reg=0.01, label=label,
                   start=start, stop=stop, picks=picks)

    assert_array_almost_equal(np.array([tmin, tmax]),
                              np.array([stc.times[0], stc.times[-1]]),
                              decimal=2)

    # make sure we get an stc with vertices only in the lh
    vertno = [forward['src'][0]['vertno'], forward['src'][1]['vertno']]
    assert_true(len(stc.vertices[0]) == len(np.intersect1d(vertno[0],
                                                           label.vertices)))
    assert_true(len(stc.vertices[1]) == 0)
Esempio n. 7
0
def compute_cov_from_empty_room(subject, session):
    deriv_path = config.get_subject_deriv_path(subject=subject,
                                               session=session,
                                               kind=config.get_kind())

    bids_basename = BIDSPath(subject=subject,
                             session=session,
                             task=config.get_task(),
                             acquisition=config.acq,
                             run=None,
                             recording=config.rec,
                             space=config.space,
                             prefix=deriv_path,
                             check=False)

    raw_er_fname = bids_basename.copy().update(kind=config.get_kind(),
                                               task='noise',
                                               processing='filt',
                                               extension='.fif')
    cov_fname = bids_basename.copy().update(kind='cov', extension='.fif')

    extra_params = dict()
    if not config.use_maxwell_filter and config.allow_maxshield:
        extra_params['allow_maxshield'] = config.allow_maxshield

    msg = (f'Computing regularized covariance based on empty-room recording. '
           f'Input: {raw_er_fname}, Output: {cov_fname}')
    logger.info(
        gen_log_message(message=msg, step=11, subject=subject,
                        session=session))

    raw_er = mne.io.read_raw_fif(raw_er_fname, preload=True, **extra_params)
    cov = mne.compute_raw_covariance(raw_er, method='shrunk', rank='info')
    cov.save(cov_fname)
Esempio n. 8
0
def test_lcmv_raw():
    """Test LCMV with raw data."""
    raw, _, _, _, noise_cov, label, forward, _, _, _ =\
        _get_data(all_forward=False, epochs=False, data_cov=False)

    tmin, tmax = 0, 20
    start, stop = raw.time_as_index([tmin, tmax])

    # use only the left-temporal MEG channels for LCMV
    data_cov = mne.compute_raw_covariance(raw, tmin=tmin, tmax=tmax)
    filters = make_lcmv(raw.info,
                        forward,
                        data_cov,
                        reg=0.01,
                        noise_cov=noise_cov,
                        label=label)
    stc = apply_lcmv_raw(raw,
                         filters,
                         start=start,
                         stop=stop,
                         max_ori_out='signed')

    assert_array_almost_equal(np.array([tmin, tmax]),
                              np.array([stc.times[0], stc.times[-1]]),
                              decimal=2)

    # make sure we get an stc with vertices only in the lh
    vertno = [forward['src'][0]['vertno'], forward['src'][1]['vertno']]
    assert len(stc.vertices[0]) == len(
        np.intersect1d(vertno[0], label.vertices))
    assert len(stc.vertices[1]) == 0
def compute_cov_from_empty_room(cfg, subject, session):
    bids_path = BIDSPath(subject=subject,
                         session=session,
                         task=cfg.task,
                         acquisition=cfg.acq,
                         run=None,
                         recording=cfg.rec,
                         space=cfg.space,
                         extension='.fif',
                         datatype=cfg.datatype,
                         root=cfg.deriv_root,
                         check=False)

    raw_er_fname = bids_path.copy().update(processing='filt',
                                           task='noise',
                                           suffix='raw')
    cov_fname = bids_path.copy().update(suffix='cov')

    msg = (f'Computing regularized covariance based on empty-room recording. '
           f'Input: {raw_er_fname}, Output: {cov_fname}')
    logger.info(
        **gen_log_kwargs(message=msg, subject=subject, session=session))

    raw_er = mne.io.read_raw_fif(raw_er_fname, preload=True)
    cov = mne.compute_raw_covariance(raw_er, method='shrunk', rank='info')
    cov.save(cov_fname)
Esempio n. 10
0
def test_XdawnTransformer():
    """Test _XdawnTransformer."""
    # Get data
    raw, events, picks = _get_data()
    epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
                    preload=True, baseline=None, verbose=False,
                    add_eeg_ref=False)
    X = epochs._data
    y = epochs.events[:, -1]
    # Fit
    xdt = _XdawnTransformer()
    xdt.fit(X, y)
    assert_raises(ValueError, xdt.fit, X, y[1:])
    assert_raises(ValueError, xdt.fit, 'foo')

    # Provide covariance object
    signal_cov = compute_raw_covariance(raw, picks=picks)
    xdt = _XdawnTransformer(signal_cov=signal_cov)
    xdt.fit(X, y)
    # Provide ndarray
    signal_cov = np.eye(len(picks))
    xdt = _XdawnTransformer(signal_cov=signal_cov)
    xdt.fit(X, y)
    # Provide ndarray of bad shape
    signal_cov = np.eye(len(picks) - 1)
    xdt = _XdawnTransformer(signal_cov=signal_cov)
    assert_raises(ValueError, xdt.fit, X, y)
    # Provide another type
    signal_cov = 42
    xdt = _XdawnTransformer(signal_cov=signal_cov)
    assert_raises(ValueError, xdt.fit, X, y)

    # Fit with y as None
    xdt = _XdawnTransformer()
    xdt.fit(X)

    # Compare xdawn and _XdawnTransformer
    xd = Xdawn(correct_overlap=False)
    xd.fit(epochs)

    xdt = _XdawnTransformer()
    xdt.fit(X, y)
    assert_array_almost_equal(xd.filters_['cond2'][:, :2],
                              xdt.filters_.reshape(2, 2, 8)[0].T)

    # Transform testing
    xdt.transform(X[1:, ...])  # different number of epochs
    xdt.transform(X[:, :, 1:])  # different number of time
    assert_raises(ValueError, xdt.transform, X[:, 1:, :])
    Xt = xdt.transform(X)
    assert_raises(ValueError, xdt.transform, 42)

    # Inverse transform testing
    Xinv = xdt.inverse_transform(Xt)
    assert_equal(Xinv.shape, X.shape)
    xdt.inverse_transform(Xt[1:, ...])
    xdt.inverse_transform(Xt[:, :, 1:])
    # should raise an error if not correct number of components
    assert_raises(ValueError, xdt.inverse_transform, Xt[:, 1:, :])
    assert_raises(ValueError, xdt.inverse_transform, 42)
Esempio n. 11
0
def test_XdawnTransformer():
    """Test _XdawnTransformer."""
    # Get data
    raw, events, picks = _get_data()
    raw.del_proj()
    epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
                    preload=True, baseline=None, verbose=False)
    X = epochs._data
    y = epochs.events[:, -1]
    # Fit
    xdt = _XdawnTransformer()
    xdt.fit(X, y)
    pytest.raises(ValueError, xdt.fit, X, y[1:])
    pytest.raises(ValueError, xdt.fit, 'foo')

    # Provide covariance object
    signal_cov = compute_raw_covariance(raw, picks=picks)
    xdt = _XdawnTransformer(signal_cov=signal_cov)
    xdt.fit(X, y)
    # Provide ndarray
    signal_cov = np.eye(len(picks))
    xdt = _XdawnTransformer(signal_cov=signal_cov)
    xdt.fit(X, y)
    # Provide ndarray of bad shape
    signal_cov = np.eye(len(picks) - 1)
    xdt = _XdawnTransformer(signal_cov=signal_cov)
    pytest.raises(ValueError, xdt.fit, X, y)
    # Provide another type
    signal_cov = 42
    xdt = _XdawnTransformer(signal_cov=signal_cov)
    pytest.raises(ValueError, xdt.fit, X, y)

    # Fit with y as None
    xdt = _XdawnTransformer()
    xdt.fit(X)

    # Compare xdawn and _XdawnTransformer
    xd = Xdawn(correct_overlap=False)
    xd.fit(epochs)

    xdt = _XdawnTransformer()
    xdt.fit(X, y)
    assert_array_almost_equal(xd.filters_['cond2'][:, :2],
                              xdt.filters_.reshape(2, 2, 8)[0].T)

    # Transform testing
    xdt.transform(X[1:, ...])  # different number of epochs
    xdt.transform(X[:, :, 1:])  # different number of time
    pytest.raises(ValueError, xdt.transform, X[:, 1:, :])
    Xt = xdt.transform(X)
    pytest.raises(ValueError, xdt.transform, 42)

    # Inverse transform testing
    Xinv = xdt.inverse_transform(Xt)
    assert Xinv.shape == X.shape
    xdt.inverse_transform(Xt[1:, ...])
    xdt.inverse_transform(Xt[:, :, 1:])
    # should raise an error if not correct number of components
    pytest.raises(ValueError, xdt.inverse_transform, Xt[:, 1:, :])
    pytest.raises(ValueError, xdt.inverse_transform, 42)
Esempio n. 12
0
def test_sss_proj():
    """Test `meg` proj option."""
    raw = read_raw_fif(raw_fname)
    raw.crop(0, 1.0).load_data().pick_types(exclude=())
    raw.pick_channels(raw.ch_names[:51]).del_proj()
    with pytest.raises(ValueError, match='can only be used with Maxfiltered'):
        compute_proj_raw(raw, meg='combined')
    raw_sss = maxwell_filter(raw, int_order=5, ext_order=2)
    sss_rank = 21  # really low due to channel picking
    assert len(raw_sss.info['projs']) == 0
    for meg, n_proj, want_rank in (('separate', 6, sss_rank),
                                   ('combined', 3, sss_rank - 3)):
        proj = compute_proj_raw(raw_sss, n_grad=3, n_mag=3, meg=meg,
                                verbose='error')
        this_raw = raw_sss.copy().add_proj(proj).apply_proj()
        assert len(this_raw.info['projs']) == n_proj
        sss_proj_rank = _compute_rank_int(this_raw)
        cov = compute_raw_covariance(this_raw, verbose='error')
        W, ch_names, rank = compute_whitener(cov, this_raw.info,
                                             return_rank=True)
        assert ch_names == this_raw.ch_names
        assert want_rank == sss_proj_rank == rank  # proper reduction
        if meg == 'combined':
            assert this_raw.info['projs'][0]['data']['col_names'] == ch_names
        else:
            mag_names = ch_names[2::3]
            assert this_raw.info['projs'][3]['data']['col_names'] == mag_names
def compute_noise_cov(cov_fname, raw):
    import os.path as op

    from mne import compute_raw_covariance, pick_types, write_cov
    from nipype.utils.filemanip import split_filename as split_f
    from neuropype_ephy.preproc import create_reject_dict

    print '***** COMPUTE RAW COV *****' + cov_fname

    if not op.isfile(cov_fname):

        data_path, basename, ext = split_f(raw.info['filename'])
        fname = op.join(data_path, '%s-cov.fif' % basename)

        reject = create_reject_dict(raw.info)
#        reject = dict(mag=4e-12, grad=4000e-13, eog=250e-6)

        picks = pick_types(raw.info, meg=True, ref_meg=False, exclude='bads')

        noise_cov = compute_raw_covariance(raw, picks=picks, reject=reject)

        write_cov(fname, noise_cov)

    else:
        print '*** NOISE cov file %s exists!!!' % cov_fname

    return cov_fname
Esempio n. 14
0
def test_sss_proj():
    """Test `meg` proj option."""
    raw = read_raw_fif(raw_fname)
    raw.crop(0, 1.0).load_data().pick_types(meg=True, exclude=())
    raw.pick_channels(raw.ch_names[:51]).del_proj()
    raw_sss = maxwell_filter(raw, int_order=5, ext_order=2)
    sss_rank = 21  # really low due to channel picking
    assert len(raw_sss.info['projs']) == 0
    for meg, n_proj, want_rank in (('separate', 6, sss_rank), ('combined', 3,
                                                               sss_rank - 3)):
        proj = compute_proj_raw(raw_sss,
                                n_grad=3,
                                n_mag=3,
                                meg=meg,
                                verbose='error')
        this_raw = raw_sss.copy().add_proj(proj).apply_proj()
        assert len(this_raw.info['projs']) == n_proj
        sss_proj_rank = _compute_rank_int(this_raw)
        cov = compute_raw_covariance(this_raw, verbose='error')
        W, ch_names, rank = compute_whitener(cov,
                                             this_raw.info,
                                             return_rank=True)
        assert ch_names == this_raw.ch_names
        assert want_rank == sss_proj_rank == rank  # proper reduction
        if meg == 'combined':
            assert this_raw.info['projs'][0]['data']['col_names'] == ch_names
        else:
            mag_names = ch_names[2::3]
            assert this_raw.info['projs'][3]['data']['col_names'] == mag_names
Esempio n. 15
0
def get_epochs_and_cov(X, y, window=100):
    """return epochs from array."""
    raw_train = toMNE(X, y)
    picks = range(len(getChannelNames()))

    events = list()
    events_id = dict()
    for j, eid in enumerate(getEventNames()):
        tmp = find_events(raw_train, stim_channel=eid, verbose=False)
        tmp[:, -1] = j + 1
        events.append(tmp)
        events_id[eid] = j + 1

    # concatenate and sort events
    events = np.concatenate(events, axis=0)
    order_ev = np.argsort(events[:, 0])
    events = events[order_ev]

    # epochs = Epochs(raw_train, events, events_id,
    #                 tmin=-(window / 500.0) + 1 / 500.0 + 0.150,
    #                 tmax=0.150, proj=False, picks=picks, baseline=None,
    #                 preload=True, add_eeg_ref=False, verbose=False)
    epochs = Epochs(raw_train, events, events_id,
                    tmin=-(window / 128.0) + 1 / 128.0 + 0.150,
                    tmax=0.150, proj=False, picks=picks, baseline=None,
                    preload=True, add_eeg_ref=False, verbose=False)

    cov_signal = compute_raw_covariance(raw_train, verbose=False)
    # pdb.set_trace()
    return epochs, cov_signal
Esempio n. 16
0
def test_maxwell_filter_additional():
    """Test processing of Maxwell filtered data"""

    # TODO: Future tests integrate with mne/io/tests/test_proc_history

    # Load testing data (raw, SSS std origin, SSS non-standard origin)
    data_path = op.join(testing.data_path(download=False))

    file_name = 'test_move_anon'

    raw_fname = op.join(data_path, 'SSS', file_name + '_raw.fif')

    with warnings.catch_warnings(record=True):  # maxshield
        # Use 2.0 seconds of data to get stable cov. estimate
        raw = Raw(raw_fname, preload=False, proj=False,
                  allow_maxshield=True).crop(0., 2., False)

    # Get MEG channels, compute Maxwell filtered data
    raw.load_data()
    raw.pick_types(meg=True, eeg=False)
    int_order, ext_order = 8, 3
    raw_sss = maxwell.maxwell_filter(raw, int_order=int_order,
                                     ext_order=ext_order)

    # Test io on processed data
    tempdir = _TempDir()
    test_outname = op.join(tempdir, 'test_raw_sss.fif')
    raw_sss.save(test_outname)
    raw_sss_loaded = Raw(test_outname, preload=True, proj=False,
                         allow_maxshield=True)

    # Some numerical imprecision since save uses 'single' fmt
    assert_allclose(raw_sss_loaded._data[:, :], raw_sss._data[:, :],
                    rtol=1e-6, atol=1e-20)

    # Test rank of covariance matrices for raw and SSS processed data
    cov_raw = compute_raw_covariance(raw)
    cov_sss = compute_raw_covariance(raw_sss)

    scalings = None
    cov_raw_rank = _estimate_rank_meeg_cov(cov_raw['data'], raw.info, scalings)
    cov_sss_rank = _estimate_rank_meeg_cov(cov_sss['data'], raw_sss.info,
                                           scalings)

    assert_equal(cov_raw_rank, raw.info['nchan'])
    assert_equal(cov_sss_rank, maxwell.get_num_moments(int_order, 0))
Esempio n. 17
0
def test_add_noise():
    """Test noise addition."""
    if check_version('numpy', '1.17'):
        rng = np.random.default_rng(0)
    else:
        rng = np.random.RandomState(0)
    raw = read_raw_fif(raw_fname)
    raw.del_proj()
    picks = pick_types(raw.info, meg=True, eeg=True, exclude=())
    cov = compute_raw_covariance(raw, picks=picks)
    with pytest.raises(RuntimeError, match='to be loaded'):
        add_noise(raw, cov)
    raw.crop(0, 1).load_data()
    with pytest.raises(TypeError, match='Raw, Epochs, or Evoked'):
        add_noise(0., cov)
    with pytest.raises(TypeError, match='Covariance'):
        add_noise(raw, 0.)
    # test a no-op (data preserved)
    orig_data = raw[:][0]
    zero_cov = cov.copy()
    zero_cov['data'].fill(0)
    add_noise(raw, zero_cov)
    new_data = raw[:][0]
    assert_allclose(orig_data, new_data, atol=1e-30)
    # set to zero to make comparisons easier
    raw._data[:] = 0.
    epochs = EpochsArray(np.zeros((1, len(raw.ch_names), 100)),
                         raw.info.copy())
    epochs.info['bads'] = []
    evoked = epochs.average(picks=np.arange(len(raw.ch_names)))
    for inst in (raw, epochs, evoked):
        with catch_logging() as log:
            add_noise(inst, cov, random_state=rng, verbose=True)
        log = log.getvalue()
        want = ('to {0}/{1} channels ({0}'
                .format(len(cov['names']), len(raw.ch_names)))
        assert want in log
        if inst is evoked:
            inst = EpochsArray(inst.data[np.newaxis], inst.info)
        if inst is raw:
            cov_new = compute_raw_covariance(inst, picks=picks)
        else:
            cov_new = compute_covariance(inst)
        assert cov['names'] == cov_new['names']
        r = np.corrcoef(cov['data'].ravel(), cov_new['data'].ravel())[0, 1]
        assert r > 0.99
Esempio n. 18
0
def test_xdawn_fit():
    """Test Xdawn fit."""
    # Get data
    raw, events, picks = _get_data()
    raw.del_proj()
    epochs = Epochs(raw,
                    events,
                    event_id,
                    tmin,
                    tmax,
                    picks=picks,
                    preload=True,
                    baseline=None,
                    verbose=False)
    # =========== Basic Fit test =================
    # Test base xdawn
    xd = Xdawn(n_components=2, correct_overlap='auto')
    xd.fit(epochs)
    # With these parameters, the overlap correction must be False
    assert not xd.correct_overlap_
    # No overlap correction should give averaged evoked
    evoked = epochs['cond2'].average()
    assert_array_equal(evoked.data, xd.evokeds_['cond2'].data)

    assert_allclose(np.linalg.norm(xd.filters_['cond2'], axis=1), 1)

    # ========== with signal cov provided ====================
    # Provide covariance object
    signal_cov = compute_raw_covariance(raw, picks=picks)
    xd = Xdawn(n_components=2, correct_overlap=False, signal_cov=signal_cov)
    xd.fit(epochs)
    # Provide ndarray
    signal_cov = np.eye(len(picks))
    xd = Xdawn(n_components=2, correct_overlap=False, signal_cov=signal_cov)
    xd.fit(epochs)
    # Provide ndarray of bad shape
    signal_cov = np.eye(len(picks) - 1)
    xd = Xdawn(n_components=2, correct_overlap=False, signal_cov=signal_cov)
    pytest.raises(ValueError, xd.fit, epochs)
    # Provide another type
    signal_cov = 42
    xd = Xdawn(n_components=2, correct_overlap=False, signal_cov=signal_cov)
    pytest.raises(ValueError, xd.fit, epochs)
    # Fit with baseline correction and overlap correction should throw an
    # error
    # XXX This is a buggy test, the epochs here don't overlap
    epochs = Epochs(raw,
                    events,
                    event_id,
                    tmin,
                    tmax,
                    picks=picks,
                    preload=True,
                    baseline=(None, 0),
                    verbose=False)

    xd = Xdawn(n_components=2, correct_overlap=True)
    pytest.raises(ValueError, xd.fit, epochs)
Esempio n. 19
0
def test_maxwell_filter_additional():
    """Test processing of Maxwell filtered data"""

    # TODO: Future tests integrate with mne/io/tests/test_proc_history

    # Load testing data (raw, SSS std origin, SSS non-standard origin)
    data_path = op.join(testing.data_path(download=False))

    file_name = 'test_move_anon'

    raw_fname = op.join(data_path, 'SSS', file_name + '_raw.fif')

    with warnings.catch_warnings(record=True):  # maxshield
        # Use 2.0 seconds of data to get stable cov. estimate
        raw = Raw(raw_fname, allow_maxshield=True).crop(0., 2., False)

    # Get MEG channels, compute Maxwell filtered data
    raw.load_data()
    raw.pick_types(meg=True, eeg=False)
    int_order = 8
    raw_sss = maxwell_filter(raw,
                             origin=mf_head_origin,
                             regularize=None,
                             bad_condition='ignore')

    # Test io on processed data
    tempdir = _TempDir()
    test_outname = op.join(tempdir, 'test_raw_sss.fif')
    raw_sss.save(test_outname)
    raw_sss_loaded = Raw(test_outname, preload=True)

    # Some numerical imprecision since save uses 'single' fmt
    assert_allclose(raw_sss_loaded[:][0], raw_sss[:][0], rtol=1e-6, atol=1e-20)

    # Test rank of covariance matrices for raw and SSS processed data
    cov_raw = compute_raw_covariance(raw)
    cov_sss = compute_raw_covariance(raw_sss)

    scalings = None
    cov_raw_rank = _estimate_rank_meeg_cov(cov_raw['data'], raw.info, scalings)
    cov_sss_rank = _estimate_rank_meeg_cov(cov_sss['data'], raw_sss.info,
                                           scalings)

    assert_equal(cov_raw_rank, raw.info['nchan'])
    assert_equal(cov_sss_rank, _get_n_moments(int_order))
Esempio n. 20
0
def test_add_noise():
    """Test noise addition."""
    rng = np.random.RandomState(0)
    data_path = testing.data_path()
    raw = read_raw_fif(data_path + '/MEG/sample/sample_audvis_trunc_raw.fif')
    raw.del_proj()
    picks = pick_types(raw.info, eeg=True, exclude=())
    cov = compute_raw_covariance(raw, picks=picks)
    with pytest.raises(RuntimeError, match='to be loaded'):
        add_noise(raw, cov)
    raw.crop(0, 1).load_data()
    with pytest.raises(TypeError, match='Raw, Epochs, or Evoked'):
        add_noise(0., cov)
    with pytest.raises(TypeError, match='Covariance'):
        add_noise(raw, 0.)
    # test a no-op (data preserved)
    orig_data = raw[:][0]
    zero_cov = cov.copy()
    zero_cov['data'].fill(0)
    add_noise(raw, zero_cov)
    new_data = raw[:][0]
    assert_allclose(orig_data, new_data, atol=1e-30)
    # set to zero to make comparisons easier
    raw._data[:] = 0.
    epochs = EpochsArray(np.zeros((1, len(raw.ch_names), 100)),
                         raw.info.copy())
    epochs.info['bads'] = []
    evoked = epochs.average(picks=np.arange(len(raw.ch_names)))
    for inst in (raw, epochs, evoked):
        with catch_logging() as log:
            add_noise(inst, cov, random_state=rng, verbose=True)
        log = log.getvalue()
        want = ('to {0}/{1} channels ({0}'
                .format(len(cov['names']), len(raw.ch_names)))
        assert want in log
        if inst is evoked:
            inst = EpochsArray(inst.data[np.newaxis], inst.info)
        if inst is raw:
            cov_new = compute_raw_covariance(inst, picks=picks,
                                             verbose='error')  # samples
        else:
            cov_new = compute_covariance(inst, verbose='error')  # avg ref
        assert cov['names'] == cov_new['names']
        r = np.corrcoef(cov['data'].ravel(), cov_new['data'].ravel())[0, 1]
        assert r > 0.99
Esempio n. 21
0
def compute_cov(cov_object, reject=None, tmax=0, method='shrunk'):
    if isinstance(cov_object, mne.epochs._BaseEpochs):
        cov = mne.compute_covariance(cov_object, tmax=tmax, method=method)
    elif isinstance(cov_object, mne.io.base._BaseRaw):
        if reject is None:
            reject, picks = compute_reject_picks(cov_object)
        cov = mne.compute_raw_covariance(cov_object,
                                         reject=reject,
                                         picks=picks)
    return cov
Esempio n. 22
0
def test_maxwell_filter_additional():
    """Test processing of Maxwell filtered data."""

    # TODO: Future tests integrate with mne/io/tests/test_proc_history

    # Load testing data (raw, SSS std origin, SSS non-standard origin)
    data_path = op.join(testing.data_path(download=False))

    file_name = 'test_move_anon'

    raw_fname = op.join(data_path, 'SSS', file_name + '_raw.fif')

    # Use 2.0 seconds of data to get stable cov. estimate
    raw = read_crop(raw_fname, (0., 2.))

    # Get MEG channels, compute Maxwell filtered data
    raw.load_data()
    raw.pick_types(meg=True, eeg=False)
    int_order = 8
    raw_sss = maxwell_filter(raw, origin=mf_head_origin, regularize=None,
                             bad_condition='ignore')

    # Test io on processed data
    tempdir = _TempDir()
    test_outname = op.join(tempdir, 'test_raw_sss.fif')
    raw_sss.save(test_outname)
    raw_sss_loaded = read_crop(test_outname).load_data()

    # Some numerical imprecision since save uses 'single' fmt
    assert_allclose(raw_sss_loaded[:][0], raw_sss[:][0],
                    rtol=1e-6, atol=1e-20)

    # Test rank of covariance matrices for raw and SSS processed data
    cov_raw = compute_raw_covariance(raw)
    cov_sss = compute_raw_covariance(raw_sss)

    scalings = None
    cov_raw_rank = _estimate_rank_meeg_cov(cov_raw['data'], raw.info, scalings)
    cov_sss_rank = _estimate_rank_meeg_cov(cov_sss['data'], raw_sss.info,
                                           scalings)

    assert_equal(cov_raw_rank, raw.info['nchan'])
    assert_equal(cov_sss_rank, _get_n_moments(int_order))
Esempio n. 23
0
def test_maxwell_filter_additional(tmpdir):
    """Test processing of Maxwell filtered data."""
    # TODO: Future tests integrate with mne/io/tests/test_proc_history

    # Load testing data (raw, SSS std origin, SSS non-standard origin)
    data_path = op.join(testing.data_path(download=False))

    file_name = 'test_move_anon'

    raw_fname = op.join(data_path, 'SSS', file_name + '_raw.fif')

    # Use 2.0 seconds of data to get stable cov. estimate
    raw = read_crop(raw_fname, (0., 2.))

    # Get MEG channels, compute Maxwell filtered data
    raw.load_data()
    raw.pick_types(meg=True, eeg=False)
    int_order = 8
    raw_sss = maxwell_filter(raw, origin=mf_head_origin, regularize=None,
                             bad_condition='ignore')

    # Test io on processed data
    tempdir = str(tmpdir)
    test_outname = op.join(tempdir, 'test_raw_sss.fif')
    raw_sss.save(test_outname)
    raw_sss_loaded = read_crop(test_outname).load_data()

    # Some numerical imprecision since save uses 'single' fmt
    assert_allclose(raw_sss_loaded[:][0], raw_sss[:][0],
                    rtol=1e-6, atol=1e-20)

    # Test rank of covariance matrices for raw and SSS processed data
    cov_raw = compute_raw_covariance(raw)
    cov_sss = compute_raw_covariance(raw_sss)

    scalings = None
    cov_raw_rank = _compute_rank_int(
        cov_raw, scalings=scalings, info=raw.info, proj=False)
    cov_sss_rank = _compute_rank_int(
        cov_sss, scalings=scalings, info=raw_sss.info, proj=False)

    assert cov_raw_rank == raw.info['nchan']
    assert cov_sss_rank == _get_n_moments(int_order)
Esempio n. 24
0
def test_cov_estimation_on_raw_reg():
    """Test estimation from raw with regularization."""
    raw = read_raw_fif(raw_fname, preload=True)
    raw.info['sfreq'] /= 10.
    raw = RawArray(raw._data[:, ::10].copy(), raw.info)  # decimate for speed
    cov_mne = read_cov(erm_cov_fname)
    with pytest.warns(RuntimeWarning, match='Too few samples'):
        # "diagonal_fixed" is much faster. Use long epochs for speed.
        cov = compute_raw_covariance(raw, tstep=5., method='diagonal_fixed')
    assert_snr(cov.data, cov_mne.data, 5)
Esempio n. 25
0
def test_cov_estimation_on_raw():
    """Test estimation from raw (typically empty room)"""
    tempdir = _TempDir()
    raw = Raw(raw_fname, preload=True)
    cov_mne = read_cov(erm_cov_fname)

    # The pure-string uses the more efficient numpy-based method, the
    # the list gets triaged to compute_covariance (should be equivalent
    # but use more memory)
    for method in ('empirical', ['empirical']):
        cov = compute_raw_covariance(raw, tstep=None, method=method)
        assert_equal(cov.ch_names, cov_mne.ch_names)
        assert_equal(cov.nfree, cov_mne.nfree)
        assert_snr(cov.data, cov_mne.data, 1e4)

        cov = compute_raw_covariance(raw, method=method)  # tstep=0.2 (default)
        assert_equal(cov.nfree, cov_mne.nfree - 119)  # cutoff some samples
        assert_snr(cov.data, cov_mne.data, 1e2)

        # test IO when computation done in Python
        cov.save(op.join(tempdir, 'test-cov.fif'))  # test saving
        cov_read = read_cov(op.join(tempdir, 'test-cov.fif'))
        assert_true(cov_read.ch_names == cov.ch_names)
        assert_true(cov_read.nfree == cov.nfree)
        assert_array_almost_equal(cov.data, cov_read.data)

        # test with a subset of channels
        picks = pick_channels(raw.ch_names, include=raw.ch_names[:5])
        raw_pick = raw.pick_channels([raw.ch_names[pick] for pick in picks],
                                     copy=True)
        raw_pick.info.normalize_proj()
        cov = compute_raw_covariance(raw_pick, picks=picks, tstep=None,
                                     method=method)
        assert_true(cov_mne.ch_names[:5] == cov.ch_names)
        assert_snr(cov.data, cov_mne.data[picks][:, picks], 1e4)
        cov = compute_raw_covariance(raw_pick, picks=picks, method=method)
        assert_snr(cov.data, cov_mne.data[picks][:, picks], 90)  # cutoff samps
        # make sure we get a warning with too short a segment
        raw_2 = Raw(raw_fname).crop(0, 1)
        with warnings.catch_warnings(record=True) as w:
            warnings.simplefilter('always')
            cov = compute_raw_covariance(raw_2, method=method)
        assert_true(any('Too few samples' in str(ww.message) for ww in w))
Esempio n. 26
0
def test_cov_estimation_on_raw_reg():
    """Test estimation from raw with regularization."""
    raw = read_raw_fif(raw_fname, preload=True)
    raw.info['sfreq'] /= 10.
    raw = RawArray(raw._data[:, ::10].copy(), raw.info)  # decimate for speed
    cov_mne = read_cov(erm_cov_fname)
    with pytest.warns(RuntimeWarning, match='Too few samples'):
        # XXX don't use "shrunk" here, for some reason it makes Travis 2.7
        # hang... "diagonal_fixed" is much faster. Use long epochs for speed.
        cov = compute_raw_covariance(raw, tstep=5., method='diagonal_fixed')
    assert_snr(cov.data, cov_mne.data, 5)
Esempio n. 27
0
def test_maxwell_filter_additional():
    """Test processing of Maxwell filtered data"""

    # TODO: Future tests integrate with mne/io/tests/test_proc_history

    # Load testing data (raw, SSS std origin, SSS non-standard origin)
    data_path = op.join(testing.data_path(download=False))

    file_name = "test_move_anon"

    raw_fname = op.join(data_path, "SSS", file_name + "_raw.fif")

    with warnings.catch_warnings(record=True):  # maxshield
        # Use 2.0 seconds of data to get stable cov. estimate
        raw = Raw(raw_fname, allow_maxshield=True).crop(0.0, 2.0, False)

    # Get MEG channels, compute Maxwell filtered data
    raw.load_data()
    raw.pick_types(meg=True, eeg=False)
    int_order = 8
    raw_sss = maxwell_filter(raw, origin=mf_head_origin, regularize=None, bad_condition="ignore")

    # Test io on processed data
    tempdir = _TempDir()
    test_outname = op.join(tempdir, "test_raw_sss.fif")
    raw_sss.save(test_outname)
    raw_sss_loaded = Raw(test_outname, preload=True)

    # Some numerical imprecision since save uses 'single' fmt
    assert_allclose(raw_sss_loaded[:][0], raw_sss[:][0], rtol=1e-6, atol=1e-20)

    # Test rank of covariance matrices for raw and SSS processed data
    cov_raw = compute_raw_covariance(raw)
    cov_sss = compute_raw_covariance(raw_sss)

    scalings = None
    cov_raw_rank = _estimate_rank_meeg_cov(cov_raw["data"], raw.info, scalings)
    cov_sss_rank = _estimate_rank_meeg_cov(cov_sss["data"], raw_sss.info, scalings)

    assert_equal(cov_raw_rank, raw.info["nchan"])
    assert_equal(cov_sss_rank, _get_n_moments(int_order))
Esempio n. 28
0
def test_cov_estimation_on_raw_reg():
    """Test estimation from raw with regularization."""
    raw = read_raw_fif(raw_fname, preload=True, add_eeg_ref=False)
    raw.info["sfreq"] /= 10.0
    raw = RawArray(raw._data[:, ::10].copy(), raw.info)  # decimate for speed
    cov_mne = read_cov(erm_cov_fname)
    with warnings.catch_warnings(record=True):  # too few samples
        warnings.simplefilter("always")
        # XXX don't use "shrunk" here, for some reason it makes Travis 2.7
        # hang... "diagonal_fixed" is much faster. Use long epochs for speed.
        cov = compute_raw_covariance(raw, tstep=5.0, method="diagonal_fixed")
    assert_snr(cov.data, cov_mne.data, 5)
Esempio n. 29
0
def test_make_fixed_length_events():
    """Test making events of a fixed length."""
    raw = read_raw_fif(raw_fname)
    events = make_fixed_length_events(raw, id=1)
    assert events.shape[1] == 3
    events_zero = make_fixed_length_events(raw, 1, first_samp=False)
    assert_equal(events_zero[0, 0], 0)
    assert_array_equal(events_zero[:, 0], events[:, 0] - raw.first_samp)
    # With limits
    tmin, tmax = raw.times[[0, -1]]
    duration = tmax - tmin
    events = make_fixed_length_events(raw, 1, tmin, tmax, duration)
    assert_equal(events.shape[0], 1)
    # With bad limits (no resulting events)
    pytest.raises(ValueError, make_fixed_length_events, raw, 1,
                  tmin, tmax - 1e-3, duration)
    # not raw, bad id or duration
    pytest.raises(TypeError, make_fixed_length_events, raw, 2.3)
    pytest.raises(TypeError, make_fixed_length_events, 'not raw', 2)
    pytest.raises(TypeError, make_fixed_length_events, raw, 23, tmin, tmax,
                  'abc')

    # Let's try some ugly sample rate/sample count combos
    data = np.random.RandomState(0).randn(1, 27768)

    # This breaks unless np.round() is used in make_fixed_length_events
    info = create_info(1, 155.4499969482422)
    raw = RawArray(data, info)
    events = make_fixed_length_events(raw, 1, duration=raw.times[-1])
    assert events[0, 0] == 0
    assert len(events) == 1

    # Without use_rounding=True this breaks
    raw = RawArray(data[:, :21216], info)
    events = make_fixed_length_events(raw, 1, duration=raw.times[-1])
    assert events[0, 0] == 0
    assert len(events) == 1

    # Make sure it gets used properly by compute_raw_covariance
    cov = compute_raw_covariance(raw, tstep=None)
    expected = np.cov(data[:, :21216])
    np.testing.assert_allclose(cov['data'], expected, atol=1e-12)

    # overlaps
    events = make_fixed_length_events(raw, 1, duration=1)
    assert len(events) == 136
    events_ol = make_fixed_length_events(raw, 1, duration=1, overlap=0.5)
    assert len(events_ol) == 271
    events_ol_2 = make_fixed_length_events(raw, 1, duration=1, overlap=0.9)
    assert len(events_ol_2) == 1355
    assert_array_equal(events_ol_2[:, 0], np.unique(events_ol_2[:, 0]))
    with pytest.raises(ValueError, match='overlap must be'):
        make_fixed_length_events(raw, 1, duration=1, overlap=1.1)
Esempio n. 30
0
def test_make_fixed_length_events():
    """Test making events of a fixed length."""
    raw = read_raw_fif(raw_fname)
    events = make_fixed_length_events(raw, id=1)
    assert events.shape[1] == 3
    events_zero = make_fixed_length_events(raw, 1, first_samp=False)
    assert_equal(events_zero[0, 0], 0)
    assert_array_equal(events_zero[:, 0], events[:, 0] - raw.first_samp)
    # With limits
    tmin, tmax = raw.times[[0, -1]]
    duration = tmax - tmin
    events = make_fixed_length_events(raw, 1, tmin, tmax, duration)
    assert_equal(events.shape[0], 1)
    # With bad limits (no resulting events)
    pytest.raises(ValueError, make_fixed_length_events, raw, 1, tmin,
                  tmax - 1e-3, duration)
    # not raw, bad id or duration
    pytest.raises(TypeError, make_fixed_length_events, raw, 2.3)
    pytest.raises(TypeError, make_fixed_length_events, 'not raw', 2)
    pytest.raises(TypeError, make_fixed_length_events, raw, 23, tmin, tmax,
                  'abc')

    # Let's try some ugly sample rate/sample count combos
    data = np.random.RandomState(0).randn(1, 27768)

    # This breaks unless np.round() is used in make_fixed_length_events
    info = create_info(1, 155.4499969482422)
    raw = RawArray(data, info)
    events = make_fixed_length_events(raw, 1, duration=raw.times[-1])
    assert events[0, 0] == 0
    assert len(events) == 1

    # Without use_rounding=True this breaks
    raw = RawArray(data[:, :21216], info)
    events = make_fixed_length_events(raw, 1, duration=raw.times[-1])
    assert events[0, 0] == 0
    assert len(events) == 1

    # Make sure it gets used properly by compute_raw_covariance
    cov = compute_raw_covariance(raw, tstep=None)
    expected = np.cov(data[:, :21216])
    np.testing.assert_allclose(cov['data'], expected, atol=1e-12)

    # overlaps
    events = make_fixed_length_events(raw, 1, duration=1)
    assert len(events) == 136
    events_ol = make_fixed_length_events(raw, 1, duration=1, overlap=0.5)
    assert len(events_ol) == 271
    events_ol_2 = make_fixed_length_events(raw, 1, duration=1, overlap=0.9)
    assert len(events_ol_2) == 1355
    assert_array_equal(events_ol_2[:, 0], np.unique(events_ol_2[:, 0]))
    with pytest.raises(ValueError, match='overlap must be'):
        make_fixed_length_events(raw, 1, duration=1, overlap=1.1)
Esempio n. 31
0
def test_cov_estimation_on_raw_reg():
    """Test estimation from raw with regularization."""
    raw = read_raw_fif(raw_fname, preload=True)
    raw.info['sfreq'] /= 10.
    raw = RawArray(raw._data[:, ::10].copy(), raw.info)  # decimate for speed
    cov_mne = read_cov(erm_cov_fname)
    with warnings.catch_warnings(record=True):  # too few samples
        warnings.simplefilter('always')
        # XXX don't use "shrunk" here, for some reason it makes Travis 2.7
        # hang... "diagonal_fixed" is much faster. Use long epochs for speed.
        cov = compute_raw_covariance(raw, tstep=5., method='diagonal_fixed')
    assert_snr(cov.data, cov_mne.data, 5)
Esempio n. 32
0
def test_cov_estimation_on_raw(method, tmpdir):
    """Test estimation from raw (typically empty room)."""
    tempdir = str(tmpdir)
    raw = read_raw_fif(raw_fname, preload=True)
    cov_mne = read_cov(erm_cov_fname)

    # The pure-string uses the more efficient numpy-based method, the
    # the list gets triaged to compute_covariance (should be equivalent
    # but use more memory)
    with pytest.warns(None):  # can warn about EEG ref
        cov = compute_raw_covariance(raw,
                                     tstep=None,
                                     method=method,
                                     rank='full')
    assert_equal(cov.ch_names, cov_mne.ch_names)
    assert_equal(cov.nfree, cov_mne.nfree)
    assert_snr(cov.data, cov_mne.data, 1e4)

    # tstep=0.2 (default)
    with pytest.warns(None):  # can warn about EEG ref
        cov = compute_raw_covariance(raw, method=method, rank='full')
    assert_equal(cov.nfree, cov_mne.nfree - 119)  # cutoff some samples
    assert_snr(cov.data, cov_mne.data, 1e2)

    # test IO when computation done in Python
    cov.save(op.join(tempdir, 'test-cov.fif'))  # test saving
    cov_read = read_cov(op.join(tempdir, 'test-cov.fif'))
    assert cov_read.ch_names == cov.ch_names
    assert cov_read.nfree == cov.nfree
    assert_array_almost_equal(cov.data, cov_read.data)

    # test with a subset of channels
    raw_pick = raw.copy().pick_channels(raw.ch_names[:5])
    raw_pick.info.normalize_proj()
    cov = compute_raw_covariance(raw_pick,
                                 tstep=None,
                                 method=method,
                                 rank='full')
    assert cov_mne.ch_names[:5] == cov.ch_names
    assert_snr(cov.data, cov_mne.data[:5, :5], 1e4)
    cov = compute_raw_covariance(raw_pick, method=method, rank='full')
    assert_snr(cov.data, cov_mne.data[:5, :5], 90)  # cutoff samps
    # make sure we get a warning with too short a segment
    raw_2 = read_raw_fif(raw_fname).crop(0, 1)
    with pytest.warns(RuntimeWarning, match='Too few samples'):
        cov = compute_raw_covariance(raw_2, method=method)
    # no epochs found due to rejection
    pytest.raises(ValueError,
                  compute_raw_covariance,
                  raw,
                  tstep=None,
                  method='empirical',
                  reject=dict(eog=200e-6))
    # but this should work
    cov = compute_raw_covariance(raw.copy().crop(0, 10.),
                                 tstep=None,
                                 method=method,
                                 reject=dict(eog=1000e-6),
                                 verbose='error')
Esempio n. 33
0
def test_bad_proj():
    """Test dealing with bad projection application."""
    raw = read_raw_fif(raw_fname, preload=True)
    events = read_events(event_fname)
    picks = pick_types(raw.info,
                       meg=True,
                       stim=False,
                       ecg=False,
                       eog=False,
                       exclude='bads')
    picks = picks[2:9:3]
    _check_warnings(raw, events, picks)
    # still bad
    raw.pick_channels([raw.ch_names[ii] for ii in picks])
    _check_warnings(raw, events)
    # "fixed"
    raw.info.normalize_proj()  # avoid projection warnings
    _check_warnings(raw, events, count=0)
    # eeg avg ref is okay
    raw = read_raw_fif(raw_fname, preload=True).pick_types(meg=False, eeg=True)
    raw.set_eeg_reference(projection=True)
    _check_warnings(raw, events, count=0)
    raw.info['bads'] = raw.ch_names[:10]
    _check_warnings(raw, events, count=0)

    raw = read_raw_fif(raw_fname)
    pytest.raises(ValueError, raw.del_proj, 'foo')
    n_proj = len(raw.info['projs'])
    raw.del_proj(0)
    assert_equal(len(raw.info['projs']), n_proj - 1)
    raw.del_proj()
    assert_equal(len(raw.info['projs']), 0)

    # Ensure we deal with newer-style Neuromag projs properly, were getting:
    #
    #     Projection vector "PCA-v2" has magnitude 1.00 (should be unity),
    #     applying projector with 101/306 of the original channels available
    #     may be dangerous.
    raw = read_raw_fif(raw_fname).crop(0, 1)
    raw.info['bads'] = ['MEG 0111']
    meg_picks = mne.pick_types(raw.info, meg=True, exclude=())
    ch_names = [raw.ch_names[pick] for pick in meg_picks]
    for p in raw.info['projs'][:-1]:
        data = np.zeros((1, len(ch_names)))
        idx = [ch_names.index(ch_name) for ch_name in p['data']['col_names']]
        data[:, idx] = p['data']['data']
        p['data'].update(ncol=len(meg_picks), col_names=ch_names, data=data)
    with warnings.catch_warnings(record=True) as w:
        mne.cov.regularize(mne.compute_raw_covariance(raw, verbose='error'),
                           raw.info)
    assert_equal(len(w), 0)
def _compute_cov(subject):

    fname = subject + '_EC.set'
    raw = mne.io.read_raw_eeglab(op.join(out_path, fname))
    raw.annotations.duration[raw.annotations.description == 'boundary'] = 0.0

    raw.annotations.description[raw.annotations.description ==
                                'boundary'] = "edge"

    raw = _interpolate_missing(raw, ref_info)
    for fmin, fmax, band in freqs:
        raw_f = raw.copy().filter(fmin, fmax)
        cov_f = mne.compute_raw_covariance(raw_f, method="oas")
        cov_f.save(f"./derivatives/{subject}-{band}-cov.fif")
Esempio n. 35
0
def createInv(subj):
    # subjdir = os.environ['SUBJECTS_DIR']
    file_path = '/m/nbe/scratch/restmeg/data/camcan/cc700/mri/pipeline/release004/BIDSsep/megraw/sub-' + subj + '/meg/'
    raw = mne.io.fiff.Raw(file_path + 'rest_raw.fif')
    fname_trans = file_path + 'rest_raw-trans.fif'
    src = mne.read_source_spaces(
        '/m/nbe/scratch/restmeg/data/camcan/subjects/' + subj + '/bem/' +
        subj + '-oct-6-src.fif')
    bem_sol = mne.read_bem_solution(subj + '-5120-5120-5120-bem-sol.fif')

    fwd = mne.make_forward_solution(raw.info, fname_trans, src, bem_sol)
    cov = mne.compute_raw_covariance(raw)
    inv = mne.minimum_norm.make_inverse_operator(raw.info, fwd, cov, loose=0.2)
    mne.minimum_norm.write_inverse_operator(subj + '-inv.fif', inv)
Esempio n. 36
0
def test_explicit_bads_pick():
    """Test when bads channels are explicitly passed + default picks=None."""
    raw = read_raw_fif(raw_fname, preload=True)
    raw.pick_types(eeg=True, meg=True, ref_meg=True)

    # Covariance
    # Default picks=None
    raw.info['bads'] = list()
    noise_cov_1 = compute_raw_covariance(raw, picks=None)
    rank = compute_rank(noise_cov_1, info=raw.info)
    assert rank == dict(meg=303, eeg=60)
    assert raw.info['bads'] == []

    raw.info['bads'] = ['EEG 002', 'EEG 012', 'EEG 015', 'MEG 0122']
    noise_cov = compute_raw_covariance(raw, picks=None)
    rank = compute_rank(noise_cov, info=raw.info)
    assert rank == dict(meg=302, eeg=57)
    assert raw.info['bads'] == ['EEG 002', 'EEG 012', 'EEG 015', 'MEG 0122']

    # Explicit picks
    picks = pick_types(raw.info, meg=True, eeg=True, exclude=[])
    noise_cov_2 = compute_raw_covariance(raw, picks=picks)
    rank = compute_rank(noise_cov_2, info=raw.info)
    assert rank == dict(meg=303, eeg=60)
    assert raw.info['bads'] == ['EEG 002', 'EEG 012', 'EEG 015', 'MEG 0122']

    assert_array_equal(noise_cov_1['data'], noise_cov_2['data'])
    assert noise_cov_1['names'] == noise_cov_2['names']

    # Raw
    raw.info['bads'] = list()
    rank = compute_rank(raw)
    assert rank == dict(meg=303, eeg=60)

    raw.info['bads'] = ['EEG 002', 'EEG 012', 'EEG 015', 'MEG 0122']
    rank = compute_rank(raw)
    assert rank == dict(meg=302, eeg=57)
Esempio n. 37
0
def test_cov_estimation_on_raw():
    """Test estimation from raw (typically empty room)"""
    tempdir = _TempDir()
    raw = Raw(raw_fname, preload=True)
    cov_mne = read_cov(erm_cov_fname)

    cov = compute_raw_covariance(raw, tstep=None)
    assert_equal(cov.ch_names, cov_mne.ch_names)
    assert_equal(cov.nfree, cov_mne.nfree)
    assert_snr(cov.data, cov_mne.data, 1e4)

    cov = compute_raw_covariance(raw)  # tstep=0.2 (default)
    assert_equal(cov.nfree, cov_mne.nfree - 119)  # cutoff some samples
    assert_snr(cov.data, cov_mne.data, 1e2)

    # test IO when computation done in Python
    cov.save(op.join(tempdir, 'test-cov.fif'))  # test saving
    cov_read = read_cov(op.join(tempdir, 'test-cov.fif'))
    assert_true(cov_read.ch_names == cov.ch_names)
    assert_true(cov_read.nfree == cov.nfree)
    assert_array_almost_equal(cov.data, cov_read.data)

    # test with a subset of channels
    picks = pick_channels(raw.ch_names, include=raw.ch_names[:5])
    raw.pick_channels([raw.ch_names[pick] for pick in picks])
    raw.info.normalize_proj()
    cov = compute_raw_covariance(raw, picks=picks, tstep=None)
    assert_true(cov_mne.ch_names[:5] == cov.ch_names)
    assert_snr(cov.data, cov_mne.data[picks][:, picks], 1e4)
    cov = compute_raw_covariance(raw, picks=picks)
    assert_snr(cov.data, cov_mne.data[picks][:, picks], 90)  # cutoff samps
    # make sure we get a warning with too short a segment
    raw_2 = Raw(raw_fname).crop(0, 1)
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter('always')
        cov = compute_raw_covariance(raw_2)
    assert_true(any('Too few samples' in str(ww.message) for ww in w))
Esempio n. 38
0
def spatial_filter(raw, epochs):
    print('spatial filtering using xDawn')
    picks = pick_types(raw.info,
                       meg=False,
                       eeg=True,
                       stim=False,
                       eog=False,
                       exclude='bads')
    signal_cov = compute_raw_covariance(raw, picks=picks)
    xd = Xdawn(n_components=2, signal_cov=signal_cov)
    print('fiting xDawn')
    xd.fit(epochs)
    print('epoch denoising started')
    epochs_denoised = xd.apply(epochs)
    print('epoch_denoise complete')
    return epochs_denoised
Esempio n. 39
0
def test_bad_proj():
    """Test dealing with bad projection application."""
    raw = read_raw_fif(raw_fname, preload=True)
    events = read_events(event_fname)
    picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
                       eog=False, exclude='bads')
    picks = picks[2:9:3]
    _check_warnings(raw, events, picks)
    # still bad
    raw.pick_channels([raw.ch_names[ii] for ii in picks])
    _check_warnings(raw, events)
    # "fixed"
    raw.info.normalize_proj()  # avoid projection warnings
    _check_warnings(raw, events, count=0)
    # eeg avg ref is okay
    raw = read_raw_fif(raw_fname, preload=True).pick_types(meg=False, eeg=True)
    raw.set_eeg_reference()
    _check_warnings(raw, events, count=0)
    raw.info['bads'] = raw.ch_names[:10]
    _check_warnings(raw, events, count=0)

    raw = read_raw_fif(raw_fname)
    assert_raises(ValueError, raw.del_proj, 'foo')
    n_proj = len(raw.info['projs'])
    raw.del_proj(0)
    assert_equal(len(raw.info['projs']), n_proj - 1)
    raw.del_proj()
    assert_equal(len(raw.info['projs']), 0)

    # Ensure we deal with newer-style Neuromag projs properly, were getting:
    #
    #     Projection vector "PCA-v2" has magnitude 1.00 (should be unity),
    #     applying projector with 101/306 of the original channels available
    #     may be dangerous.
    raw = read_raw_fif(raw_fname).crop(0, 1)
    raw.info['bads'] = ['MEG 0111']
    meg_picks = mne.pick_types(raw.info, meg=True, exclude=())
    ch_names = [raw.ch_names[pick] for pick in meg_picks]
    for p in raw.info['projs'][:-1]:
        data = np.zeros((1, len(ch_names)))
        idx = [ch_names.index(ch_name) for ch_name in p['data']['col_names']]
        data[:, idx] = p['data']['data']
        p['data'].update(ncol=len(meg_picks), col_names=ch_names, data=data)
    with warnings.catch_warnings(record=True) as w:
        mne.cov.regularize(mne.compute_raw_covariance(raw, verbose='error'),
                           raw.info)
    assert_equal(len(w), 0)
Esempio n. 40
0
def test_xdawn_fit():
    """Test Xdawn fit."""
    # Get data
    raw, events, picks = _get_data()
    epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
                    preload=True, baseline=None, verbose=False,
                    add_eeg_ref=False)
    # =========== Basic Fit test =================
    # Test base xdawn
    xd = Xdawn(n_components=2, correct_overlap='auto')
    xd.fit(epochs)
    # With these parameters, the overlap correction must be False
    assert_equal(xd.correct_overlap_, False)
    # No overlap correction should give averaged evoked
    evoked = epochs['cond2'].average()
    assert_array_equal(evoked.data, xd.evokeds_['cond2'].data)

    # ========== with signal cov provided ====================
    # Provide covariance object
    signal_cov = compute_raw_covariance(raw, picks=picks)
    xd = Xdawn(n_components=2, correct_overlap=False,
               signal_cov=signal_cov)
    xd.fit(epochs)
    # Provide ndarray
    signal_cov = np.eye(len(picks))
    xd = Xdawn(n_components=2, correct_overlap=False,
               signal_cov=signal_cov)
    xd.fit(epochs)
    # Provide ndarray of bad shape
    signal_cov = np.eye(len(picks) - 1)
    xd = Xdawn(n_components=2, correct_overlap=False,
               signal_cov=signal_cov)
    assert_raises(ValueError, xd.fit, epochs)
    # Provide another type
    signal_cov = 42
    xd = Xdawn(n_components=2, correct_overlap=False,
               signal_cov=signal_cov)
    assert_raises(ValueError, xd.fit, epochs)
    # Fit with baseline correction and overlap correction should throw an
    # error
    # XXX This is a buggy test, the epochs here don't overlap
    epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
                    preload=True, baseline=(None, 0), verbose=False,
                    add_eeg_ref=False)

    xd = Xdawn(n_components=2, correct_overlap=True)
    assert_raises(ValueError, xd.fit, epochs)
def test_xdawn_fit():
    """Test Xdawn fit."""
    # get data
    raw, events, picks = _get_data()
    epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
                    preload=True, baseline=None, verbose=False)
    # =========== Basic Fit test =================
    # test base xdawn
    xd = Xdawn(n_components=2, correct_overlap='auto',
               signal_cov=None, reg=None)
    xd.fit(epochs)
    # with this parameters, the overlapp correction must be False
    assert_equal(xd.correct_overlap, False)
    # no overlapp correction should give averaged evoked
    evoked = epochs['cond2'].average()
    assert_array_equal(evoked.data, xd.evokeds_['cond2'].data)

    # ========== with signal cov provided ====================
    # provide covariance object
    signal_cov = compute_raw_covariance(raw, picks=picks)
    xd = Xdawn(n_components=2, correct_overlap=False,
               signal_cov=signal_cov, reg=None)
    xd.fit(epochs)
    # provide ndarray
    signal_cov = np.eye(len(picks))
    xd = Xdawn(n_components=2, correct_overlap=False,
               signal_cov=signal_cov, reg=None)
    xd.fit(epochs)
    # provide ndarray of bad shape
    signal_cov = np.eye(len(picks) - 1)
    xd = Xdawn(n_components=2, correct_overlap=False,
               signal_cov=signal_cov, reg=None)
    assert_raises(ValueError, xd.fit, epochs)
    # provide another type
    signal_cov = 42
    xd = Xdawn(n_components=2, correct_overlap=False,
               signal_cov=signal_cov, reg=None)
    assert_raises(ValueError, xd.fit, epochs)
    # fit with baseline correction and ovverlapp correction should throw an
    # error
    epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
                    preload=True, baseline=(None, 0), verbose=False)

    xd = Xdawn(n_components=2, correct_overlap=True)
    assert_raises(ValueError, xd.fit, epochs)
Esempio n. 42
0
def compute_noise_cov(cov_fname, raw):
    """Compute noise covariance data from a continuous segment of raw data.

    Employ empty room data (collected without the subject) to calculate
    the full noise covariance matrix. This is recommended for analyzing ongoing
    spontaneous activity.

    Parameters
    ----------
    cov_fname : str
        noise covariance file name
    raw : Raw
        the raw data

    Returns
    -------
    cov_fname : str
        noise covariance file name in which is saved the noise covariance
        matrix
    """
    import os.path as op

    from mne import compute_raw_covariance, pick_types, write_cov
    from nipype.utils.filemanip import split_filename as split_f
    from ephypype.preproc import create_reject_dict

    print(('***** COMPUTE RAW COV *****' + cov_fname))

    if not op.isfile(cov_fname):

        data_path, basename, ext = split_f(raw.info['filename'])
        fname = op.join(data_path, '%s-cov.fif' % basename)

        reject = create_reject_dict(raw.info)

        picks = pick_types(raw.info, meg=True, ref_meg=False, exclude='bads')

        noise_cov = compute_raw_covariance(raw, picks=picks, reject=reject)

        write_cov(fname, noise_cov)

    else:
        print(('*** NOISE cov file %s exists!!!' % cov_fname))

    return cov_fname
Esempio n. 43
0
def compute_noise_cov(fname_template, raw_filename):
    """
    Compute noise covariance data from a continuous segment of raw data.
    Employ empty room data (collected without the subject) to calculate
    the full noise covariance matrix.
    This is recommended for analyzing ongoing spontaneous activity.

    Inputs
        cov_fname : str
            noise covariance file name template
        raw_filename : str
            raw filename

    Output
        cov_fname : str
            noise covariance file name in which is saved the noise covariance
            matrix
    """
    # Check if cov matrix exists
    cov_fname = _get_cov_fname(fname_template)

    if not op.isfile(cov_fname):
        er_raw, cov_fname = _get_er_data(fname_template)

        if not op.isfile(cov_fname) and er_raw:
            reject = _create_reject_dict(er_raw.info)
            picks = pick_types(er_raw.info,
                               meg=True,
                               ref_meg=False,
                               exclude='bads')

            noise_cov = compute_raw_covariance(er_raw,
                                               picks=picks,
                                               reject=reject)

            write_cov(cov_fname, noise_cov)
        elif op.isfile(cov_fname):
            print(('*** NOISE cov file {} exists!!!'.format(cov_fname)))
        elif not er_raw:
            cov_fname = compute_cov_identity(raw_filename)

    else:
        print(('*** NOISE cov file {} exists!!!'.format(cov_fname)))

    return cov_fname
Esempio n. 44
0
def test_cov_estimation_on_raw():
    """Test estimation from raw (typically empty room)."""
    tempdir = _TempDir()
    raw = read_raw_fif(raw_fname, preload=True)
    cov_mne = read_cov(erm_cov_fname)

    # The pure-string uses the more efficient numpy-based method, the
    # the list gets triaged to compute_covariance (should be equivalent
    # but use more memory)
    for method in (None, ['empirical']):  # None is cast to 'empirical'
        cov = compute_raw_covariance(raw, tstep=None, method=method)
        assert_equal(cov.ch_names, cov_mne.ch_names)
        assert_equal(cov.nfree, cov_mne.nfree)
        assert_snr(cov.data, cov_mne.data, 1e4)

        cov = compute_raw_covariance(raw, method=method)  # tstep=0.2 (default)
        assert_equal(cov.nfree, cov_mne.nfree - 119)  # cutoff some samples
        assert_snr(cov.data, cov_mne.data, 1e2)

        # test IO when computation done in Python
        cov.save(op.join(tempdir, 'test-cov.fif'))  # test saving
        cov_read = read_cov(op.join(tempdir, 'test-cov.fif'))
        assert_true(cov_read.ch_names == cov.ch_names)
        assert_true(cov_read.nfree == cov.nfree)
        assert_array_almost_equal(cov.data, cov_read.data)

        # test with a subset of channels
        raw_pick = raw.copy().pick_channels(raw.ch_names[:5])
        raw_pick.info.normalize_proj()
        cov = compute_raw_covariance(raw_pick, tstep=None, method=method)
        assert_true(cov_mne.ch_names[:5] == cov.ch_names)
        assert_snr(cov.data, cov_mne.data[:5, :5], 1e4)
        cov = compute_raw_covariance(raw_pick, method=method)
        assert_snr(cov.data, cov_mne.data[:5, :5], 90)  # cutoff samps
        # make sure we get a warning with too short a segment
        raw_2 = read_raw_fif(raw_fname).crop(0, 1)
        with warnings.catch_warnings(record=True) as w:
            warnings.simplefilter('always')
            cov = compute_raw_covariance(raw_2, method=method)
        assert_true(any('Too few samples' in str(ww.message) for ww in w))
        # no epochs found due to rejection
        assert_raises(ValueError,
                      compute_raw_covariance,
                      raw,
                      tstep=None,
                      method='empirical',
                      reject=dict(eog=200e-6))
        # but this should work
        cov = compute_raw_covariance(raw.copy().crop(0, 10.),
                                     tstep=None,
                                     method=method,
                                     reject=dict(eog=1000e-6))
Esempio n. 45
0
def test_cov_estimation_on_raw(method, tmpdir):
    """Test estimation from raw (typically empty room)."""
    tempdir = str(tmpdir)
    raw = read_raw_fif(raw_fname, preload=True)
    cov_mne = read_cov(erm_cov_fname)

    # The pure-string uses the more efficient numpy-based method, the
    # the list gets triaged to compute_covariance (should be equivalent
    # but use more memory)
    with pytest.warns(None):  # can warn about EEG ref
        cov = compute_raw_covariance(raw, tstep=None, method=method,
                                     rank='full')
    assert_equal(cov.ch_names, cov_mne.ch_names)
    assert_equal(cov.nfree, cov_mne.nfree)
    assert_snr(cov.data, cov_mne.data, 1e4)

    # tstep=0.2 (default)
    with pytest.warns(None):  # can warn about EEG ref
        cov = compute_raw_covariance(raw, method=method, rank='full')
    assert_equal(cov.nfree, cov_mne.nfree - 119)  # cutoff some samples
    assert_snr(cov.data, cov_mne.data, 1e2)

    # test IO when computation done in Python
    cov.save(op.join(tempdir, 'test-cov.fif'))  # test saving
    cov_read = read_cov(op.join(tempdir, 'test-cov.fif'))
    assert cov_read.ch_names == cov.ch_names
    assert cov_read.nfree == cov.nfree
    assert_array_almost_equal(cov.data, cov_read.data)

    # test with a subset of channels
    raw_pick = raw.copy().pick_channels(raw.ch_names[:5])
    raw_pick.info.normalize_proj()
    cov = compute_raw_covariance(raw_pick, tstep=None, method=method,
                                 rank='full')
    assert cov_mne.ch_names[:5] == cov.ch_names
    assert_snr(cov.data, cov_mne.data[:5, :5], 1e4)
    cov = compute_raw_covariance(raw_pick, method=method, rank='full')
    assert_snr(cov.data, cov_mne.data[:5, :5], 90)  # cutoff samps
    # make sure we get a warning with too short a segment
    raw_2 = read_raw_fif(raw_fname).crop(0, 1)
    with pytest.warns(RuntimeWarning, match='Too few samples'):
        cov = compute_raw_covariance(raw_2, method=method)
    # no epochs found due to rejection
    pytest.raises(ValueError, compute_raw_covariance, raw, tstep=None,
                  method='empirical', reject=dict(eog=200e-6))
    # but this should work
    cov = compute_raw_covariance(raw.copy().crop(0, 10.),
                                 tstep=None, method=method,
                                 reject=dict(eog=1000e-6),
                                 verbose='error')
Esempio n. 46
0
def test_xdawntransformer_fit():
    """Test Xdawn fit."""
    # get data
    raw, events, picks = _get_data()
    epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
                    preload=True, baseline=None, verbose=False)
    X = epochs._data
    y = epochs.events[:, -1]
    # =========== Basic Fit test =================
    # test base xdawn
    xd = XdawnTransformer()
    xd.fit(X, y)

    # ========== with signal cov provided ====================
    # provide covariance object
    signal_cov = compute_raw_covariance(raw, picks=picks)
    xd = XdawnTransformer(signal_cov=signal_cov)
    xd.fit(X, y)
    # provide ndarray
    signal_cov = np.eye(len(picks))
    xd = XdawnTransformer(signal_cov=signal_cov)
    xd.fit(X, y)
    # provide ndarray of bad shape
    signal_cov = np.eye(len(picks) - 1)
    xd = XdawnTransformer(signal_cov=signal_cov)
    assert_raises(ValueError, xd.fit, X, y)
    # provide another type
    signal_cov = 42
    xd = XdawnTransformer(signal_cov=signal_cov)
    assert_raises(ValueError, xd.fit, X, y)
    # fit with y as None results in error
    xd = XdawnTransformer()
    assert_raises(ValueError, xd.fit, X, None)

    # compare xdawn and XdawnTransformer
    xd = Xdawn()
    xd.fit(epochs)

    xdt = XdawnTransformer()
    xdt.fit(X, y)
    assert_array_equal(xdt.filters_['cond2'], xd.filters_['cond2'])
def get_epochs_and_cov(raw_data, picks, window=500):
    events = list()
    events_id = dict()

    for j, eid in enumerate(getEventNames()):
        tmp = find_events(raw_data, stim_channel=eid, verbose=False)
        tmp[:, -1] = j + 1
        events.append(tmp)
        events_id[eid] = j + 1

    events = np.concatenate(events, axis=0)
    order_ev = np.argsort(events[:, 0])
    events = events[order_ev]

    epochs = Epochs(raw_data, events, events_id, 
            tmin=-(window / 500.0) + 1 / 500.0 + 0.150, 
            tmax=0.150, proj=False, picks=picks, baseline=None, 
            preload=True, add_eeg_ref=False, verbose=False) 

    cov_signal = compute_raw_covariance(raw_data, verbose=False)
    return epochs, cov_signal
def get_epochs(raw, events, event_id):
    event_id_ = dict(normal=event_id)
    tmin = -0.3
    tmax = 0.8

    picks = mne.pick_types(raw.info,
                           meg=False,
                           eeg=True,
                           eog=True,
                           exclude='bads')
    baseline = (tmin, 0)  # means from the first instant to t = 0

    epochs = mne.Epochs(raw,
                        events,
                        event_id_,
                        tmin,
                        tmax,
                        proj=True,
                        picks=picks,
                        baseline=baseline,
                        preload=True)
    epochs.decimate(9)

    tmax = (events[0, 0] - 10000) / raw.info['sfreq']
    return epochs, mne.compute_raw_covariance(raw,
                                              tmin=0,
                                              tmax=tmax,
                                              tstep=1,
                                              reject=None,
                                              flat=None,
                                              picks=picks,
                                              method='shrunk',
                                              method_params=None,
                                              cv=3,
                                              scalings=None,
                                              n_jobs=1,
                                              return_estimators=False,
                                              reject_by_annotation=True,
                                              rank=None,
                                              verbose=None)
Esempio n. 49
0
def test_apply_inverse_cov(method, pick_ori):
    """Test MNE with precomputed inverse operator on cov."""
    raw = read_raw_fif(fname_raw, preload=True)
    # use 10 sec of data
    raw.crop(0, 10)

    raw.filter(1, None)
    label_lh = read_label(fname_label % 'Aud-lh')

    # test with a free ori inverse
    inverse_operator = read_inverse_operator(fname_inv)

    data_cov = compute_raw_covariance(raw, tstep=None)

    with pytest.raises(ValueError, match='has not been prepared'):
        apply_inverse_cov(data_cov, raw.info, inverse_operator,
                          lambda2=lambda2, prepared=True)

    this_inv_op = prepare_inverse_operator(inverse_operator, nave=1,
                                           lambda2=lambda2, method=method)

    raw_ori = 'normal' if pick_ori == 'normal' else 'vector'
    stc_raw = apply_inverse_raw(
        raw, this_inv_op, lambda2, method, label=label_lh, nave=1,
        pick_ori=raw_ori, prepared=True)
    stc_cov = apply_inverse_cov(
        data_cov, raw.info, this_inv_op, method=method, pick_ori=pick_ori,
        label=label_lh, prepared=True, lambda2=lambda2)
    n_sources = np.prod(stc_cov.data.shape[:-1])
    raw_data = stc_raw.data.reshape(n_sources, -1)
    exp_res = np.diag(np.cov(raw_data, ddof=1)).copy()
    exp_res *= 1 if raw_ori == pick_ori else 3.
    # There seems to be some precision penalty when combining orientations,
    # but it's probably acceptable
    rtol = 5e-4 if pick_ori is None else 1e-12
    assert_allclose(exp_res, stc_cov.data.ravel(), rtol=rtol)

    with pytest.raises(ValueError, match='Invalid value'):
        apply_inverse_cov(
            data_cov, raw.info, this_inv_op, method=method, pick_ori='vector')
Esempio n. 50
0
def test_cov_estimation_on_raw():
    """Test estimation from raw (typically empty room)."""
    tempdir = _TempDir()
    raw = read_raw_fif(raw_fname, preload=True)
    cov_mne = read_cov(erm_cov_fname)

    # The pure-string uses the more efficient numpy-based method, the
    # the list gets triaged to compute_covariance (should be equivalent
    # but use more memory)
    for method in (None, ['empirical']):  # None is cast to 'empirical'
        cov = compute_raw_covariance(raw, tstep=None, method=method)
        assert_equal(cov.ch_names, cov_mne.ch_names)
        assert_equal(cov.nfree, cov_mne.nfree)
        assert_snr(cov.data, cov_mne.data, 1e4)

        cov = compute_raw_covariance(raw, method=method)  # tstep=0.2 (default)
        assert_equal(cov.nfree, cov_mne.nfree - 119)  # cutoff some samples
        assert_snr(cov.data, cov_mne.data, 1e2)

        # test IO when computation done in Python
        cov.save(op.join(tempdir, 'test-cov.fif'))  # test saving
        cov_read = read_cov(op.join(tempdir, 'test-cov.fif'))
        assert_true(cov_read.ch_names == cov.ch_names)
        assert_true(cov_read.nfree == cov.nfree)
        assert_array_almost_equal(cov.data, cov_read.data)

        # test with a subset of channels
        raw_pick = raw.copy().pick_channels(raw.ch_names[:5])
        raw_pick.info.normalize_proj()
        cov = compute_raw_covariance(raw_pick, tstep=None, method=method)
        assert_true(cov_mne.ch_names[:5] == cov.ch_names)
        assert_snr(cov.data, cov_mne.data[:5, :5], 1e4)
        cov = compute_raw_covariance(raw_pick, method=method)
        assert_snr(cov.data, cov_mne.data[:5, :5], 90)  # cutoff samps
        # make sure we get a warning with too short a segment
        raw_2 = read_raw_fif(raw_fname).crop(0, 1)
        with warnings.catch_warnings(record=True) as w:
            warnings.simplefilter('always')
            cov = compute_raw_covariance(raw_2, method=method)
        assert_true(any('Too few samples' in str(ww.message) for ww in w))
        # no epochs found due to rejection
        assert_raises(ValueError, compute_raw_covariance, raw, tstep=None,
                      method='empirical', reject=dict(eog=200e-6))
        # but this should work
        cov = compute_raw_covariance(raw.copy().crop(0, 10.),
                                     tstep=None, method=method,
                                     reject=dict(eog=1000e-6))
Esempio n. 51
0
def test_lcmv_raw():
    """Test LCMV with raw data."""
    raw, _, _, _, noise_cov, label, forward, _, _, _ =\
        _get_data(all_forward=False, epochs=False, data_cov=False)

    tmin, tmax = 0, 20
    start, stop = raw.time_as_index([tmin, tmax])

    # use only the left-temporal MEG channels for LCMV
    data_cov = mne.compute_raw_covariance(raw, tmin=tmin, tmax=tmax)
    stc = lcmv_raw(raw, forward, noise_cov, data_cov, reg=0.01,
                   label=label, start=start, stop=stop,
                   max_ori_out='signed')

    assert_array_almost_equal(np.array([tmin, tmax]),
                              np.array([stc.times[0], stc.times[-1]]),
                              decimal=2)

    # make sure we get an stc with vertices only in the lh
    vertno = [forward['src'][0]['vertno'], forward['src'][1]['vertno']]
    assert_true(len(stc.vertices[0]) == len(np.intersect1d(vertno[0],
                                                           label.vertices)))
    assert_true(len(stc.vertices[1]) == 0)
Esempio n. 52
0
# field is called "MNE_LOGGING_LEVEL".
mne.set_config('MNE_LOGGING_LEVEL', 'INFO')
print(mne.get_config(key='MNE_LOGGING_LEVEL'))

###############################################################################
# The default value is now set to INFO. This level will now be used by default
# every time we call a function in MNE. We can set the global logging level for
# only this session by calling :func:`mne.set_log_level` function.
mne.set_log_level('WARNING')
print(mne.get_config(key='MNE_LOGGING_LEVEL'))

###############################################################################
# Notice how the value in the config file was not changed. Logging level of
# WARNING only applies for this session. Let's see what logging level of
# WARNING prints for :func:`mne.compute_raw_covariance`.
cov_raw = mne.compute_raw_covariance(raw)

###############################################################################
# Nothing. This means that no warnings were emitted during the computation. If
# you look at the documentation of :func:`mne.compute_raw_covariance`, you
# notice the ``verbose`` keyword. Setting this parameter does not touch the
# configurations, but sets the logging level for just this one function call.
# Let's see what happens with logging level of INFO.
cov = mne.compute_raw_covariance(raw, verbose=True)

###############################################################################
# As you see there is some info about what the function is doing. The logging
# level can be set to 'DEBUG', 'INFO', 'WARNING', 'ERROR' or 'CRITICAL'. It can
# also be set to an integer or a boolean value. The correspondence to string
# values can be seen in the table below. ``verbose=None`` uses the default
# value from the configuration file.
Esempio n. 53
0
def test_rank():
    """Test cov rank estimation."""
    # Test that our rank estimation works properly on a simple case
    evoked = read_evokeds(ave_fname, condition=0, baseline=(None, 0),
                          proj=False)
    cov = read_cov(cov_fname)
    ch_names = [ch for ch in evoked.info['ch_names'] if '053' not in ch and
                ch.startswith('EEG')]
    cov = prepare_noise_cov(cov, evoked.info, ch_names, None)
    assert_equal(cov['eig'][0], 0.)  # avg projector should set this to zero
    assert_true((cov['eig'][1:] > 0).all())  # all else should be > 0

    # Now do some more comprehensive tests
    raw_sample = read_raw_fif(raw_fname)

    raw_sss = read_raw_fif(hp_fif_fname)
    raw_sss.add_proj(compute_proj_raw(raw_sss))

    cov_sample = compute_raw_covariance(raw_sample)
    cov_sample_proj = compute_raw_covariance(
        raw_sample.copy().apply_proj())

    cov_sss = compute_raw_covariance(raw_sss)
    cov_sss_proj = compute_raw_covariance(
        raw_sss.copy().apply_proj())

    picks_all_sample = pick_types(raw_sample.info, meg=True, eeg=True)
    picks_all_sss = pick_types(raw_sss.info, meg=True, eeg=True)

    info_sample = pick_info(raw_sample.info, picks_all_sample)
    picks_stack_sample = [('eeg', pick_types(info_sample, meg=False,
                                             eeg=True))]
    picks_stack_sample += [('meg', pick_types(info_sample, meg=True))]
    picks_stack_sample += [('all',
                            pick_types(info_sample, meg=True, eeg=True))]

    info_sss = pick_info(raw_sss.info, picks_all_sss)
    picks_stack_somato = [('eeg', pick_types(info_sss, meg=False, eeg=True))]
    picks_stack_somato += [('meg', pick_types(info_sss, meg=True))]
    picks_stack_somato += [('all',
                            pick_types(info_sss, meg=True, eeg=True))]

    iter_tests = list(itt.product(
        [(cov_sample, picks_stack_sample, info_sample),
         (cov_sample_proj, picks_stack_sample, info_sample),
         (cov_sss, picks_stack_somato, info_sss),
         (cov_sss_proj, picks_stack_somato, info_sss)],  # sss
        [dict(mag=1e15, grad=1e13, eeg=1e6)]
    ))

    for (cov, picks_list, this_info), scalings in iter_tests:
        for ch_type, picks in picks_list:

            this_very_info = pick_info(this_info, picks)

            # compute subset of projs
            this_projs = [c['active'] and
                          len(set(c['data']['col_names'])
                              .intersection(set(this_very_info['ch_names']))) >
                          0 for c in cov['projs']]
            n_projs = sum(this_projs)

            # count channel types
            ch_types = [channel_type(this_very_info, idx)
                        for idx in range(len(picks))]
            n_eeg, n_mag, n_grad = [ch_types.count(k) for k in
                                    ['eeg', 'mag', 'grad']]
            n_meg = n_mag + n_grad
            if ch_type in ('all', 'eeg'):
                n_projs_eeg = 1
            else:
                n_projs_eeg = 0

            # check sss
            if len(this_very_info['proc_history']) > 0:
                mf = this_very_info['proc_history'][0]['max_info']
                n_free = _get_sss_rank(mf)
                if 'mag' not in ch_types and 'grad' not in ch_types:
                    n_free = 0
                # - n_projs XXX clarify
                expected_rank = n_free + n_eeg
                if n_projs > 0 and ch_type in ('all', 'eeg'):
                    expected_rank -= n_projs_eeg
            else:
                expected_rank = n_meg + n_eeg - n_projs

            C = cov['data'][np.ix_(picks, picks)]
            est_rank = _estimate_rank_meeg_cov(C, this_very_info,
                                               scalings=scalings)

            assert_equal(expected_rank, est_rank)
# alignement and the sphere location.
sphere = mne.make_sphere_model(r0=(0., 0., 0.), head_radius=None)

mne.viz.plot_alignment(raw.info, subject='sample',
                       meg='helmet', bem=sphere, dig=True,
                       surfaces=['brain'])
del raw, epochs

###############################################################################
# To do a dipole fit, let's use the covariance provided by the empty room
# recording.

raw_erm = read_raw_ctf(erm_path).apply_gradient_compensation(0)
raw_erm = mne.preprocessing.maxwell_filter(raw_erm, coord_frame='meg',
                                           **mf_kwargs)
cov = mne.compute_raw_covariance(raw_erm)
del raw_erm

dip, residual = fit_dipole(evoked, cov, sphere)

###############################################################################
# Compare the actual position with the estimated one.

expected_pos = np.array([18., 0., 49.])
diff = np.sqrt(np.sum((dip.pos[0] * 1000 - expected_pos) ** 2))
print('Actual pos:     %s mm' % np.array_str(expected_pos, precision=1))
print('Estimated pos:  %s mm' % np.array_str(dip.pos[0] * 1000, precision=1))
print('Difference:     %0.1f mm' % diff)
print('Amplitude:      %0.1f nAm' % (1e9 * dip.amplitude[0]))
print('GOF:            %0.1f %%' % dip.gof[0])
Esempio n. 55
0
##############################################################################
# Compute and apply inverse to PSD estimated using multitaper + Welch.
# Group into frequency bands, then normalize each source point and sensor
# independently. This makes the value of each sensor point and source location
# in each frequency band the percentage of the PSD accounted for by that band.

freq_bands = dict(
    delta=(2, 4), theta=(5, 7), alpha=(8, 12), beta=(15, 29), gamma=(30, 45))
topos = dict(vv=dict(), opm=dict())
stcs = dict(vv=dict(), opm=dict())

snr = 3.
lambda2 = 1. / snr ** 2
for kind in kinds:
    noise_cov = mne.compute_raw_covariance(raw_erms[kind])
    inverse_operator = mne.minimum_norm.make_inverse_operator(
        raws[kind].info, forward=fwd[kind], noise_cov=noise_cov, verbose=True)
    stc_psd, sensor_psd = mne.minimum_norm.compute_source_psd(
        raws[kind], inverse_operator, lambda2=lambda2,
        n_fft=n_fft, dB=False, return_sensor=True, verbose=True)
    topo_norm = sensor_psd.data.sum(axis=1, keepdims=True)
    stc_norm = stc_psd.sum()  # same operation on MNE object, sum across freqs
    # Normalize each source point by the total power across freqs
    for band, limits in freq_bands.items():
        data = sensor_psd.copy().crop(*limits).data.sum(axis=1, keepdims=True)
        topos[kind][band] = mne.EvokedArray(
            100 * data / topo_norm, sensor_psd.info)
        stcs[kind][band] = \
            100 * stc_psd.copy().crop(*limits).sum() / stc_norm.data
Esempio n. 56
0
def test_rank():
    """Test cov rank estimation"""
    raw_sample = Raw(raw_fname)

    raw_sss = Raw(hp_fif_fname)
    raw_sss.add_proj(compute_proj_raw(raw_sss))

    cov_sample = compute_raw_covariance(raw_sample)
    cov_sample_proj = compute_raw_covariance(
        raw_sample.copy().apply_proj())

    cov_sss = compute_raw_covariance(raw_sss)
    cov_sss_proj = compute_raw_covariance(
        raw_sss.copy().apply_proj())

    picks_all_sample = pick_types(raw_sample.info, meg=True, eeg=True)
    picks_all_sss = pick_types(raw_sss.info, meg=True, eeg=True)

    info_sample = pick_info(raw_sample.info, picks_all_sample)
    picks_stack_sample = [('eeg', pick_types(info_sample, meg=False,
                                             eeg=True))]
    picks_stack_sample += [('meg', pick_types(info_sample, meg=True))]
    picks_stack_sample += [('all',
                            pick_types(info_sample, meg=True, eeg=True))]

    info_sss = pick_info(raw_sss.info, picks_all_sss)
    picks_stack_somato = [('eeg', pick_types(info_sss, meg=False, eeg=True))]
    picks_stack_somato += [('meg', pick_types(info_sss, meg=True))]
    picks_stack_somato += [('all',
                            pick_types(info_sss, meg=True, eeg=True))]

    iter_tests = list(itt.product(
        [(cov_sample, picks_stack_sample, info_sample),
         (cov_sample_proj, picks_stack_sample, info_sample),
         (cov_sss, picks_stack_somato, info_sss),
         (cov_sss_proj, picks_stack_somato, info_sss)],  # sss
        [dict(mag=1e15, grad=1e13, eeg=1e6)]
    ))

    for (cov, picks_list, this_info), scalings in iter_tests:
        for ch_type, picks in picks_list:

            this_very_info = pick_info(this_info, picks)

            # compute subset of projs
            this_projs = [c['active'] and
                          len(set(c['data']['col_names'])
                              .intersection(set(this_very_info['ch_names']))) >
                          0 for c in cov['projs']]
            n_projs = sum(this_projs)

            # count channel types
            ch_types = [channel_type(this_very_info, idx)
                        for idx in range(len(picks))]
            n_eeg, n_mag, n_grad = [ch_types.count(k) for k in
                                    ['eeg', 'mag', 'grad']]
            n_meg = n_mag + n_grad
            if ch_type in ('all', 'eeg'):
                n_projs_eeg = 1
            else:
                n_projs_eeg = 0

            # check sss
            if 'proc_history' in this_very_info:
                mf = this_very_info['proc_history'][0]['max_info']
                n_free = _get_sss_rank(mf)
                if 'mag' not in ch_types and 'grad' not in ch_types:
                    n_free = 0
                # - n_projs XXX clarify
                expected_rank = n_free + n_eeg
                if n_projs > 0 and ch_type in ('all', 'eeg'):
                    expected_rank -= n_projs_eeg
            else:
                expected_rank = n_meg + n_eeg - n_projs

            C = cov['data'][np.ix_(picks, picks)]
            est_rank = _estimate_rank_meeg_cov(C, this_very_info,
                                               scalings=scalings)

            assert_equal(expected_rank, est_rank)
Esempio n. 57
0
# as the end of the recording, see :func:`mne.compute_raw_covariance`).
#
# Keep in mind that you want to match your empty room dataset to your
# actual MEG data, processing-wise. Ensure that filters
# are all the same and if you use ICA, apply it to your empty-room and subject
# data equivalently. In this case we did not filter the data and
# we don't use ICA. However, we do have bad channels and projections in
# the MEG data, and, hence, we want to make sure they get stored in the
# covariance object.

raw_empty_room.info['bads'] = [
    bb for bb in raw.info['bads'] if 'EEG' not in bb]
raw_empty_room.add_proj(
    [pp.copy() for pp in raw.info['projs'] if 'EEG' not in pp['desc']])

noise_cov = mne.compute_raw_covariance(
    raw_empty_room, tmin=0, tmax=None)

###############################################################################
# Now that you have the covariance matrix in an MNE-Python object you can
# save it to a file with :func:`mne.write_cov`. Later you can read it back
# using :func:`mne.read_cov`.
#
# You can also use the pre-stimulus baseline to estimate the noise covariance.
# First we have to construct the epochs. When computing the covariance, you
# should use baseline correction when constructing the epochs. Otherwise the
# covariance matrix will be inaccurate. In MNE this is done by default, but
# just to be sure, we define it here manually.
events = mne.find_events(raw)
epochs = mne.Epochs(raw, events, event_id=1, tmin=-0.2, tmax=0.5,
                    baseline=(-0.2, 0.0), decim=3,  # we'll decimate for speed
                    verbose='error')  # and ignore the warning about aliasing
evoked_std.plot_topomap(times=times, title='Standard')
evoked_dev.plot_topomap(times=times, title='Deviant')

###############################################################################
# We can see the MMN effect more clearly by looking at the difference between
# the two conditions. P50 and N100 are no longer visible, but MMN/P200 and
# P300 are emphasised.
evoked_difference = combine_evoked([evoked_dev, evoked_std], weights=[1, -1])
evoked_difference.plot(window_title='Difference', gfp=True)

###############################################################################
# Source estimation.
# We compute the noise covariance matrix from the empty room measurement
# and use it for the other runs.
reject = dict(mag=4e-12)
cov = mne.compute_raw_covariance(raw_erm, reject=reject)
cov.plot(raw_erm.info)
del raw_erm

###############################################################################
# The transformation is read from a file. More information about coregistering
# the data, see :ref:`ch_interactive_analysis` or
# :func:`mne.gui.coregistration`.
trans_fname = op.join(data_path, 'MEG', 'bst_auditory',
                      'bst_auditory-trans.fif')
trans = mne.read_trans(trans_fname)

###############################################################################
# To save time and memory, the forward solution is read from a file. Set
# ``use_precomputed=False`` in the beginning of this script to build the
# forward solution from scratch. The head surfaces for constructing a BEM
                         data_type='noise_empty_room')
raw_noise.load_data()

# apply ref channel correction and drop ref channels
preproc.apply_ref_correction(raw_noise)

# Note: MNE complains on Python 2.7
raw_noise.filter(0.50, None, method='iir',
                 iir_params=dict(order=4, ftype='butter'), n_jobs=1)
raw_noise.filter(None, 60, method='iir',
                 iir_params=dict(order=4, ftype='butter'), n_jobs=1)

##############################################################################
# Note that using the empty room noise covariance will inflate the SNR of the
# evkoked and renders comparisons  to `baseline` rather uninformative.
noise_cov = mne.compute_raw_covariance(raw_noise, method='empirical')


##############################################################################
# Now we assemble the inverse operator, project the data and show the results
# on the `fsaverage` surface, the freesurfer average brain.

inv_op = mne.minimum_norm.make_inverse_operator(
    evoked.info, fwd, noise_cov=noise_cov)

stc = mne.minimum_norm.apply_inverse(  # these data have a pretty high SNR and
    evoked, inv_op, method='MNE', lambda2=1./9.**2)  # 9 is a lovely number.

stc = stc.to_original_src(
    src_outputs['src_fsaverage'], subjects_dir=subjects_dir)