def __init__(self, ckpt_path="./model/model-30000"):
     print(ckpt_path)
     self.x = tf.placeholder(tf.float32,
                             shape=[
                                 None, mnist_inference.IMAGE_SIZE,
                                 mnist_inference.IMAGE_SIZE,
                                 mnist_inference.NUM_CHANNEL
                             ],
                             name='x-input')
     self.y = mnist_inference.inference(self.x, False, None)
     saver = tf.train.Saver()
     self.sess = tf.Session()
     saver.restore(self.sess, ckpt_path)
Esempio n. 2
0
    def on_message(self, img):
        global users
        global msg
        ''' canvas return base64 data '''
        ''' base64 convert to png '''
        img = img[len("data:image/png;base64,") - 1:]
        img = bytes(img, encoding="utf-8")
        img += b'='
        img_data = base64.b64decode(img)
        # save picture to look up for modification
        with open('data.png', 'wb') as f:
            f.write(img_data)
        f.close()

        # get handwriting image
        img_tmp = cv2.imread("data.png", 0)

        # reverse colour to enhance accuracy
        rows = img_tmp.shape[0]
        cols = img_tmp.shape[1]
        for i in range(rows):
            for j in range(cols):
                img_tmp[i][j] = 255 - img_tmp[i][j]
        img_tmp = cv2.resize(img_tmp, (28, 28), interpolation=cv2.INTER_CUBIC)

        self.u_img = np.reshape(img_tmp, (28, 28, 1)).astype(
            np.float32)  # reshape to feed NN

        with tf.Graph().as_default() as g:
            #定义用于输入图片数据的张量占位符,输入样本的尺寸
            x = tf.placeholder(tf.float32,
                               shape=[
                                   None, mnist_inference.IMAGE_SIZE,
                                   mnist_inference.IMAGE_SIZE,
                                   mnist_inference.NUM_CHANNEL
                               ],
                               name='x-input')

            y = mnist_inference.inference(x, None, None)
            variable_averages = tf.train.ExponentialMovingAverage(
                mnist_train.MOVING_AVERAGE_DECAY)
            variables_to_restore = variable_averages.variables_to_restore()
            saver = tf.train.Saver(variables_to_restore)
            with tf.Session() as sess:
                saver = tf.train.import_meta_graph(
                    'model/model-9999001.meta')  # restore model
                saver.restore(sess, tf.train.latest_checkpoint('model'))
                result = sess.run(y, feed_dict={x: [self.u_img]})
                print(tf.argmax(result, 1).eval()[0])
                msg = str(tf.argmax(result, 1).eval()[0])
        self.write_message(msg)
Esempio n. 3
0
def evaluate(mnist):
    with tf.Graph().as_default():
        x = tf.placeholder(tf.float32,
                           shape=[
                               None, mnist_inference.IMAGE_SIZE,
                               mnist_inference.IMAGE_SIZE,
                               mnist_inference.NUM_CHANNEL
                           ],
                           name='x-input')
        y_ = tf.placeholder(tf.float32,
                            shape=[None, mnist_inference.OUTPUT_NODE],
                            name='y-input')

        xs, ys = mnist.test.images, mnist.test.labels
        reshape_xs = np.reshape(
            xs, (-1, mnist_inference.IMAGE_SIZE, mnist_inference.IMAGE_SIZE,
                 mnist_inference.NUM_CHANNEL))

        val_feed = {x: reshape_xs, y_: mnist.test.labels}
        y = mnist_inference.inference(x, False, None)
        correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))

        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        variable_average = tf.train.ExponentialMovingAverage(
            mnist_train.MOVING_AVERAGE_DECAY)

        val_to_restore = variable_average.variables_to_restore()

        saver = tf.train.Saver(val_to_restore)

        with tf.Session() as sess:
            ckpt = tf.train.get_checkpoint_state(mnist_train.MODEL_PATH)
            if ckpt and ckpt.model_checkpoint_path:
                saver.restore(sess, ckpt.model_checkpoint_path)
                global_step = ckpt.model_checkpoint_path.split('/')[-1].split(
                    '-')[-1]
                accuracy_score = sess.run(accuracy, feed_dict=val_feed)
                print('After %s train ,the accuracy is %g' %
                      (global_step, accuracy_score))
            else:
                print('No Checkpoint file find')
Esempio n. 4
0
def train(mnist):
    x = tf.placeholder(tf.float32, [None, mnist_cnn.INPUT_NODE],
                       name="x-input")
    y_ = tf.placeholder(tf.float32, [None, mnist_cnn.OUTPUT_NODE],
                        name="y-input")
    regularizer = tf.contrib.layers.l2_regularizer(REGULARAZTION_RATE)
    y = mnist_cnn.inference(x, True, regularizer)

    global_step = tf.Variable(0, trainable=False)
    variable_averages = tf.train.ExponentialMovingAverage(
        MOVING_AVERAGE_DECAY, global_step)
    variables_averages_op = variable_averages.apply(tf.trainable_variables())

    cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
        logits=y, labels=tf.argmax(y_, 1))
    cross_entropy_mean = tf.reduce_mean(cross_entropy)
    loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses'))
    learning_rate = tf.train.exponential_decay(
        LEARNING_RATE_BASE, global_step, mnist.train.num_examples / BATCH_SIZE,
        LEARNING_RATE_DECAY)
    train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(
        loss, global_step=global_step)

    with tf.control_dependenices([train_step, variables_averages_op]):
        train_op = tf.no_op(name='train')

    with tf.Session() as sess:
        tf.global_variables_initializer().run()
        for i in range(TRAINING_STEPS):
            xs, ys = mnist.train.next_batch(BATCH_SIZE)
            _, loss_value, step = sess.run([train_op, loss, global_step],
                                           feed_dict={
                                               xs: xs,
                                               y_: ys
                                           })
            if i % 1000 == 0:
                print(
                    "After %d training steps, loss on training batch is %g." %
                    (step, loss_value))
def train(mnist):
    x = tf.placeholder(tf.float32, shape=[None,
                                          mnist_interence.IMAGE_SIZE,
                                          mnist_interence.IMAGE_SIZE,
                                          mnist_interence.NUM_CHANNEL], name='x-input')
    y_ = tf.placeholder(tf.float32, shape=[None, mnist_interence.OUTPUT_NODE], name='y-input')
    regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_TATE)
    y = mnist_interence.inference(x, True, regularizer)
    global_step = tf.Variable(0, trainable=False)
    variable_average = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
    variable_average_ops = variable_average.apply(tf.trainable_variables())
    cross_entroy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
    cross_entroy_mean = tf.reduce_mean(cross_entroy)
    loss = cross_entroy_mean + tf.add_n(tf.get_collection('loss'))
    learning_rate = tf.train.exponential_decay(LEARNING_RATE_BASE, global_step,
                                               mnist.train.num_examples / BATCH_SIZE, LEARNING_RATE_DECAY)
    train_step = tf.train.GradientDescentOptimizer(0.01).minimize(loss, global_step=global_step)
    train_op = tf.group(train_step, variable_average_ops)
    saver = tf.train.Saver(max_to_keep=10)
    with tf.Session() as sess:
        ckpt = tf.train.get_checkpoint_state(mnist_train.MODEL_PATH)
        if ckpt and ckpt.model_checkpoint_path:
            saver.restore(sess, ckpt.model_checkpoint_path)
            global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
            for i in range(eval(global_step), TRAIN_STEP):
                xs, ys = mnist.train.next_batch(BATCH_SIZE)
                reshape_xs = np.reshape(xs, (BATCH_SIZE, mnist_interence.IMAGE_SIZE,
                                             mnist_interence.IMAGE_SIZE,
                                             mnist_interence.NUM_CHANNEL))
                _, loss_value, step, learn_rate = sess.run([train_op, loss, global_step, learning_rate],
                                                           feed_dict={x: reshape_xs, y_: ys})
                if (i + 1) % 3000 == 0:
                    print('After %d step, loss on train is %g,and learn rate is %g' % (step, loss_value, learn_rate))
                    saver.save(sess, os.path.join(MODEL_PATH, MODEL_NAME), global_step=global_step)
        else:
            print('No Checkpoint file find')
def train(mnist):
    # 定义用于输入图片数据的张量占位符,输入样本的尺寸
    x = tf.placeholder(tf.float32,
                       shape=[
                           None, mnist_interence.IMAGE_SIZE,
                           mnist_interence.IMAGE_SIZE,
                           mnist_interence.NUM_CHANNEL
                       ],
                       name='x-input')
    # 定义用于输入图片标签数据的张量占位符,输入样本的尺寸
    y_ = tf.placeholder(tf.float32,
                        shape=[None, mnist_interence.OUTPUT_NODE],
                        name='y-input')
    # 定义采用方差的正则化函数
    regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_TATE)
    # 通过interence函数获得计算结果张量
    y = mnist_interence.inference(x, True, regularizer)
    global_step = tf.Variable(0, trainable=False)
    # 定义平均滑动
    variable_average = tf.train.ExponentialMovingAverage(
        MOVING_AVERAGE_DECAY, global_step)
    # 对所有可以训练的变量采用平均滑动
    variable_average_ops = variable_average.apply(tf.trainable_variables())
    # 对预测数据y和实际数据y_计算他们概率的交叉值
    cross_entroy = tf.nn.sparse_softmax_cross_entropy_with_logits(
        logits=y, labels=tf.argmax(y_, 1))
    # 对各对交叉值求平均,其实是计算y和y_两个随机变量概率分布的交叉熵,交叉熵值越小则表明两种概率分布越接近
    cross_entroy_mean = tf.reduce_mean(cross_entroy)
    # 采用交叉熵和正则化参数作为最后的损失函数
    loss = cross_entroy_mean + tf.add_n(tf.get_collection('loss'))
    # 设置学习率递减方式
    learning_rate = tf.train.exponential_decay(
        LEARNING_RATE_BASE, global_step, mnist.train.num_examples / BATCH_SIZE,
        LEARNING_RATE_DECAY)
    # 采用梯度下降的方式计算损失函数的最小值
    train_step = tf.train.GradientDescentOptimizer(0.01).minimize(
        loss, global_step=global_step)
    # 定义学习操作:采用梯度下降求一次模型训练参数,并对求得的模型参数计算滑动平均值
    train_op = tf.group(train_step, variable_average_ops)
    saver = tf.train.Saver(max_to_keep=10)
    with tf.Session() as sess:
        tf.global_variables_initializer().run()
        for i in range(TRAIN_STEP):
            # 由于神经网络的输入大小为[BATCH_SIZE,IMAGE_SIZE,IMAGE_SIZE,CHANNEL],因此需要reshape输入。
            xs, ys = mnist.train.next_batch(BATCH_SIZE)
            reshape_xs = np.reshape(
                xs, (BATCH_SIZE, mnist_interence.IMAGE_SIZE,
                     mnist_interence.IMAGE_SIZE, mnist_interence.NUM_CHANNEL))
            # 通过计算图,计算模型损失张量和学习张量的当前值
            _, loss_value, step, learn_rate = sess.run(
                [train_op, loss, global_step, learning_rate],
                feed_dict={
                    x: reshape_xs,
                    y_: ys
                })
            if (i + 1) % 3000 == 0:
                print(
                    'After %d step, loss on train is %g,and learn rate is %g' %
                    (step, loss_value, learn_rate))
                saver.save(sess,
                           os.path.join(MODEL_PATH, MODEL_NAME),
                           global_step=global_step)