Esempio n. 1
0
def get_flops(a):
    session = tf.compat.v1.Session()
    graph = tf.compat.v1.get_default_graph()

    with graph.as_default():
        with session.as_default():
            model = mobilenet_block.MobileNet(
                input_shape=None,
                alpha=1.0,
                depth_multiplier=1,
                dropout=0.001,
                include_top=True,
                weights=None,
                input_tensor=tf.compat.v1.placeholder('float32',
                                                      shape=(1, 224, 224, 3)),
                pooling=None,
                classes=1000,
                classifier_activation='softmax',
                #i_64=1, i_128=1, i_256=1, i_512=1, i_1024=1
                i_64=a[0],
                i_128=a[1],
                i_256=a[2],
                i_512=a[3],
                i_1024=a[4])

            run_meta = tf.compat.v1.RunMetadata()
            opts = tf.compat.v1.profiler.ProfileOptionBuilder.float_operation()
            flops = tf.compat.v1.profiler.profile(graph=graph,
                                                  run_meta=run_meta,
                                                  cmd='op',
                                                  options=opts)

    tf.compat.v1.reset_default_graph()

    return flops.total_float_ops
Esempio n. 2
0
b = ["i64", "i128", "i256", "i512", "i1024"]
FLOPS = []

for i in range(1, 11):
    for j in range(5):
        a = [0, 0, 0, 0, 0]
        a[j] = i

        model = mobilenet_block.MobileNet(input_shape=None,
                                          alpha=1.0,
                                          depth_multiplier=1,
                                          dropout=0.001,
                                          include_top=True,
                                          weights=None,
                                          input_tensor=None,
                                          pooling=None,
                                          classes=1000,
                                          classifier_activation='softmax',
                                          i_64=a[0],
                                          i_128=a[1],
                                          i_256=a[2],
                                          i_512=a[3],
                                          i_1024=a[4])

        model.compile(optimizer='adam',
                      loss='mean_squared_error',
                      metrics=['accuracy'])

        history = model.fit(x_train,
                            y_train,
                            epochs=TRAIN_EPOCHS,