Esempio n. 1
0
    def __init__(self, config: HiDDenConfiguration):
        super(Encoder, self).__init__()
        self.H = config.H
        self.W = config.W
        self.conv_channels = config.encoder_channels
        self.num_blocks = config.encoder_blocks
        self.cover_dependent = config.cover_dependent
        # self.residual = config.residual

        if self.cover_dependent == 1:
            layers = [ConvBNRelu(3, self.conv_channels)]
        else:
            layers = [ConvBNRelu(config.message_length, self.conv_channels)]

        for _ in range(config.encoder_blocks - 1):
            layer = ConvBNRelu(self.conv_channels, self.conv_channels)
            layers.append(layer)

        self.conv_layers = nn.Sequential(*layers)
        if self.cover_dependent == 1:
            self.after_concat_layer = ConvBNRelu(
                self.conv_channels + 3 + config.message_length,
                self.conv_channels)
        else:
            self.after_concat_layer = ConvBNRelu(config.message_length,
                                                 self.conv_channels)

        self.final_layer = nn.Conv2d(self.conv_channels, 3, kernel_size=1)
        self.final_tanh = nn.Tanh()
        self.factor = 10 / 255
Esempio n. 2
0
    def __init__(self, config: HiDDenConfiguration):
        super(Discriminator, self).__init__()

        layers = [ConvBNRelu(3, config.discriminator_channels)]
        for _ in range(config.discriminator_blocks-1):
            layers.append(ConvBNRelu(config.discriminator_channels, config.discriminator_channels))

        layers.append(nn.AdaptiveAvgPool2d(output_size=(1, 1)))
        self.before_linear = nn.Sequential(*layers)
        self.linear = nn.Linear(config.discriminator_channels, 1)
Esempio n. 3
0
    def __init__(self, config: HiDDenConfiguration):
        super(Encoder, self).__init__()
        self.conv_channels = config.encoder_channels
        self.num_blocks = config.encoder_blocks

        layers = [ConvBNRelu(config.input_channels, self.conv_channels)]

        for _ in range(config.encoder_blocks-1):
            layer = ConvBNRelu(self.conv_channels, self.conv_channels)
            layers.append(layer)

        self.conv_layers = nn.Sequential(*layers)
        self.after_concat_layer = ConvBNRelu(self.conv_channels + config.input_channels + config.message_length, self.conv_channels)
        self.final_layer = nn.Conv2d(self.conv_channels, config.input_channels, kernel_size=1)
Esempio n. 4
0
    def __init__(self, config: HiDDenConfiguration):
        super().__init__()
        self.channels = config.decoder_channels
        self.num_blocks = config.decoder_blocks

        layers = [ConvBNRelu(3, self.channels)]
        for _ in range(self.num_blocks - 1):
            layer = ConvBNRelu(self.channels, self.channels)
            layers.append(layer)
        layers.append(ConvBNRelu(self.channels, config.message_length))
        layers.append(nn.AdaptiveAvgPool2d(output_size=(1, 1)))
        self.layers = nn.Sequential(*layers)

        self.linear = nn.Linear(config.message_length, config.message_length)