Esempio n. 1
0
def printBestFromRankedBF():
    for dim in dimensions:
        for fid in functions:
            print("Results for F{} in {}dim:".format(fid, dim))
            # print(findGivenInRankedBF(dim, 1, given))
            results = getBestFromRankedBF(dim, fid, num=10)
            for ES, rank, fit in results:
                print("Rank: {0:>4}\t{1:>33}\t{2}".format(
                    rank + 1, intToRepr(ES), fit))
            print()
Esempio n. 2
0
def get_default_hyperparameter_values(params, dim, rep, budget=1000):
    """
        Reads the inital hyperparameter values from a single-split CMA-ES

        :param params: list of the required parameters
        :param dim: dimensionality of the problem
        :param rep: the algorithm variant
        :param budget: optional budget (should not change parameter values?)
        :return: the inital hyperparameter values for all keys in params
    """
    alg = SingleSplitCMAES(dim, None, representation=intToRepr(rep),
                           representation2=None, split=None, budget=budget, seed=0)
    return alg.get_default_values(params)
Esempio n. 3
0
def printComparisonGivenInBF(given=None):

    # Add/remove choices as you wish
    if given is None:
        given = default_ESs

    for dim in dimensions:
        for fid in functions:
            print("Results for F{} in {}dim:".format(fid, dim))
            results = findGivenInRankedBF(dim, fid, given)
            for ES in results:
                print("Rank: {0:>4}\t{1:>33}\t{2}".format(
                    ES.rank + 1, intToRepr(ES.ES), ES.fitness))
            print()
Esempio n. 4
0
def printComparisonTable(given=None):
    # Add/remove choices as you wish
    if given is None:
        given = default_ESs

    os.chdir(ga_location)
    with open('ga_results.dat') as f:
        ga_results = cPickle.load(f)

    print('\\hline')
    print(
        'F-ID & N & Brute Force & ERT & FCE & GA & ERT & FCE & Relative \\\\')
    print('\\hline')
    print('\\hline')

    for fid in functions:
        for dim in dimensions:
            results = findGivenInRankedBF(dim, fid, given)
            results.sort(key=lambda a: a.rank)

            bf_string = reprToString(intToRepr(results[0].ES))
            bf_ERT = "{:>9.6g}".format(
                results[0].fitness.ERT
            ) if results[0].fitness.ERT is not None else "      N/A"
            bf_FCE = results[0].fitness.FCE

            ga_string = reprToString(ga_results[dim][fid].ES[:11])
            ga_ERT = "{:>9.6g}".format(
                ga_results[dim][fid].fitness.ERT
            ) if ga_results[dim][fid].fitness.ERT is not None else "      N/A"
            ga_FCE = ga_results[dim][fid].fitness.FCE

            if results[0].fitness.ERT is not None:
                relative_fitness = results[0].fitness.ERT / ga_results[dim][
                    fid].fitness.ERT
            else:
                relative_fitness = results[0].fitness.FCE / ga_results[dim][
                    fid].fitness.FCE

            print(
                'F{0:<2} & {1:>2} & {2} & {3} & {4:>9.4g} & {5} & {6} & {7:>9.4g} & {8:>8.3g} \\\\'
                .format(fid, dim, bf_string, bf_ERT, bf_FCE, ga_string, ga_ERT,
                        ga_FCE, relative_fitness))
        print('\\hline')
Esempio n. 5
0
def printRelativeComparisonBestGAAndGivenBF(given=None):

    # Add/remove choices as you wish
    if given is None:
        given = default_ESs

    os.chdir(ga_location)
    with open('ga_results.dat') as f:
        ga_results = cPickle.load(f)

    all_relatives = []
    relatives = {i: [] for i in range(len(default_ESs))}
    counts = [0] * len(default_ESs)
    for dim in dimensions:
        for fid in functions:
            print("Results for F{} in {}dim:".format(fid, dim))
            results = findGivenInRankedBF(dim, fid, given)
            ranks = []
            for i, ES in enumerate(results):
                if ES.fitness.ERT is not None:
                    relative_fitness = ES.fitness.ERT / ga_results[dim][
                        fid].fitness.ERT
                    relatives[i].append(relative_fitness)
                elif ga_results[dim][
                        fid].fitness.ERT is not None and ga_results[dim][
                            fid].fitness.FCE > ES.fitness.FCE:
                    relative_fitness = "Unclear???"
                else:
                    relative_fitness = ES.fitness.FCE / ga_results[dim][
                        fid].fitness.FCE
                all_relatives.append(relative_fitness)
                ranks.append(ES.rank)
                print("Rank: {0:>4}\t{1:>33}\t{2}".format(
                    ES.rank + 1, intToRepr(ES.ES), relative_fitness))
            for i, rank in enumerate(ranks):
                if rank == min(ranks):
                    counts[i] += 1
            print()

    print(all_relatives)
    print(relatives)
    print(counts)
Esempio n. 6
0
 def test_int_to_repr(self):
     for rep in self.reps:
         self.assertEqual(intToRepr(rep.integer), rep.representation)