Esempio n. 1
0
def test_eval():
    N, C, H, W = 2, 3, 4, 5
    a = np.random.random((N, C, H, W))
    b = np.random.random((N, C, H, W))
    data_a = L.Data()
    data_b = L.Data()
    r_add = data_a + data_b
    r_multiply = data_a * data_b
    r_subtract = data_a - data_b
    datas = {data_a: a, data_b: b}
    assert np.allclose(r_add.eval(datas), a + b)
    assert np.allclose(r_multiply.eval(datas), np.multiply(a, b))
    assert np.allclose(r_subtract.eval(datas), a - b)

    a = np.random.random((N, C, H, W))
    b = np.random.random((N, C, H, W))
    datas = {data_a: a, data_b: b}
    assert np.allclose(r_add.eval(datas), a + b)
    assert np.allclose(r_multiply.eval(datas), np.multiply(a, b))
    assert np.allclose(r_subtract.eval(datas), a - b)

    N, C, H, W = 1, 3, 2, 4
    a = np.random.random((N, C, H, W))
    b = np.random.random((N, C, H, W))
    datas = {data_a: a, data_b: b}
    assert np.allclose(r_add.eval(datas), a + b)
    assert np.allclose(r_multiply.eval(datas), np.multiply(a, b))
    assert np.allclose(r_subtract.eval(datas), a - b)
Esempio n. 2
0
def test_data_args():
    X = np.random.random((10, 3))
    Y = np.random.random((10, 3))
    d1 = L.Data([X, Y], "data1")
    lx1, ly1 = d1()
    d2 = L.Data(X, Y, "data2")
    lx2, ly2 = d2()
    assert np.allclose(lx1.Y, lx2.Y)
    assert np.allclose(ly1.Y, ly2.Y)
Esempio n. 3
0
def test_fc():
    X = np.zeros((4, 2, 1, 1))
    X[0, :, 0, 0] = [0., 0.]
    X[1, :, 0, 0] = [0., 1.]
    X[2, :, 0, 0] = [1., 0.]
    X[3, :, 0, 0] = [1., 1.]

    Y = np.array([8., 10., 12., 14.]).reshape((-1, 1))

    data, label = L.Data([X, Y], "Data")()
    fc1 = L.FC(data, "fc1", dim_out=1)
    loss = L.MSE(fc1, "MSE", label=label)

    fc1.reshape()

    fc1.W = np.array([1.0, 3.0]).reshape(fc1.W.shape)
    fc1.b = np.array([0.0]).reshape(fc1.b.shape)

    net = mobula.Net()
    net.set_loss(loss)

    net.lr = 0.5
    for i in range(30):
        net.forward()
        net.backward()
        print("Iter: %d, Cost: %f" % (i, loss.Y))

    # forward one more time, because of the change of weights last backward
    net.forward()
    target = np.dot(X.reshape((4, 2)), fc1.W.T) + fc1.b
    print(target, fc1.Y)
    assert np.allclose(fc1.Y, target)
Esempio n. 4
0
def test_slice():
    X = np.arange(60).reshape((5, 3, 2, 2))

    l = L.Slice(L.Data(X), "slice", axis=0, slice_points=[1, 2])

    Y1, Y2, Y3 = l()

    l.reshape()
    l.forward()

    a1 = Y1.Y.size
    a2 = Y2.Y.size
    a3 = Y3.Y.size

    Y1.dY = np.arange(0, a1).reshape(Y1.Y.shape)
    Y2.dY = np.arange(a1, a1 + a2).reshape(Y2.Y.shape)
    Y3.dY = np.arange(a1 + a2, a1 + a2 + a3).reshape(Y3.Y.shape)

    l.backward()

    print("X: ", X.shape, X.ravel())
    print("Y1: ", Y1.Y.shape, Y1.Y.ravel())
    print("Y2: ", Y2.Y.shape, Y2.Y.ravel())
    print("Y3: ", Y3.Y.shape, Y3.Y.ravel())

    print("dX: ", l.dX.shape, l.dX.ravel())

    y = np.concatenate([Y1.Y.ravel(), Y2.Y.ravel(), Y3.Y.ravel()])
    assert (X.ravel() == y).all()
    assert (l.dX.ravel() == np.arange(l.dX.size)).all()
Esempio n. 5
0
def test_fc2():
    X = np.random.random((4, 2, 1, 1))
    Y1 = np.random.random((4, 10))
    Y2 = np.random.random((4, 10))

    [x, y1, y2] = L.Data([X, Y1, Y2])
    fc1 = L.FC(x, dim_out=10)
    fc2 = L.FC(x, dim_out=10)
    loss1 = L.MSE(fc1, label=Y1)
    loss2 = L.MSE(fc2, label=Y2)

    net = mobula.Net()
    loss = L.L1Loss(loss1 + loss2)
    net.set_loss(loss)
    L1Loss = mobula.get_layer("L1Loss")
    Add = mobula.get_layer(L1Loss.model.name)

    net.lr = 0.5
    for i in range(30):
        net.forward()
        net.backward()
        print("Iter: %d, Cost: %f" % (i, loss.Y))
    # check forward
    t1 = np.dot(X.reshape((4, 2)), fc1.W.T) + fc1.b.T
    t2 = np.dot(X.reshape((4, 2)), fc2.W.T) + fc2.b.T
    # forward one more time, because of the change of weights last backward
    net.forward()
    assert np.allclose(fc1.Y, t1)
    assert np.allclose(fc2.Y, t2)
Esempio n. 6
0
def test_add4():
    N, C, H, W = 2, 3, 4, 5
    a = np.random.random((N, C, H, W))
    b = np.random.random((N, C, H, W))
    c = np.random.random((N, C, H, W))
    data = L.Data([a, b, c], "data")
    [la, lb, lc] = data()
    l = la + lb + lc
    assert np.allclose(a + b + c, l.eval())
Esempio n. 7
0
def test_subtract_op_l():
    N, C, H, W = 2, 3, 4, 5
    a = np.random.random((N, C, H, W))
    data = L.Data(a)
    l = data - 3
    assert type(l) == L.SubtractConstantL
    assert np.allclose(a - 3, l.eval())
    l.dY = np.random.random(l.Y.shape)
    l.backward()
    assert np.allclose(l.dX, l.dY)
Esempio n. 8
0
def test_crop2():
    X1 = np.arange(3 * 4 * 5 * 5).reshape((3, 4, 5, 5))
    X2 = np.zeros((2, 2, 2, 2))
    [x1, x2] = L.Data([X1, X2])
    l = L.Crop([x1, x2], offset=(1, 2, 1), axis=1)
    assert np.allclose(l.eval(), X1[:, 1:3, 2:4, 1:3])
    l.dY = np.random.random(l.Y.shape)
    l.backward()
    dX = np.zeros(X1.shape)
    dX[:, 1:3, 2:4, 1:3] = l.dY
    assert np.allclose(l.dX, dX)
Esempio n. 9
0
def test_subtract_op_r():
    N, C, H, W = 2, 3, 4, 5
    a = np.random.random((N, C, H, W))
    data = L.Data(a)
    l = 3 - data
    print(type(l))
    assert type(l) == L.SubtractConstantR
    assert np.allclose(3 - a, l.eval())
    l.dY = np.random.random(l.Y.shape)
    l.backward()
    assert np.allclose(l.dX, -l.dY)
Esempio n. 10
0
def test_add3():
    N, C, H, W = 2, 3, 4, 5
    a = np.random.random((N, C, H, W))
    b = np.random.random((N, C, H, W))
    c = np.random.random((N, C, H, W))
    data = L.Data([a, b, c], "data")
    [la, lb, lc] = data()
    l = la + lb
    l.reshape()
    l.forward()
    assert np.allclose(a + b, l.Y)
Esempio n. 11
0
def test_data():
    X = np.arange(1, 11).reshape((10, 1))

    target = [[1,2,3],[4,5,6],[7,8,9],[2,3,4],[5,6,7],[8,9,10]]

    def go_data(data):
        data.reshape()

        for i in range(50):
            data.forward()
            assert (data.Y.ravel() == target[i % 6]).all()

    data = L.Data(X, "data", batch_size = 3)
    go_data(data)
    data = L.Data(X, "data", batch_size = 3)()
    go_data(data)
    data = L.Data(X, "data", batch_size = 3)(0)
    go_data(data)
    data = L.Data([X, X.copy()], "data", batch_size = 3)(1)
    go_data(data)
Esempio n. 12
0
def test_name():
    a = np.arange(10)
    b = np.zeros((3, 5))
    c = np.arange(1, 11)
    test1 = [str(L.Data(a)), str(L.Data([a, b])), str(L.Data(None))]
    test1_truth = [
        "<Data '/Data' input: (10,) num_output: (1)>",
        "<Data '/Data' input: [(10,), (3, 5)] num_output: (2)>",
        "<Data '/Data' input: None num_output: (0)>"
    ]
    print(test1)
    assert test1 == test1_truth

    test2 = [str(L.ReLU(L.Data(a))), str(L.ReLU(L.FC(L.Data(b), dim_out=10)))]
    test2_truth = [
        "<ReLU '/ReLU' input: /Data:0 num_output: (1)>",
        "<ReLU '/ReLU' input: /FC:0 num_output: (1)>"
    ]
    print(test2)
    assert test2 == test2_truth

    la, lc = L.Data([a, c])
    concat = L.Concat([la, lc], axis=0)
    test3 = [str(concat)]
    test3_truth = [
        "<Concat '/Concat' input: [/Data:0,/Data:1] num_output: (1)>"
    ]
    print(test3)
    assert test3 == test3_truth

    l = L.ReLU(a)
    test4 = [str(l)]
    test4_truth = ["<ReLU '/ReLU' input: (10,) num_output: (1)>"]
    print(test4)
    assert test4 == test4_truth
Esempio n. 13
0
def go_eltwise(op):
    a = np.array([1, 0, 6]).astype(np.float)
    b = np.array([4, 5, 3]).astype(np.float)
    print("a: ", a)
    print("b: ", b)
    data1 = L.Data(a, "data1")
    data2 = L.Data(b, "data1")
    coeffs = np.array([-1.0, 1.2])
    l = L.Eltwise([data1, data2], "eltwise", op=op, coeffs=coeffs)
    l.reshape()
    l.forward()
    print("Y: ", l.Y)
    dY = np.array([7, 8, 9]).astype(np.float)
    l.dY = dY
    print("dY: ", l.dY)
    l.backward()
    print("dX: ", l.dX[0], l.dX[1])
    c0, c1 = coeffs
    if op == L.Eltwise.SUM:
        Y = c0 * a + c1 * b
        dX0 = c0 * dY
        dX1 = c1 * dY
    elif op == L.Eltwise.PROD:
        Y = a * b * c0 * c1
        dX0 = b * dY * c0 * c1
        dX1 = a * dY * c0 * c1
    elif op == L.Eltwise.MAX:
        Y = np.max([c0 * a, c1 * b], 0)
        i = np.argmax([c0 * a, c1 * b], 0)
        dX0 = np.zeros(a.shape)
        dX1 = np.zeros(b.shape)
        dX0[i == 0] = dY[i == 0] * c0
        dX1[i == 1] = dY[i == 1] * c1

    print("Y", l.Y, Y)
    assert np.allclose(l.Y, Y)
    assert np.allclose(l.dX[0], dX0)
    assert np.allclose(l.dX[1], dX1)
Esempio n. 14
0
def test_subtract():
    N, C, H, W = 2, 3, 4, 5
    a = np.random.random((N, C, H, W))
    b = np.random.random((N, C, H, W))
    [la, lb] = L.Data([a, b])
    w = la - lb
    w.reshape()
    assert w.Y.shape == a.shape
    w.forward()
    w.dY = np.random.random(w.Y.shape)
    w.backward()
    assert np.allclose(a - b, w.Y)
    assert np.allclose(w.dX[0], w.dY)
    assert np.allclose(w.dX[1], -w.dY)
Esempio n. 15
0
def test_multiply():
    N, C, H, W = 2, 3, 4, 5
    a = np.random.random((N, C, H, W))
    b = np.random.random((N, C, H, W))
    [la, lb] = L.Data([a, b])
    w = la * lb
    w.reshape()
    assert w.Y.shape == a.shape
    w.forward()
    w.dY = np.random.random(w.Y.shape)
    w.backward()
    assert np.allclose(np.multiply(a, b), w.Y)
    assert np.allclose(w.dX[0], np.multiply(w.dY, w.X[1]))
    assert np.allclose(w.dX[1], np.multiply(w.dY, w.X[0]))
Esempio n. 16
0
def test_sigmoid():
    X = ((np.arange(10000) - 5000) / 1000.0).reshape((-1, 1, 1, 1))
    data = L.Data(X, "data")
    data.reshape()
    l = L.Sigmoid(data)
    l.reshape()
    assert l.Y.shape == X.shape
    l.forward()
    l.dY = np.random.random(l.Y.shape) * 10
    l.backward()

    enx = np.exp(-X)
    assert np.allclose(l.Y.ravel(), (1.0 / (1.0 + enx)).ravel())
    assert np.allclose(l.dX.ravel(), (enx / np.square(1 + enx) * l.dY).ravel())
Esempio n. 17
0
def test_add2():
    N, C, H, W = 2, 3, 4, 5
    a = np.random.random((N, C, H, W))
    b = np.random.random((N, C, H, W))
    c = np.random.random((N, C, H, W))
    data = L.Data([a, b, c], "data")
    [la, lb, lc] = data()
    l = L.Add([la, lb, lc], "op")
    l.reshape()
    l.forward()
    assert np.allclose(a + b + c, l.Y)
    l.dY = np.random.random(l.Y.shape)
    l.backward()
    for i in range(3):
        assert np.allclose(l.dX[i], l.dY)
Esempio n. 18
0
def test_tanh():
    X = ((np.arange(10000) - 5000) / 1000.0).reshape((-1, 1, 1, 1))
    data = L.Data(X, "data")
    data.reshape()
    l = L.Tanh(data)
    y = l.eval()
    p = np.exp(X)
    n = np.exp(-X)
    ty = (p - n) / (p + n)
    assert np.allclose(y, ty)
    l.dY = np.random.random(l.Y.shape)
    l.backward()
    dX = 1.0 - np.square(p - n) / np.square(p + n)
    dX *= l.dY
    assert np.allclose(dX, l.dX)
Esempio n. 19
0
def test_mul():
    N, C, H, W = 2, 3, 4, 5
    a = np.random.random((N, C, H, W))
    data = L.Data(a)
    l = data * 3
    assert type(l) == L.MultiplyConstant
    assert np.allclose(a * 3, l.eval())
    l.dY = np.random.random(l.Y.shape)
    l.backward()
    assert np.allclose(l.dX, 3 * l.dY)
    l = 3 * data
    assert type(l) == L.MultiplyConstant
    assert np.allclose(a * 3, l.eval())
    l.dY = np.random.random(l.Y.shape)
    l.backward()
    assert np.allclose(l.dX, 3 * l.dY)
Esempio n. 20
0
def test_symbols():
    N, C, H, W = 2,3,4,5
    a = np.random.random((N, C, H, W))
    b = np.random.random((N, C, H, W))
    [la, lb] = L.Data([a,b])
    eq = M.equal(la, lb)
    ne = M.not_equal(la, lb)
    ge = M.greater_equal(la, lb)
    gt = M.greater(la, lb)
    le = M.less_equal(la, lb)
    lt = M.less(la, lb)
 
    lops = [eq,ne,ge,gt,le,lt]
    ops = [operator.eq, operator.ne, operator.ge, operator.gt, operator.le, operator.lt]
    for l, op in zip(lops, ops):
        assert l.op == op
Esempio n. 21
0
def test_add_constant():
    N, C, H, W = 2,3,4,5
    a = np.random.random((N, C, H, W))
    data = L.Data(a)
    l = data + 39
    assert type(l) == L.AddConstant
    assert np.allclose(l.eval(), a + 39)
    l.dY = np.random.random(l.Y.shape)
    l.backward()
    assert np.allclose(l.dX, l.dY) 

    l = 10 + data
    assert type(l) == L.AddConstant
    assert np.allclose(l.eval(), a + 10)
    l.dY = np.random.random(l.Y.shape)
    l.backward()
    assert np.allclose(l.dX, l.dY) 
Esempio n. 22
0
def test_list_eval():
    N, C, H, W = 2, 3, 4, 5
    a = np.random.random((N, C, H, W))
    b = np.random.random((N, C, H, W))
    l = L.Data([a, b])
    [la, lb] = l
    w = la + lb
    c = np.random.random((N, C, H, W))
    d = np.random.random((N, C, H, W))
    datas = {l: [c, d]}
    np.allclose(c + d, w.eval(datas))

    N, C, H, W = 1, 3, 4, 2
    c = np.random.random((N, C, H, W))
    d = np.random.random((N, C, H, W))
    datas = {l: [c, d]}
    np.allclose(c + d, w.eval(datas))
Esempio n. 23
0
    def __init__(self, X, labels):

        data, label = L.Data([X, labels], "data", batch_size=100)()
        conv1 = L.Conv(data, "conv1", dim_out=20, kernel=5)
        pool1 = L.Pool(conv1, "pool1", pool=L.Pool.MAX, kernel=2, stride=2)
        conv2 = L.Conv(pool1, "conv2", dim_out=50, kernel=5)
        pool2 = L.Pool(conv2, "pool2", pool=L.Pool.MAX, kernel=2, stride=2)
        fc3 = L.FC(pool2, "fc3", dim_out=500)
        relu3 = L.ReLU(fc3, "relu3")
        pred = L.FC(relu3, "pred", dim_out=10)
        loss = L.SoftmaxWithLoss(pred, "loss", label=label)

        # Net Instance
        self.net = mobula.Net()

        # Set Loss Layer
        self.net.set_loss(loss)
Esempio n. 24
0
def test_selu():
    X = ((np.arange(10000) - 5000) / 1000.0).reshape((-1, 1, 1, 1))
    data = L.Data(X, "data")
    data.reshape()
    l = L.SELU(data)
    y = l.eval()
    ty = np.zeros(X.shape)
    ty[X > 0] = l.scale * X[X > 0]
    ty[X <= 0] = l.scale * (l.alpha * np.exp(X[X <= 0]) - l.alpha)
    assert np.allclose(y, ty)
    l.dY = np.random.random(l.Y.shape)
    l.backward()
    dX = np.zeros(X.shape)
    dX[X > 0] = l.scale
    dX[X <= 0] = l.scale * l.alpha * np.exp(X[X <= 0])
    dX *= l.dY
    assert np.allclose(dX, l.dX)
Esempio n. 25
0
def test_saver():
    filename = "tmp.net"

    X = np.random.random((4,2,1,1))
    Y = np.random.random((4, 10))
    x, y = L.Data([X, Y])
    fc = L.FC(x, dim_out = 10) 
    with M.name_scope("mobula"): 
        prelu = L.PReLU(fc)
    loss = L.MSE(prelu, label = y)

    net = M.Net()
    net.set_loss(loss)

    init_params(fc)
    init_params(prelu)
    # save mobula
    M.save_scope(filename, "mobula")

    params_f = clear_params(fc)
    params_p = clear_params(prelu)
    for p in fc.params + prelu.params:
        assert np.isnan(p).all()
    M.load_scope(filename)
    for p in fc.params:
        assert np.isnan(p).all()
    for i, p in enumerate(prelu.params):
        assert np.allclose(p, params_p[i])

    init_params(fc)
    init_params(prelu)
    # save all
    M.save_scope(filename)

    params_f = clear_params(fc)
    params_p = clear_params(prelu)

    for p in fc.params + prelu.params:
        assert np.isnan(p).all()
    M.load_scope(filename)
    for i, p in enumerate(fc.params):
        assert np.allclose(p, params_f[i])
    for i, p in enumerate(prelu.params):
        assert np.allclose(p, params_p[i])
    os.remove(filename)
Esempio n. 26
0
def test_crop():
    X1 = np.arange(3 * 4 * 5 * 5).reshape((3, 4, 5, 5))
    X2 = np.zeros((3, 4, 3, 3))
    [x1, x2] = L.Data([X1, X2], "data")()
    l = L.Crop([x1, x2], "crop", offset=1, axis=2)
    l.reshape()
    l.forward()
    target = X1[:, :, 1:4, 1:4]
    print(target, l.Y)
    assert np.allclose(target, l.Y)
    l.dY = np.arange(l.Y.size).reshape(l.Y.shape)
    l.backward()
    tmp = np.zeros(X1.shape)
    tmp[:, :, 1:4, 1:4] = l.dY
    assert np.allclose(tmp, l.dX)

    l2 = L.Crop([x1, x2], "crop", offset=[1, 1], axis=2)
    assert (l.offset == l2.offset).all()
Esempio n. 27
0
def test_PReLU():
    X = ((np.arange(10000) - 5000) / 1000.0).reshape((-1, 1, 1, 1))
    data = L.Data(X, "data")
    data.reshape()
    l = L.PReLU(data)
    y = l.eval()
    ty = np.zeros(X.shape)
    ty[X > 0] = X[X > 0]
    ty[X <= 0] = l.a * X[X <= 0]
    assert np.allclose(y, ty)
    l.dY = np.random.random(l.Y.shape)
    l.backward()
    dX = np.zeros(X.shape)
    dX[X > 0] = 1
    dX[X <= 0] = l.a
    dX *= l.dY
    print(dX, l.dX)
    assert np.allclose(dX, l.dX)
Esempio n. 28
0
def test_contrastive():
    A = np.array([[1,2,0], [2,1,0]]).astype(np.float)
    B = np.array([[0,1,3], [2,3,1]]).astype(np.float)

    diff = A - B # 2 x 3
    dist_sq = np.sum(np.square(diff), 1).reshape((2,1)) # 2 x 1
    dist = np.sqrt(dist_sq) # 2 x 1

    print ("diff", diff)

    for i in range(2):
        for j in range(2):
            sim = np.array([i, j]).reshape((2, 1))


            data = L.Data([A,B,sim])
            [a,b,s] = data()

            l = L.ContrastiveLoss([a,b,s], "ctr", margin = 6.0)

            print ("sim", s.Y.ravel())
            l.forward()
            l.backward()

            # margin - d
            md = l.margin - dist
            # max(md, 0)
            ma = np.clip(md, 0, np.inf)

            same = (s.Y == 1)

            print ("sha", dist_sq.shape, same.shape)
            sa = dist_sq * same
            sb = np.square(ma) * (1 - same)
            print ("lr", sa, sb)
            target = np.sum(sa + sb) / 2.0 / 2
            print ("t", target, l.Y, target - l.Y)
            assert np.allclose(target, l.Y)

            left = diff / 2.0
            right = -ma / 2.0 * diff / dist
            w = left * same + right * (1.0 - same)
            print ("dx", l.dX[0], w, l.dX[0] - w)
            assert np.allclose(l.dX[0], w)
Esempio n. 29
0
def test_net_saver():
    filename = "tmp.net"

    X = np.random.random((4,2,1,1))
    Y = np.random.random((4, 10))
    x, y = L.Data([X, Y])
    x = L.FC(x, dim_out = 10) 
    with M.name_scope("mobula"): 
        x = L.PReLU(x)
    loss = L.MSE(x, label = y)

    net = M.Net()
    net.set_loss(loss)
    net.lr = 0.01

    for i in range(10):
        net.forward()
        net.backward()

    net.save(filename)
    # random init layers
    lst = M.get_layers("/")
    assert len(lst) == 4 # Data, FC, PReLU, MSE 

    k = 0
    rec = []
    for l in lst:
        for i in range(len(l.params)):
            rec.append(l.params[i])
            l.params[i][...] = None
            k += 1
    assert k == 3 # FC.W, FC.b, PReLU.a 

    for l in lst:
        for i in range(len(l.params)):
            assert np.isnan(l.params[i]).all()

    net.load(filename)
    h = 0
    for l in lst:
        for i in range(len(l.params)):
            assert np.allclose(rec[h], l.params[i])
            h += 1
    os.remove(filename)
Esempio n. 30
0
def test_compare():
    N, C, H, W = 2, 3, 4, 5
    a = np.random.random((N, C, H, W))
    b = np.random.random((N, C, H, W))
    a_copy = a.copy()
    [la, lb, lac] = L.Data([a, b, a_copy])

    ops = [operator.ge, operator.gt, operator.le, operator.lt]
    for op in ops:
        l = op(la, lb)
        l2 = op(la, lac)
        assert np.allclose(l.eval(), op(a, b))
        assert np.allclose(l2.eval(), op(a, a_copy))
        l.backward()
        l2.backward()
        assert np.allclose(l.dX[0], np.zeros(l.X[0].shape))
        assert np.allclose(l.dX[1], np.zeros(l.X[1].shape))
        assert np.allclose(l2.dX[0], np.zeros(l2.X[0].shape))
        assert np.allclose(l2.dX[1], np.zeros(l2.X[1].shape))