def generate_sub_graph(self, graph: Graph, match: SubgraphMatch):
        # IE DetectionOutput layer consumes flattened confidences and locations tensors.
        # That is why we add reshapes before them.
        locs_node = match.single_input_node(0)
        conf_node = match.single_input_node(1)
        prior_boxes_node = match.single_input_node(2)

        locs_out_nodes = locs_node[0].out_nodes()
        assert len(locs_out_nodes) == 1
        locs_out_node = locs_out_nodes[list(locs_out_nodes.keys())[0]]
        assert locs_out_node.op == "OpOutput", locs_out_node.op
        graph.remove_node(locs_out_node.id)

        conf_out_nodes = conf_node[0].out_nodes()
        assert len(conf_out_nodes) == 1
        conf_out_node = conf_out_nodes[list(conf_out_nodes.keys())[0]]
        assert conf_out_node.op == "OpOutput", conf_out_node.op
        graph.remove_node(conf_out_node.id)

        # reshape operation to flatten confidence tensor
        reshape_loc_op = Reshape(graph, {'dim': np.array([0, -1])})
        reshape_loc_node = reshape_loc_op.create_node(
            [locs_node], dict(name='DetectionOutput_Reshape_loc_'))

        # reshape operation to flatten confidence tensor
        reshape_conf_op = Reshape(graph, {'dim': np.array([0, -1])})
        reshape_conf_node = reshape_conf_op.create_node(
            [conf_node], dict(name='DetectionOutput_Reshape_conf_'))

        # remove the OpOutput node after the priors node
        assert prior_boxes_node[0].out_node().op == "OpOutput"
        graph.remove_node(prior_boxes_node[0].out_node().id)

        # reshape operation for prior boxes tensor
        reshape_priors_op = Reshape(graph, {'dim': np.array([1, 2, -1])})
        reshape_priors_node = reshape_priors_op.create_node(
            [prior_boxes_node], dict(name='DetectionOutput_Reshape_priors_'))
        # create Detection Output node with three inputs: locations, confidences and prior boxes
        detection_output_op = DetectionOutput(
            graph, match.custom_replacement_desc.custom_attributes)
        detection_output_node = detection_output_op.create_node(
            [reshape_loc_node, reshape_conf_node, reshape_priors_node],
            dict(name=detection_output_op.attrs['type'] + '_'))
        PermuteAttrs.set_permutation(reshape_priors_node,
                                     detection_output_node, None)

        # create Output node to mark DetectionOutput as a graph output operation
        output_op = Output(graph)
        output_op.create_node([detection_output_node], dict(name='sink_'))
        return {}
 def setUp(self):
     self.graph = Graph()
     self.graph.graph['user_shapes'] = None
     self.replacement_desc = CustomReplacementDescriptor('dummy_id', {})
     self.match = SubgraphMatch(self.graph, self.replacement_desc, [], [],
                                [], '')
     self.pipeline_config = FakePipelineConfig({})
 def generate_sub_graph(self, graph: Graph, match: SubgraphMatch):
     replacement_desc = match.custom_replacement_desc
     op = Op.get_op_class_by_name(replacement_desc.op)(
         graph, match.custom_replacement_desc.custom_attributes)
     op.default_backend_attrs = list(
         match.custom_replacement_desc.custom_attributes.keys())
     if 'infer' not in op.attrs:
         # update IE attrs
         op.substitute_ie_attrs(op.attrs)
         node = merge_nodes(graph, match.matched_nodes_names(),
                            replacement_desc.get_inputs_description(),
                            replacement_desc.get_outputs_description())
         node.name = graph.unique_id(op.attrs['type'])
         node_attrs = graph.node[node.id]
         # copy attributes which are defined in the custom operation
         for key in op.attrs.keys():
             if key not in ['name', 'op']:
                 node_attrs[key] = op.attrs[key]
         # functions below should return nothing because 'merge_nodes' already created input/output edges
         self.input_edges_match = lambda gr, ma, new_sub_graph: dict()  # pylint: disable=method-hidden
         self.output_edges_match = lambda gr, ma, new_sub_graph: dict()  # pylint: disable=method-hidden
     else:
         node = op.add_node(name=op.attrs['type'] + '_')
         node.type = op.attrs['type']
     return {'new_node': node}
Esempio n. 4
0
 def output_edges_match(self,  # pylint: disable=method-hidden
                        graph: Graph,
                        match: SubgraphMatch,
                        new_sub_graph: dict):
     """
     Function that generates matching of sub-graph output edges to a new sub-graph output edges. It works in case
     when the sub-graph is replaced with a single custom-layer node.
     :param graph: networkX graph to operate on.
     :param match: object describing matched sub-graph.
     :param new_sub_graph: dictionary of Nodes objects that forms new sub-graph.
     :return: object describing edges matching.
     """
     output_edges_match = dict()
     outputs_count = match.outputs_count()
     # prepare output_edges_match based on custom replacement configuration file
     for sub_graph_output_port in range(outputs_count):
         output_node, output_port = match.output_node(sub_graph_output_port)
         output_edges_match[(output_node.id, output_port)] = (new_sub_graph['new_node'].id, sub_graph_output_port)
     return output_edges_match
Esempio n. 5
0
 def input_edges_match(self,  # pylint: disable=method-hidden
                       graph: Graph,
                       match: SubgraphMatch,
                       new_sub_graph: dict):
     """
     Function that generates matching of sub-graph input edges to a new sub-graph input edges. It works in case when
     the sub-graph is replaced with a single custom-layer node.
     :param graph: networkX graph to operate on.
     :param match: object describing matched sub-graph.
     :param new_sub_graph: dictionary of Nodes objects that forms new sub-graph.
     :return: object describing edges matching.
     """
     input_edges_match = dict()
     inputs_count = match.inputs_count()
     for sub_graph_input_port in range(inputs_count):
         # just create single edge for each input port of the sub-graph
         input_node, input_port = match.input_nodes(sub_graph_input_port)[0]
         input_edges_match[(input_node.id, input_port)] = (new_sub_graph['new_node'].id, sub_graph_input_port)
     return input_edges_match
Esempio n. 6
0
    def generate_sub_graph(self, graph: Graph, match: SubgraphMatch):
        permute_op = Permute(graph, {'order': np.array([0, 2, 3, 1])})
        permute_node = permute_op.add_node({'name': match.scope + '_permute_'})

        reshape_node = match.node_by_pattern('flatten/Reshape$')

        # reshape_in_node is the node after which we should insert Permute
        reshape_in_node = reshape_node.in_nodes()[0]
        reshape_in_node.insert_node_after(permute_node, 0)
        return {}
 def nodes_to_remove(self, graph: Graph, match: SubgraphMatch):
     return match.matched_nodes_names()
Esempio n. 8
0
    def generate_sub_graph(self, graph: Graph, match: SubgraphMatch):
        reshape_classes_node = create_op_node_with_second_input(
            graph, Reshape, int64_array([0, -1]),
            dict(name='do_reshape_classes'),
            match.single_input_node(1)[0])

        priors_node = match.single_input_node(2)[0]

        placeholder = [
            Node(graph, node_id) for node_id in graph.nodes()
            if Node(graph, node_id).op == 'Parameter'
        ][0]
        im_height = placeholder.shape[1]
        im_width = placeholder.shape[2]

        # scale prior boxes to the [0, 1] interval
        priors_scale_const_node = Const(
            graph, {
                'value':
                np.array(
                    [1 / im_width, 1 / im_height, 1 / im_width, 1 / im_height])
            }).create_node([])
        priors_scale_node = Mul(graph, {
            'name': 'scale_priors'
        }).create_node([priors_node, priors_scale_const_node])

        # calculate prior boxes widths and heights
        split_node = SplitV(graph, {
            'axis': 2,
            'size_splits': [1, 1, 1, 1],
            'out_ports_count': 4
        }).create_node([priors_scale_node])

        priors_width_node = Sub(
            graph, dict(name=split_node.name + '/sub_2-0_')).create_node([
                (split_node, 2), (split_node, 0)
            ])
        priors_height_node = Sub(graph, dict(name=split_node.name +
                                             '/sub_3-1_')).create_node([
                                                 (split_node, 3),
                                                 (split_node, 1)
                                             ])

        # concat weights and heights into a single tensor and multiple with the box coordinates regression values
        concat_width_height_node = Concat(graph, {
            'name': 'concat_priors_width_height',
            'axis': -1,
            'in_ports_count': 4
        }).create_node([
            priors_width_node, priors_height_node, priors_width_node,
            priors_height_node
        ])
        applied_width_height_regressions_node = Mul(graph, {
            'name': 'final_regressions'
        }).create_node(
            [concat_width_height_node,
             match.single_input_node(0)[0]])

        # reshape to 2D tensor as Inference Engine Detection Output layer expects
        reshape_regression_node = create_op_node_with_second_input(
            graph, Reshape, int64_array([0, -1]),
            dict(name='reshape_regression'),
            applied_width_height_regressions_node)

        detection_output_op = DetectionOutput(
            graph, match.custom_replacement_desc.custom_attributes)
        detection_output_op.attrs['old_infer'] = detection_output_op.attrs[
            'infer']
        detection_output_op.attrs['infer'] = __class__.do_infer
        detection_output_node = detection_output_op.create_node(
            [reshape_regression_node, reshape_classes_node, priors_scale_node],
            dict(name=detection_output_op.attrs['type'],
                 clip=1,
                 normalized=1,
                 variance_encoded_in_target=0))

        return {'detection_output_node': detection_output_node}
Esempio n. 9
0
 def nodes_to_remove(self, graph: Graph, match: SubgraphMatch):
     new_nodes_to_remove = match.matched_nodes_names()
     new_nodes_to_remove.remove(match.single_input_node(0)[0].id)
     new_nodes_to_remove.remove(match.single_input_node(1)[0].id)
     new_nodes_to_remove.remove(match.single_input_node(2)[0].id)
     return new_nodes_to_remove
Esempio n. 10
0
 def output_edges_match(self, graph: Graph, match: SubgraphMatch,
                        new_sub_graph: dict):
     return {
         match.output_node(0)[0].id:
         new_sub_graph['detection_output_node'].id
     }
Esempio n. 11
0
    def generate_sub_graph(self, graph: Graph, match: SubgraphMatch):
        reshape_classes_node = create_op_node_with_second_input(
            graph, Reshape, int64_array([0, -1]),
            dict(name='do_reshape_classes'),
            match.single_input_node(1)[0])

        initial_priors_node = match.single_input_node(2)[0]
        priors_name = initial_priors_node.soft_get('name',
                                                   initial_priors_node.id)
        # model calculates identical prior boxes for each batch, so we take first slice of them
        begin = Const(graph, {
            'value': np.array([0, 0, 0], dtype=np.int32)
        }).create_node()
        end = Const(graph, {
            'value': np.array([1, 0, 0], dtype=np.int32)
        }).create_node()
        stride = Const(graph, {
            'value': np.array([1, 1, 1], dtype=np.int32)
        }).create_node()

        priors_node = StridedSlice(
            graph, {
                'name': priors_name + '/0_batch_slice',
                'begin_mask': np.array([1, 1, 1], dtype=np.int32),
                'end_mask': np.array([1, 0, 0], dtype=np.int32),
                'new_axis_mask': np.array([0], dtype=np.int32),
                'shrink_axis_mask': np.array([0], dtype=np.int32),
                'ellipsis_mask': np.array([0], dtype=np.int32)
            }).create_node()

        initial_priors_node.out_port(0).connect(priors_node.in_port(0))
        begin.out_port(0).connect(priors_node.in_port(1))
        end.out_port(0).connect(priors_node.in_port(2))
        stride.out_port(0).connect(priors_node.in_port(3))

        placeholders = graph.get_op_nodes(type='Parameter')
        assert len(placeholders) == 1, "{} replacer requires model to have one Placeholder, but current model has " \
                                       "{} placeholders".format(self.replacement_id, len(placeholders))
        placeholder = placeholders[0]

        # scale prior boxes to the [0, 1] interval
        node_with_scales_for_prior_boxes = self.placeholder_scales(placeholder)
        priors_scale_node = Mul(graph, {'name': 'scale_priors'}).create_node()

        broadcast = Broadcast(graph, {
            'name': 'scales_broadcast'
        }).create_node()
        shape_of_priors = Shape(graph, {'name': 'priors_shape'}).create_node()
        priors_node.out_port(0).connect(shape_of_priors.in_port(0))
        broadcast.in_port(1).connect(shape_of_priors.out_port(0))
        broadcast.in_port(0).connect(
            node_with_scales_for_prior_boxes.out_port(0))

        priors_scale_node.in_port(0).connect(priors_node.out_port(0))
        priors_scale_node.in_port(1).connect(broadcast.out_port(0))

        try:
            variance = match.custom_replacement_desc.custom_attributes[
                'variance']
        except:
            raise Error(
                'There is no variance attribute in {} replacement config file `custom_attributes`'
                ''.format(self.replacement_id))

        priors = self.append_variances(priors_scale_node, variance)

        # calculate prior boxes widths and heights
        split_node = create_op_with_const_inputs(graph, VariadicSplit, {
            1: int64_array(2),
            2: int64_array([1, 1, 1, 1])
        }, {'out_ports_count': 4}, priors_scale_node)

        priors_width_node = Sub(
            graph, dict(name=split_node.name + '/sub_2-0_')).create_node([
                (split_node, 2), (split_node, 0)
            ])
        priors_height_node = Sub(graph, dict(name=split_node.name +
                                             '/sub_3-1_')).create_node([
                                                 (split_node, 3),
                                                 (split_node, 1)
                                             ])

        # concat weights and heights into a single tensor and multiple with the box coordinates regression values
        # WA with 3 Concats instead of 1 for keeping model reshapable
        # concat_width_height_node = Concat(graph, {'name': 'concat_priors_width_height', 'axis': -1,
        #                                           'in_ports_count': 4}).create_node(
        # [priors_width_node, priors_height_node, priors_width_node, priors_height_node])

        concat_1 = Concat(graph, {
            'name': 'concat_width_height',
            'axis': -1,
            'in_ports_count': 2
        }).create_node([priors_width_node, priors_height_node])
        concat_2 = Concat(graph, {
            'name': 'concat_width_height_width',
            'axis': -1,
            'in_ports_count': 2
        }).create_node([concat_1, priors_width_node])
        concat_width_height_node = Concat(graph, {
            'name': 'concat_priors_width_height',
            'axis': -1,
            'in_ports_count': 2
        }).create_node([concat_2, priors_height_node])

        applied_width_height_regressions_node = Mul(graph, {
            'name': 'final_regressions'
        }).create_node(
            [concat_width_height_node,
             match.single_input_node(0)[0]])

        # reshape to 2D tensor as Inference Engine Detection Output layer expects
        reshape_regression_node = create_op_node_with_second_input(
            graph, Reshape, int64_array([0, -1]),
            dict(name='reshape_regression'),
            applied_width_height_regressions_node)

        detection_output_op = DetectionOutput(
            graph, match.custom_replacement_desc.custom_attributes)
        # get nms from the original network
        iou_threshold = None
        nms_nodes = graph.get_op_nodes(op='NonMaxSuppression')
        if len(nms_nodes) > 0:
            # it is highly unlikely that for different classes NMS has different
            # moreover DetectionOutput accepts only scalar values for iou_threshold (nms_threshold)
            iou_threshold = nms_nodes[0].in_node(3).value
        if iou_threshold is None:
            raise Error(
                'During {} `iou_threshold` was not retrieved from RetinaNet graph'
                .format(self.replacement_id))

        detection_output_node = detection_output_op.create_node(
            [reshape_regression_node, reshape_classes_node, priors],
            dict(name=detection_output_op.attrs['type'],
                 nms_threshold=iou_threshold,
                 clip_after_nms=1,
                 normalized=1,
                 variance_encoded_in_target=0,
                 background_label_id=1000))

        return {'detection_output_node': detection_output_node}