Esempio n. 1
0
def main():
    # create instance of config,这里的config实现了load data的作用
    #拥有词表、glove训练好的embeddings矩阵、str->id的function
    config = Config()

    # build model
    model = NERModel(config)
    model.build("train")

    # model.restore_session("results/crf/model.weights/") # optional, restore weights
    # model.reinitialize_weights("proj")

    # create datasets [(char_ids), word_id]
    # processing_word = get_processing_word(lowercase=True)
    dev = CoNLLDataset(config.filename_dev)
    train = CoNLLDataset(config.filename_train)
    test = CoNLLDataset(config.filename_test)

    train4cl = CoNLLdata4classifier(train,
                                    processing_word=config.processing_word,
                                    processing_tag=config.processing_tag)
    dev4cl = CoNLLdata4classifier(dev,
                                  processing_word=config.processing_word,
                                  processing_tag=config.processing_tag)
    test4cl = CoNLLdata4classifier(test,
                                   processing_word=config.processing_word,
                                   processing_tag=config.processing_tag)

    # train model
    model.train(train4cl, dev4cl, test4cl)
Esempio n. 2
0
def main():
    # create instance of config
    config = Config()

    # build model
    model = NERModel(config)
    model.build("train")
    model.restore_session(config.dir_model)

    # create dataset
    processing_word = get_processing_word(lowercase=True)

    if len(sys.argv) == 2:
        if sys.argv[1] == 'test':
            test = CoNLLDataset(config.filename_test, processing_word)

        elif sys.argv[1] == 'dev':
            test = CoNLLDataset(config.filename_dev, processing_word)

    else:
        assert len(sys.argv) == 1
        test = CoNLLDataset(config.filename_test, processing_word)

    test4cl = CoNLLdata4classifier(test, processing_word=config.processing_word,
                                   processing_tag=config.processing_tag)

    # evaluate and interact
    model.evaluate(test4cl)
def main():
    # create instance of config,这里的config实现了load data的作用
    #拥有词表、glove训练好的embeddings矩阵、str->id的function
    config = Config()
    config.nepochs = 200
    config.dropout = 0.5
    config.batch_size = 60
    config.lr_method = "adam"
    config.lr = 0.0005
    config.lr_decay = 1.0
    config.clip = -2.0  # if negative, no clipping
    config.nepoch_no_imprv = 8

    config.dir_model = config.dir_output + "model.finetuning.weights/"

    # build model
    model = NERModel(config)
    model.build("fine_tuning")
    model.restore_session("results/test/model.weights/",
                          indicate="fine_tuning")

    # model.restore_session("results/crf/model.weights/") # optional, restore weights
    # model.reinitialize_weights("proj")

    # create datasets [(char_ids), word_id]
    # processing_word = get_processing_word(lowercase=True)
    dev = CoNLLDataset(config.filename_dev)
    train = CoNLLDataset(config.filename_train)
    test = CoNLLDataset(config.filename_test)

    # train model

    train4cl = CoNLLdata4classifier(train,
                                    processing_word=config.processing_word,
                                    processing_tag=config.processing_tag,
                                    context_length=config.context_length)
    dev4cl = CoNLLdata4classifier(dev,
                                  processing_word=config.processing_word,
                                  processing_tag=config.processing_tag,
                                  context_length=config.context_length)
    test4cl = CoNLLdata4classifier(test,
                                   processing_word=config.processing_word,
                                   processing_tag=config.processing_tag,
                                   context_length=config.context_length)

    model.train(train4cl, dev4cl, test4cl)