Esempio n. 1
0
 def test_return_batch_norm_params_with_notrain_when_train_is_false(self):
   conv_hyperparams_text_proto = """
     regularizer {
       l2_regularizer {
       }
     }
     initializer {
       truncated_normal_initializer {
       }
     }
     batch_norm {
       decay: 0.7
       center: false
       scale: true
       epsilon: 0.03
       train: false
     }
   """
   conv_hyperparams_proto = hyperparams_pb2.Hyperparams()
   text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto)
   scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True)
   conv_scope_arguments = list(scope.values())[0]
   self.assertEqual(conv_scope_arguments['normalizer_fn'], layers.batch_norm)
   batch_norm_params = conv_scope_arguments['normalizer_params']
   self.assertAlmostEqual(batch_norm_params['decay'], 0.7)
   self.assertAlmostEqual(batch_norm_params['epsilon'], 0.03)
   self.assertFalse(batch_norm_params['center'])
   self.assertTrue(batch_norm_params['scale'])
   self.assertFalse(batch_norm_params['is_training'])
Esempio n. 2
0
 def test_default_arg_scope_has_conv2d_transpose_op(self):
   conv_hyperparams_text_proto = """
     regularizer {
       l1_regularizer {
       }
     }
     initializer {
       truncated_normal_initializer {
       }
     }
   """
   conv_hyperparams_proto = hyperparams_pb2.Hyperparams()
   text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto)
   scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True)
   self.assertTrue(self._get_scope_key(layers.conv2d_transpose) in scope)
Esempio n. 3
0
 def test_explicit_fc_op_arg_scope_has_fully_connected_op(self):
   conv_hyperparams_text_proto = """
     op: FC
     regularizer {
       l1_regularizer {
       }
     }
     initializer {
       truncated_normal_initializer {
       }
     }
   """
   conv_hyperparams_proto = hyperparams_pb2.Hyperparams()
   text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto)
   scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True)
   self.assertTrue(self._get_scope_key(layers.fully_connected) in scope)
Esempio n. 4
0
 def test_separable_conv2d_and_conv2d_and_transpose_have_same_parameters(self):
   conv_hyperparams_text_proto = """
     regularizer {
       l1_regularizer {
       }
     }
     initializer {
       truncated_normal_initializer {
       }
     }
   """
   conv_hyperparams_proto = hyperparams_pb2.Hyperparams()
   text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto)
   scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True)
   kwargs_1, kwargs_2, kwargs_3 = scope.values()
   self.assertDictEqual(kwargs_1, kwargs_2)
   self.assertDictEqual(kwargs_1, kwargs_3)
Esempio n. 5
0
 def test_use_relu_6_activation(self):
   conv_hyperparams_text_proto = """
     regularizer {
       l2_regularizer {
       }
     }
     initializer {
       truncated_normal_initializer {
       }
     }
     activation: RELU_6
   """
   conv_hyperparams_proto = hyperparams_pb2.Hyperparams()
   text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto)
   scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True)
   conv_scope_arguments = list(scope.values())[0]
   self.assertEqual(conv_scope_arguments['activation_fn'], tf.nn.relu6)
Esempio n. 6
0
 def test_do_not_use_batch_norm_if_default(self):
   conv_hyperparams_text_proto = """
     regularizer {
       l2_regularizer {
       }
     }
     initializer {
       truncated_normal_initializer {
       }
     }
   """
   conv_hyperparams_proto = hyperparams_pb2.Hyperparams()
   text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto)
   scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True)
   conv_scope_arguments = list(scope.values())[0]
   self.assertEqual(conv_scope_arguments['normalizer_fn'], None)
   self.assertEqual(conv_scope_arguments['normalizer_params'], None)
Esempio n. 7
0
 def test_variance_in_range_with_truncated_normal_initializer(self):
   conv_hyperparams_text_proto = """
     regularizer {
       l2_regularizer {
       }
     }
     initializer {
       truncated_normal_initializer {
         mean: 0.0
         stddev: 0.8
       }
     }
   """
   conv_hyperparams_proto = hyperparams_pb2.Hyperparams()
   text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto)
   scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True)
   conv_scope_arguments = list(scope.values())[0]
   initializer = conv_scope_arguments['weights_initializer']
   self._assert_variance_in_range(initializer, shape=[100, 40],
                                  variance=0.49, tol=1e-1)
Esempio n. 8
0
 def test_variance_in_range_with_variance_scaling_initializer_uniform(self):
   conv_hyperparams_text_proto = """
     regularizer {
       l2_regularizer {
       }
     }
     initializer {
       variance_scaling_initializer {
         factor: 2.0
         mode: FAN_IN
         uniform: true
       }
     }
   """
   conv_hyperparams_proto = hyperparams_pb2.Hyperparams()
   text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto)
   scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True)
   conv_scope_arguments = list(scope.values())[0]
   initializer = conv_scope_arguments['weights_initializer']
   self._assert_variance_in_range(initializer, shape=[100, 40],
                                  variance=2. / 100.)
Esempio n. 9
0
 def test_return_l1_regularized_weights(self):
   conv_hyperparams_text_proto = """
     regularizer {
       l1_regularizer {
         weight: 0.5
       }
     }
     initializer {
       truncated_normal_initializer {
       }
     }
   """
   conv_hyperparams_proto = hyperparams_pb2.Hyperparams()
   text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams_proto)
   scope = hyperparams_builder.build(conv_hyperparams_proto, is_training=True)
   conv_scope_arguments = list(scope.values())[0]
   regularizer = conv_scope_arguments['weights_regularizer']
   weights = np.array([1., -1, 4., 2.])
   with self.test_session() as sess:
     result = sess.run(regularizer(tf.constant(weights)))
   self.assertAllClose(np.abs(weights).sum() * 0.5, result)