Esempio n. 1
0
def tf2nx(argv: argparse.Namespace, model_file_name: str, output_model_name: str, outputs: list, output_dir: str,
          scale: float, is_binary: bool,
          user_shapes: [None, list, np.array] = None,
          mean_scale_values: [dict, list] = ()):
    """
    Convert TF GraphDef object to NetworkX representation.
    The resulting graph is still TF-specific and needs normalization passes to be applied.
    The specific TF structure assumes each GraphDef node is converted to a single
    NetworkX node, node id is an original TF node name, and edges go directly from one op   to another op.
    """
    meta_info = get_meta_info(argv)

    if argv.tensorflow_custom_layer_libraries:
        libraries = argv.tensorflow_custom_layer_libraries.split(',')
        for library in libraries:
            log.info('Loading library "{}" with custom operations'.format(library))
            tf.load_op_library(library)

    graph_def, variables_values = load_tf_graph_def(graph_file_name=model_file_name, is_binary=is_binary,
                                                    checkpoint=argv.input_checkpoint,
                                                    user_output_node_names_list=outputs,
                                                    model_dir=argv.saved_model_dir,
                                                    meta_graph_file=argv.input_meta_graph,
                                                    saved_model_tags=argv.saved_model_tags)

    try:
        tf.import_graph_def(graph_def, name='')
    except:
        log.warning("TensorFlow post-processing of loaded model was unsuccessful. "
                    "This is an optional step that Model Optimizer performs for any input model but it is not usually "
                    "required for all models."
                    "It likely means that the original model is ill-formed. "
                    "Model Optimizer will continue converting this model.")

    log.debug("Number of nodes in graph_def: {}".format(len(graph_def.node)))  # pylint: disable=no-member

    if argv.tensorboard_logdir:
        tensorboard.dump_for_tensorboard(graph_def, argv.tensorboard_logdir)

    update_extractors_with_extensions(tf_op_extractors)

    try:
        graph = protobuf2nx(graph_def)
        graph.__setattr__('name', output_model_name)
        # 'layout' parameter change may cause an issue in EltwiseInputReshape replacer
        # and convert_nhwc_to_nchw(graph)
        graph.graph['layout'] = 'NCHW' if argv.disable_nhwc_to_nchw else 'NHWC'
        graph.graph['cmd_params'] = argv
        graph.graph['fw'] = 'tf'
        graph.graph['ir_version'] = 2 if argv.generate_deprecated_IR_V2 else 4

        if graph.graph['ir_version'] == 2:
            # When the deprecated IR version was requested,
            # we configure only those phases that can lead to
            # functional regressions in the version 2.
            # BasicLSTMCell is one such transformation; when it is turned off,
            # the body of TF basic_lstm_cell is converted as-is in a decomposed form,
            # and should work in version 2.
            BasicLSTMCell.enabled = False

        # placeholder for request from a transformation pass to repeat the entire conversion
        graph.graph['repeat_conversion'] = False

        graph = restore_edges(graph, get_tf_edges)
        graph = remove_control_dependency_inputs(graph)
        # extract basic attributes earlier to enable some passes that relies on them before full attribute
        # extractor is called
        extract_node_attrs(graph, lambda node: (True, common_tf_fields(node)))
    except Exception as e:
        raise Error(
            'Cannot pre-process TensorFlow graph after reading from model file "{}". ' \
            'File is corrupt or has unsupported format. Details: {}. ' +
            refer_to_faq_msg(44),
            model_file_name,
            str(e)
        ) from e

    check_empty_graph(graph, 'protobuf2nx. It may happen due to problems with loaded model')

    packed_user_shapes, packed_outputs, freeze_placeholder = user_data_repack(graph, user_shapes, outputs,
                                                                              argv.freeze_placeholder_with_value)
    if freeze_placeholder is not None:
        FreezePlaceholderValue.enabled = True
        FreezePlaceholderValue.replacement_dict = freeze_placeholder
        update_registration()

    GemmResolver.enabled = False

    inputs = list(packed_user_shapes.keys()) if packed_user_shapes is not None and isinstance(packed_user_shapes,
                                                                                              dict) else None
    graph.graph['inputs'] = inputs  # save user defined inputs for other extensions

    output_op_nodes = add_output_ops(graph, packed_outputs, inputs=packed_user_shapes)
    input_op_nodes = add_input_ops(graph, packed_user_shapes, True)

    # this call of 'graph_clean_up' removes child nodes of outputs which is useful when custom output is specified
    graph_clean_up_tf(graph)

    check_empty_graph(graph, 'add_output_ops and add_input_ops. It may happen due to absence of \'Placeholder\' layer '
                             'in the model')

    variables_to_constants(graph, variables_values)
    del variables_values
    graph_clean_up_tf(graph)

    if argv.tensorflow_custom_operations_config_update:
        if update_custom_replacement_config_file(graph, argv.tensorflow_custom_operations_config_update):
            return 0
        else:
            return 1

    unsupported_ops_to_offload_to_tf = list()

    MAX_ITERATIONS = 5
    cur_iteration = 0
    while cur_iteration < MAX_ITERATIONS:
        graph_copy = copy.deepcopy(graph)  # create a copy of graph for the case when some ops are unsupported

        if argv.tensorflow_subgraph_patterns is not None:
            csc.replace_subgraph_calls(graph, argv.tensorflow_subgraph_patterns)

        if argv.tensorflow_operation_patterns is not None:
            csc.offload_operations_to_tf(graph, argv.tensorflow_operation_patterns)

        if argv.offload_unsupported_operations_to_tf and len(unsupported_ops_to_offload_to_tf):
            csc.offload_unsupported_operations_to_tf(graph, unsupported_ops_to_offload_to_tf)

        extract_node_attrs(graph, lambda node: tf_op_extractor(node, check_for_duplicates(tf_op_extractors)))

        if argv.tensorflow_use_custom_operations_config is not None:
            registry = CustomReplacementRegistry()
            registry.add_custom_replacement_description_from_config(argv.tensorflow_use_custom_operations_config)

            # automatically generate sub-classes for custom replacements that replace sub-graph with a single node
            for replacement_desc in registry.get_all_replacements_descriptions():
                if replacement_desc.has('op'):
                    type('FrontReplacementFromConfigFileOp' + replacement_desc.op, (FrontReplacementFromConfigFileOp,),
                         {'replacement_id': replacement_desc.id})
            update_registration()

        override_placeholder_shapes(graph, packed_user_shapes)

        # the user shapes are used to convert TensorFlow Object Detection API models
        graph.graph['user_shapes'] = packed_user_shapes
        class_registration.apply_replacements(graph, class_registration.ClassType.FRONT_REPLACER)

        override_batch(graph, argv.batch)

        create_tensor_nodes(graph)
        graph_clean_up_tf(graph)

        remove_output_ops(graph)
        partial_infer(graph)
        delete_control_flow_edges(graph)

        replacer = AddIsCyclicAttribute()
        replacer.find_and_replace_pattern(graph)

        # TENSOR ITERATOR CREATING BEGINS
        if graph.graph['is_cyclic']:
            replacer = DeleteSelect()
            replacer.find_and_replace_pattern(graph)

            replacer = SmartInputMatcher()
            replacer.find_and_replace_pattern(graph)

            replacer = SmartOutputMatcher()
            replacer.find_and_replace_pattern(graph)

            replacer = LoopConditionMatcher()
            replacer.find_and_replace_pattern(graph)

            replacer = SimpleConditionMather()
            replacer.find_and_replace_pattern(graph)

            replacer = BackEdgesMatching()
            replacer.find_and_replace_pattern(graph)

            replacer = ConditionChecks()
            replacer.find_and_replace_pattern(graph)

        delete_not_executable(graph)
        graph_clean_up_tf(graph)
        if graph.graph['is_cyclic']:
            replacer = SimpleInputMatcher()
            replacer.find_and_replace_pattern(graph)

            replacer = BackEdgeSimpleInputMatcher()
            replacer.find_and_replace_pattern(graph)

            # Here will be optimizing path (ops after Enter and before body take out of body)

            replacer = TensorIteratorMerge()
            replacer.find_and_replace_pattern(graph)
        # TENSOR ITERATOR CREATING ENDS

        check_for_cycle(graph)

        for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf)
        check_empty_graph(graph, 'partial_infer')

        csc.prepare_tf_call_nodes(graph)
        graph_clean_up_tf(graph)

        duplicate_shared_weights(graph)

        input_op_nodes = add_input_ops(graph, packed_user_shapes, False)
        graph_clean_up_tf(graph)
        check_empty_graph(graph, 'add_input_ops')

        change_placeholders_types_to_FP32(graph)

        scale_input(graph, scale)
        add_mean_scale_values(graph, mean_scale_values)

        convert_dilated_convolution(graph)
        for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf)

        l2_norm_to_norm(graph)
        graph_clean_up_tf(graph)

        remove_op_nodes(graph, {'identity': True})
        remove_useless_split(graph)

        class_registration.apply_replacements(graph, class_registration.ClassType.MIDDLE_REPLACER)

        mean_to_avgpool(graph)
        convert_nasnet(graph)

        fuse_pad(graph)
        graph_clean_up_tf(graph)

        convert_matmul_to_fully_connected(graph)

        # Mark nodes with attr 'can_be_fused': False to disable fusing for specified nodes
        for_graph_and_each_sub_graph_recursively(graph, lambda graph: mark_unfused_nodes(graph, argv.finegrain_fusing))

        # Converting FusedBatchNorm layer to Mul->Add->Mul->Add sequence
        # IE doesn't support BN with 4 inputs, so we have to split it to two ScaleShift
        convert_batch_norm(graph)
        graph_clean_up_tf(graph)

        if not argv.disable_fusing:
            # Converting ScaleShift layer to Mul->Add
            for_graph_and_each_sub_graph_recursively(graph, convert_scale_shift_to_mul_add)
            for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf)

            # Fusing the sequences of Mul/Add operations
            for_graph_and_each_sub_graph_recursively(graph, fuse_mul_add_sequence)
            for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf)

            # Fusing linear operation to Convolution
            for_graph_and_each_sub_graph_recursively(graph, fuse_linear_ops)
            for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf)

        if not argv.disable_gfusing:
            grouped_convolutions_fusing(graph)
            graph_clean_up_tf(graph)
            if not argv.disable_fusing:
                fuse_linear_ops(graph)
                graph_clean_up_tf(graph)

        # Converting Mul->Add to ScaleShift node
        for_graph_and_each_sub_graph_recursively(graph, convert_muladd_to_scaleshift_or_power)
        for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf)

        for_graph_and_each_sub_graph_recursively(graph, convert_mul_add_to_power)

        # Need to eliminate dead nodes before doing update_fully_connected_shapes
        # because update_fully_connected_shapes does partial inference and dead
        # nodes will lead to sporadic failures.
        for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf)
        for_graph_and_each_sub_graph_recursively(graph, update_fully_connected_shapes)

        for_graph_and_each_sub_graph_recursively(graph, convert_mul_eltwise_to_leaky_relu)
        graph_clean_up_tf(graph)
        for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf)

        for_graph_and_each_sub_graph_recursively(graph, fuse_pad)
        for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf)

        for_graph_and_each_sub_graph_recursively(graph, convert_reshape)
        for_graph_and_each_sub_graph_recursively(graph, convert_squeeze)

        for_graph_and_each_sub_graph_recursively(graph, convert_add_to_scaleshift)  # scale = 1
        for_graph_and_each_sub_graph_recursively(graph, convert_mul_to_scaleshift)  # biases = 0

        if argv.reverse_input_channels:
            reverse_input_channels(graph)

        if argv.move_to_preprocess:
            move_scaleshift_to_preprocess(graph)
            graph_clean_up_tf(graph)

        for_graph_and_each_sub_graph_recursively(graph, fuse_sequence_of_reshapes)

        pattern = EltwiseInputNormalize()
        pattern.find_and_replace_pattern(graph)

        conv_flatten_concat(graph)

        for_graph_and_each_sub_graph_recursively(graph, apply_nhwc_to_nchw_permutation)
        for_graph_and_each_sub_graph_recursively(graph, merge_nodes_permutations)
        for_graph_and_each_sub_graph_recursively(graph, permute_data_nodes_attrs)
        for_graph_and_each_sub_graph_recursively(graph, permute_op_nodes_attrs)

        for_graph_and_each_sub_graph_recursively(graph, repack_fully_connected_weights_nhwc_to_nchw)
        for_graph_and_each_sub_graph_recursively(graph, transpose_fully_connected_weights)

        for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf)

        if argv.offload_unsupported_operations_to_tf:
            unsupported_ops_to_offload_to_tf = find_unsupported_ops(graph)
            if len(unsupported_ops_to_offload_to_tf) == 0:
                log.info('All operations are supported! Exit from the loop.')
                if not need_to_repeat_conversion(graph):
                    break
            else:
                print('After {} iteration there are {} unsupported ops'.format(cur_iteration + 1,
                                                                               len(unsupported_ops_to_offload_to_tf)))
        else:
            if not need_to_repeat_conversion(graph):
                break

        graph = graph_copy
        cur_iteration += 1

    class_registration.apply_replacements(graph, class_registration.ClassType.BACK_REPLACER)

    prepare_emit_ir(graph=graph, data_type=argv.data_type, output_dir=output_dir, output_model_name=output_model_name,
                    meta_info=meta_info)

    return 0
 def find_and_replace_pattern(self, graph: Graph):
     variables_to_constants(graph, graph.graph['variables_values'])
     del graph.graph['variables_values']