Esempio n. 1
0
def addDisease():
    # html文件修改为新建题目的文件
    if request.method == "GET":
        return render_template("提交疾病.html")
    elif request.method == "POST":
        req = request.values
        # 暂时略过合法性检测
        diseaseName = req['diseaseName']
        categoryName = req['categoryName']
        diseaseNameD = Disease.query.filter_by(diseaseName=diseaseName).first()
        if diseaseNameD:
            return ops_renderErrJSON(msg="相同名字已存在,请再换一个试试")
        # 注册写入数据库
        model_disease = Disease()
        model_disease.diseaseName = diseaseName
        model_disease.categoryName = categoryName
        db.session.add(model_disease)
        db.session.commit()
        # json化data
        temp = {}
        temp["diseaseName"] = diseaseName
        temp["categoryName"] = categoryName
        data = []
        data.append(temp)
        return ops_renderJSON(msg="添加成功", data=data)
    return "添加成功"
Esempio n. 2
0
def get_common_genes(disease_pairs, networks, writing_files):
    new_networks = []
    for index, disease_pair in enumerate(disease_pairs):
        network = networks[index]
        d1_genes, d2_genes = get_genes(disease_pair)
        common_genes = d1_genes.intersection(d2_genes)
        d1 = Disease([disease_pair[0]], [])
        network.add_node(d1)
        d2 = Disease([disease_pair[1]], [])
        network.add_node(d2)
        for g_id in common_genes:
            gene = Gene([g_id], [])
            network.add_node(gene)
            network.add_edge(Edge(gene, d1, 'ASSOCIATES_WITH', {}))
            network.add_edge(Edge(gene, d2, 'ASSOCIATES_WITH', {}))
        if len(common_genes) > 0 and writing_files:
            temp_id1 = disease_pair[0].replace(':', '-')
            temp_id2 = disease_pair[1].replace(':', '-')
            path = '../analysis/disease_pairs/' + temp_id1 + '_' + temp_id2
            try:
                os.mkdir(path)
            except FileExistsError:
                pass
            with io.open(path + '/' + temp_id1 + '_' + temp_id2 + '_common_genes.tsv', 'w', encoding='utf-8', newline='') as common_genes_file:
                common_genes_file.write('#Common genes of ' + disease_pair[0] + ' and ' + disease_pair[1] + '\n')
                for gene in common_genes:
                    common_genes_file.write(gene + '\n')
        new_networks.append(network)
    print('Done getting genes')
    return new_networks
Esempio n. 3
0
def get_common_variants(disease_pairs, networks, writing_files):
    new_networks = []
    for index, disease_pair in enumerate(disease_pairs):
        network = networks[index]
        d1 = Disease([disease_pair[0]], [])
        network.add_node(d1)
        d2 = Disease([disease_pair[1]], [])
        network.add_node(d2)

        common_variants = []    # each variant is an array
        query = """ MATCH (d1:Disease)--(v:Variant)--(d2:Disease) WHERE {d1_id} in d1.ids AND {d2_id} in d2.ids RETURN v.`_id` """
        results = session.run(query, parameters={'d1_id': disease_pair[0], 'd2_id': disease_pair[1]})
        for result in results:
            v_id = result['v.`_id`']
            common_variants.append([v_id, 'disease associated'])
            variant = Variant([v_id], [])
            network.add_node(variant)
            network.add_edge(Edge(d1, variant, 'ASSOCIATES_WITH', {}))
            network.add_edge(Edge(d2, variant, 'ASSOCIATES_WITH', {}))

        # variants associated to common genes
        d1_genes, d2_genes = get_genes(disease_pair)
        common_genes_ids = d1_genes.intersection(d2_genes)
        for gene_id in common_genes_ids:
            query = """ MATCH (g:Gene)-[a]-(v:Variant) WHERE {g_id} in g.ids RETURN v.`_id`, type(a) """
            results = session.run(query, parameters={'g_id': gene_id})
            for result in results:
                v_id = result['v.`_id`']
                type = result['type(a)']    # can be CODES or EQTL
                variant_pair = v_id + '-' + gene_id
                common_variants.append([variant_pair, 'gene associated'])
                variant = Variant([v_id], [])
                network.add_node(variant)
                gene = Gene([gene_id], [])
                network.add_node(gene)
                network.add_edge(Edge(gene, variant, type, {}))
                network.add_edge(Edge(gene, d1, 'ASSOCIATES_WITH', {}))
                network.add_edge(Edge(gene, d2, 'ASSOCIATES_WITH', {}))

        new_networks.append(network)

        if len(common_variants) > 0 and writing_files:
            temp_id1 = disease_pair[0].replace(':', '-')
            temp_id2 = disease_pair[1].replace(':', '-')
            path = '../analysis/disease_pairs/' + temp_id1 + '_' + temp_id2
            try:
                os.mkdir(path)
            except FileExistsError:
                pass
            with io.open(path + '/' + temp_id1 + '_' + temp_id2 + '_common_variants.tsv', 'w', encoding='utf-8',
                         newline='') as common_variants_file:
                common_variants_file.write(
                    '#Common variants associated with ' + disease_pair[0] + ' and ' + disease_pair[1] + '\n')
                for variant in common_variants:
                    common_variants_file.write(variant[0] + '\t' + variant[1] + '\n')
    print('Done getting variants')
    return new_networks
Esempio n. 4
0
def get_given_drugs_related_info(disease_pairs, drugs):   # first disease pair with first drug array
    all_networks = []   # contains an array for each disease pair
    for index, disease_pair in enumerate(disease_pairs):
        networks_per_drug = []  # contains a network for each drug
        pair_drugs_ids = drugs[index]
        temp_id1 = disease_pair[0].replace(':', '-')
        temp_id2 = disease_pair[1].replace(':', '-')
        path = '../analysis/disease_pairs/' + temp_id1 + '_' + temp_id2
        for drug_id in pair_drugs_ids:
            try:
                os.mkdir(path)
            except FileExistsError:
                pass

            network = Network()
            d1 = Disease([disease_pair[0]], [])
            network.add_node(d1)
            d2 = Disease([disease_pair[1]], [])
            network.add_node(d2)
            drug = Drug([drug_id], [])
            network.add_node(drug)
            temp_drug_id = drug_id.replace(':', '-')
            with io.open(path + '/' + temp_id1 + '_' + temp_id2 + '_' + temp_drug_id + '_results.txt', 'w', encoding='utf-8', newline='') as results_file:
                results_file.write('In this file all information about the connection between ' + disease_pair[0] +
                                   ' and ' + disease_pair[1] + ' and the drug ' + drug_id + ' is summarized:\n')

                # the drug INDICATES, CONTRAINDICATES or INDUCES the disease
                query = """ MATCH (d:Disease)-[a]-(n:Drug) WHERE {d1_id} IN d.ids AND {n_id} in n.ids RETURN distinct(type(a)) """
                d1_results = session.run(query, parameters={'d1_id': disease_pair[0], 'n_id': drug_id})
                for result in d1_results:
                    results_file.write(drug_id + ' ' + result['(type(a))'] + ' ' + disease_pair[0] + '\n')
                    network.add_edge(Edge(drug, d1, result['(type(a))'], {}))
                query = """ MATCH (d:Disease)-[a]-(n:Drug) WHERE {d2_id} IN d.ids AND {n_id} in n.ids RETURN distinct(type(a)) """
                d2_results = session.run(query, parameters={'d2_id': disease_pair[1], 'n_id': drug_id})
                for result in d2_results:
                    results_file.write(drug_id + ' ' + result['(type(a))'] + ' ' + disease_pair[1] + '\n')
                    network.add_edge(Edge(drug, d2, result['(type(a))'], {}))

                # the drug targets a gene which is associated to the disease
                d1_genes = set()
                query = """ MATCH (n:Drug)-[:TARGETS]-(g:Gene)-[:ASSOCIATES_WITH]-(d:Disease) WHERE {d1_id} IN d.ids AND {n_id} in n.ids RETURN g.`_id` """
                d1_results = session.run(query, parameters={'d1_id': disease_pair[0], 'n_id': drug_id})
                for gene in d1_results:
                    d1_genes.add(gene['g.`_id`'])
                    g = Gene([gene['g.`_id`']], [])
                    network.add_node(g)
                    network.add_edge(Edge(drug, g, 'TARGETS', {'actions': []})) #TODO
                    network.add_edge(Edge(g, d1, 'ASSOCIATES_WITH', {}))
                d2_genes = set()
                query = """ MATCH (n:Drug)-[:TARGETS]-(g:Gene)-[:ASSOCIATES_WITH]-(d:Disease) WHERE {d2_id} IN d.ids AND {n_id} in n.ids RETURN g.`_id` """
                d2_results = session.run(query, parameters={'d2_id': disease_pair[1], 'n_id': drug_id})
                for gene in d2_results:
                    d2_genes.add(gene['g.`_id`'])
                    g = Gene([gene['g.`_id`']], [])
                    network.add_node(g)
                    network.add_edge(Edge(drug, g, 'TARGETS', {'actions': []})) #TODO
                    network.add_edge(Edge(g, d2, 'ASSOCIATES_WITH', {}))

                common_drug_genes = d1_genes.intersection(d2_genes) # genes associated to the drug and both diseases
                # relevant_genes are all genes associated to at least one disease and the drug, below the common genes
                # with the most disease associated references are added
                relevant_genes = d1_genes.union(d2_genes)
                if len(d1_genes) > 0:
                    nbr = str(len(d1_genes))
                    d1_genes = str(d1_genes)
                    d1_genes = d1_genes.replace('{', '')
                    d1_genes = d1_genes.replace('}', '')
                    d1_genes = d1_genes.replace('\'', '')
                    results_file.write(drug_id + ' targets following ' + nbr + ' genes which are associated to ' + disease_pair[0] + ': ' + d1_genes + '\n')
                if len(d2_genes) > 0:
                    nbr = str(len(d2_genes))
                    d2_genes = str(d2_genes)
                    d2_genes = d2_genes.replace('{', '')
                    d2_genes = d2_genes.replace('}', '')
                    d2_genes = d2_genes.replace('\'', '')
                    results_file.write(drug_id + ' targets following ' + nbr + ' genes which are associated to ' + disease_pair[1] + ': ' + d2_genes + '\n')
                if len(common_drug_genes) > 0:
                    nbr = str(len(common_drug_genes))
                    cdgs = str(common_drug_genes)
                    cdgs = cdgs.replace('{', '')
                    cdgs = cdgs.replace('}', '')
                    cdgs = cdgs.replace('\'', '')
                    results_file.write('The disease pair has ' + nbr + ' common genes which are targeted by the drug: ' + cdgs + '\n')

                # add the common genes with the most disease associated references
                # no given num_pmids is similar to num_pmids = 0
                all_d1_genes, all_d2_genes = get_genes(disease_pair)
                all_common_genes = all_d1_genes.intersection(all_d2_genes)
                relevant_common_genes = []  # the genes with the most cited gene-disease association, threshold 10
                if len(all_common_genes) > 0:
                    results_file.write('The disease pair has ' + str(len(all_common_genes)) + ' common genes, not considering the connection to the drug.'
                                        ' Following genes have the most references regarding their connection to both diseases:\n')
                    for gene in all_common_genes:
                        query = """ MATCH (d1:Disease)-[a]-(g:Gene) WHERE {g_id} IN g.ids AND {d1_id} IN d1.ids RETURN a.num_pmids """
                        results = session.run(query, parameters={'g_id': gene, 'd1_id': disease_pair[0]})
                        num_pmids = 0
                        for result in results:  # multiple edges to the same gene
                            temp = result['a.num_pmids']
                            if temp is not None:
                                num_pmids = num_pmids + temp
                        query = """ MATCH (d2:Disease)-[a]-(g:Gene) WHERE {g_id} IN g.ids AND {d2_id} IN d2.ids RETURN a.num_pmids """
                        results = session.run(query, parameters={'g_id': gene, 'd2_id': disease_pair[1]})
                        for result in results:  # multiple edges to the same gene
                            temp = result['a.num_pmids']
                            if temp is not None:
                                num_pmids = num_pmids + temp
                        relevant_common_genes.append([gene, num_pmids])
                    # sort by number of pmids
                    relevant_common_genes = sorted(relevant_common_genes, key=lambda item: item[1], reverse=True)
                    relevant_common_genes = relevant_common_genes[:10]  # threshold
                    rcgs = str(relevant_common_genes)
                    rcgs = rcgs[1:-1]
                    rcgs = rcgs.replace('\'', '')
                    results_file.write(rcgs + '\n')
                    for g in relevant_common_genes:
                        gene = Gene([g[0]], [])
                        network.add_node(gene)
                        network.add_edge(Edge(gene, d1, 'ASSOCIATES_WITH', {}))
                        network.add_edge(Edge(gene, d2, 'ASSOCIATES_WITH', {}))
                        relevant_genes.add(g[0])

                # add the common disease associated variants with most references
                # no given num_pmids is similar to num_pmids = 0
                disease_variants = {}
                query = """ MATCH (d1:Disease)-[a]-(v:Variant)--(d2:Disease) WHERE {d1_id} in d1.ids AND {d2_id} in d2.ids RETURN distinct(a.num_pmids), v.`_id` """
                results = session.run(query, parameters={'d1_id': disease_pair[0], 'd2_id': disease_pair[1]})
                for variant in results:
                    num_pmids = variant['(a.num_pmids)']
                    if num_pmids is None:
                        num_pmids = 0
                    var_id = variant['v.`_id`']
                    if var_id in disease_variants:
                        temp = disease_variants[var_id]
                        disease_variants[var_id] = temp + num_pmids
                    else:
                        disease_variants[var_id] = num_pmids
                query = """ MATCH (d2:Disease)-[a]-(v:Variant)--(d1:Disease) WHERE {d1_id} in d1.ids AND {d2_id} in d2.ids RETURN distinct(a.num_pmids), v.`_id` """
                results = session.run(query, parameters={'d1_id': disease_pair[0], 'd2_id': disease_pair[1]})
                for variant in results:
                    num_pmids = variant['(a.num_pmids)']
                    if num_pmids is None:
                        num_pmids = 0
                    var_id = variant['v.`_id`']
                    if var_id in disease_variants:
                        temp = disease_variants[var_id]
                        disease_variants[var_id] = temp + num_pmids
                    else:
                        disease_variants[var_id] = num_pmids
                dvs = ''
                i = 0
                for key, value in sorted(disease_variants.items(), key=lambda item: item[1], reverse=True):
                    if i < 9:   # threshold
                        num_pmids = disease_variants[key]
                        variant = Variant([key], [])
                        network.add_node(variant)
                        network.add_edge(Edge(variant, d1, 'ASSOCIATES_WITH', {}))
                        network.add_edge(Edge(variant, d2, 'ASSOCIATES_WITH', {}))
                        dvs = dvs + key + ':' + str(num_pmids) + ' PMIDs, '
                        i += 1
                dvs = dvs[:-2]

                # add the gene associated variants with smallest pvalues
                # if no pvalue is given, pvalue is set to 1
                gene_variants = []
                for gene in relevant_genes:
                    query = """ MATCH (g:Gene)-[a]-(v:Variant) WHERE {g_id} in g.ids RETURN v.`_id`, a.pvalue, type(a) """
                    results = session.run(query, parameters={'g_id': gene})
                    for variant in results:
                        pvalue = variant['a.pvalue']
                        if pvalue is None:
                            pvalue = 1
                        else:
                            pvalue = float(pvalue)
                        gene_variants.append([variant['v.`_id`'] + '-' + gene, pvalue, variant['type(a)']])
                gene_variants = sorted(gene_variants, key=lambda item: item[1])
                gene_variants = gene_variants[:10]  # threshold
                for v in gene_variants:
                    temp = v[0].split('-')
                    v_id = temp[0]
                    g_id = temp[1]
                    variant = Variant([v_id], [])
                    network.add_node(variant)
                    gene = Gene([g_id], [])
                    network.add_node(gene)
                    network.add_edge(Edge(gene, variant, v[2], {'pvalue': v[1]}))
                if len(gene_variants) > 0:
                    gvs = str(gene_variants)
                    gvs = gvs[1:-1]
                    gvs = gvs.replace('\'', '')
                else:
                    gvs = ''

                if len(disease_variants) > 0 or len(gene_variants) > 0:
                    results_file.write('The disease pair has at least ' + str(i) + ' variants associated to both diseases: ' +
                                           dvs + ' and at least ' + str(len(gene_variants)) + ' gene associated variants: ' + gvs + '\n')

                # dict with RNA name as key and an array as value
                # first array position is the number of regulated genes, second position is an array with the gene names
                relevant_rnas = {}
                for gene in relevant_genes:
                    query = """ MATCH (r:RNA)--(g:Gene) WHERE {g_id} in g.ids AND NOT r.label_id CONTAINS "MRNA" return r.`_id` """
                    results = session.run(query, parameters={'g_id': gene})
                    for result in results:
                        key = result['r.`_id`']
                        if key in relevant_rnas:
                            value = relevant_rnas[key]
                            genes = value[1]
                            if gene not in genes:
                                genes.add(gene)
                                relevant_rnas[key] = [value[0] + 1, genes]
                        else:
                            genes = set()
                            genes.add(gene)
                            relevant_rnas[key] = [1, genes]

                if len(relevant_rnas) > 0:
                    i = 0
                    for key, value in sorted(relevant_rnas.items(), key=lambda item: item[1], reverse=True):
                    # sort by the number of regulated genes
                        if i > 9:   # threshold
                            break
                        elif value[0] > 1:  # only add and print RNAs which regulate more than one gene
                            if i == 0:
                                results_file.write('RNAs with the number and names of the genes they regulate: \n')
                            rna_id = key
                            for gene_id in value[1]:
                                rna = RNA([rna_id], [])
                                network.add_node(rna)
                                gene = Gene([gene_id], [])
                                network.add_node(gene)
                                network.add_edge(Edge(rna, gene, 'REGULATES', {}))
                            regulated_genes = str(value[1])
                            regulated_genes = regulated_genes[1:-1]
                            regulated_genes = regulated_genes.replace('\'', '')
                            results_file.write(rna_id + '\t' + str(value[0]) + '\t' + regulated_genes + '\n')
                            i += 1

                    # append regulating RNAs to one RNA which regulates the most genes, MRNAs are not added
                    for key, value in sorted(relevant_rnas.items(), key=lambda item: item[1], reverse=True):
                        if value[0] > 1:
                            most_relevant_rna = RNA([key], [])
                            network.add_node(most_relevant_rna)
                            query = """ MATCH (r:RNA)--(n:RNA) WHERE {r_id} in r.ids AND NOT n.label_id CONTAINS "MRNA" RETURN n.`_id`, labels(n) """
                            results = session.run(query, parameters={'r_id': key})
                            reg_rnas = ''
                            for result in results:
                                rna_id = result['n.`_id`']
                                types = result['labels(n)']
                                for type in types:
                                    if type != 'RNA':
                                        if type == 'CircRNA':
                                            rna = CircRNA([rna_id], [])
                                        if type == 'ERNA':
                                            rna = ERNA([rna_id], [])
                                        if type == 'LncRNA':
                                            rna = LncRNA([rna_id], [])
                                        if type == 'MiRNA':
                                            rna = MiRNA([rna_id], [])
                                        if type == 'NcRNA':
                                            rna = NcRNA([rna_id], [])
                                        if type == 'PiRNA':
                                            rna = PiRNA([rna_id], [])
                                        if type == 'Pseudogene':
                                            rna = Pseudogene([rna_id], [])
                                        if type == 'Ribozyme':
                                            rna = Ribozyme([rna_id], [])
                                        if type == 'RRNA':
                                            rna = RRNA([rna_id], [])
                                        if type == 'ScaRNA':
                                            rna = ScaRNA([rna_id], [])
                                        if type == 'ScRNA':
                                            rna = ScRNA([rna_id], [])
                                        if type == 'SnoRNA':
                                            rna = SnoRNA([rna_id], [])
                                        if type == 'SnRNA':
                                            rna = SnRNA([rna_id], [])
                                        network.add_node(rna)
                                        network.add_edge(Edge(rna, most_relevant_rna, 'REGULATES', {}))
                                        reg_rnas = reg_rnas + rna_id + ', '
                            reg_rnas = reg_rnas[:-2]
                            results_file.write(key + ' is the RNA which regulates the most genes in this subgraph. It is regulated by ' + reg_rnas + '.\n')
                        break
            json_file = path + '/' + temp_id1 + '_' + temp_id2 + '_' + temp_drug_id + '_graph.json'
            network.save(json_file)
            draw_drug_subgraph(json_file)
            networks_per_drug.append(network)
        all_networks.append(networks_per_drug)
    return all_networks
Esempio n. 5
0
def get_common_rnas(disease_pairs, networks, writing_files):
    new_networks = []
    for index, disease_pair in enumerate(disease_pairs):
        network = networks[index]
        d1 = Disease([disease_pair[0]], [])
        network.add_node(d1)
        d2 = Disease([disease_pair[1]], [])
        network.add_node(d2)

        d1_genes_ids, d2_genes_ids = get_genes(disease_pair)

        # this differentiation is done to get the correct number of regulated, in this subgraph present genes
        d1_only_genes_ids = d1_genes_ids.difference(d2_genes_ids)
        d2_only_genes_ids = d2_genes_ids.difference(d1_genes_ids)
        common_genes_ids = d1_genes_ids.intersection(d2_genes_ids)

        common_rnas = {}    #dict with the RNA name as key and the regulated genes as an array as value
        for gene_id in common_genes_ids:
            query = """ MATCH (g:Gene)-[:REGULATES]-(r:RNA) WHERE {gene_id} IN g.ids RETURN distinct(r.`_id`) """
            results = session.run(query, parameters={'gene_id': gene_id})
            for result in results:
                rna_id = result['(r.`_id`)']
                if rna_id in common_rnas:
                    gene_ids = common_rnas[rna_id]
                    gene_ids.append(gene_id)
                    common_rnas[rna_id] = gene_ids
                else:
                    common_rnas[rna_id] = [gene_id]
                    gene = Gene([gene_id], [])
                    network.add_node(gene)
                    rna = RNA([rna_id], [])
                    network.add_node(rna)
                    network.add_edge(Edge(rna, gene, 'REGULATES', {}))
                    network.add_edge(Edge(gene, d1, 'ASSOCIATES_WITH', {}))
                    network.add_edge(Edge(gene, d2, 'ASSOCIATES_WITH', {}))

        rnas_d1_only_genes = {}
        for gene_id in d1_only_genes_ids:
            query = """ MATCH (g:Gene)-[:REGULATES]-(r:RNA) WHERE {gene_id} IN g.ids RETURN distinct(r.`_id`) """
            results = session.run(query, parameters={'gene_id': gene_id})
            for result in results:
                rna_id = result['(r.`_id`)']
                if rna_id in rnas_d1_only_genes:
                    gene_ids = rnas_d1_only_genes[rna_id]
                    gene_ids.append(gene_id)
                    rnas_d1_only_genes[rna_id] = gene_ids
                else:
                    rnas_d1_only_genes[rna_id] = [gene_id]

        rnas_d2_only_genes = {}
        for gene_id in d2_only_genes_ids:
            query = """ MATCH (g:Gene)-[:REGULATES]-(r:RNA) WHERE {gene_id} IN g.ids RETURN distinct(r.`_id`) """
            results = session.run(query, parameters={'gene_id': gene_id})
            for result in results:
                rna_id = result['(r.`_id`)']
                if rna_id in rnas_d2_only_genes:
                    gene_ids = rnas_d2_only_genes[rna_id]
                    gene_ids.append(gene_id)
                    rnas_d2_only_genes[rna_id] = gene_ids
                else:
                    rnas_d2_only_genes[rna_id] = [gene_id]

        #common_rnas = {'A':1, 'B':1, 'D':1}
        #rnas_d1_only_genes = {'A':2, 'B':1, 'E':1}
        #rnas_d2_only_genes = {'A':2, 'C':1, 'E':1}

        for rna_id in rnas_d1_only_genes:
            if rna_id in common_rnas:
                # common_rnas have already been added to the network, here the number of regulated genes is updated
                common_rnas[rna_id] = common_rnas[rna_id] + rnas_d1_only_genes[rna_id]
            elif rna_id in rnas_d2_only_genes:
                # RNA regulates genes associated to d1 and genes associated to d2, RNA does not regulate a common gene
                common_rnas[rna_id] = rnas_d1_only_genes[rna_id] + rnas_d2_only_genes[rna_id]
                g1_ids = rnas_d1_only_genes[rna_id]
                g2_ids = rnas_d2_only_genes[rna_id]
                rna = RNA([rna_id], [])
                network.add_node(rna)
                for g_id in g1_ids:
                    gene = Gene([g_id], [])
                    network.add_node(gene)
                    network.add_edge(Edge(gene, d1, 'ASSOCIATES_WITH', {}))
                    network.add_edge(Edge(rna, gene, 'REGULATES', {}))
                for g_id in g2_ids:
                    gene = Gene([g_id], [])
                    network.add_node(gene)
                    network.add_edge(Edge(gene, d2, 'ASSOCIATES_WITH', {}))
                    network.add_edge(Edge(rna, gene, 'REGULATES', {}))
                del rnas_d2_only_genes[rna_id]
        for rna_id in rnas_d2_only_genes:
            if rna_id in common_rnas:
                # common_rnas have already been added to the network, here the number of regulated genes is updated
                common_rnas[rna_id] = common_rnas[rna_id] + rnas_d2_only_genes[rna_id]

        # for each RNA add an array of RNAs, which regulate this RNA. MRNAs are not included
        for rna_id in common_rnas:
            second_rnas = []
            query = """MATCH (r:RNA)-[:REGULATES]-(n:RNA) WHERE {r_id} IN r.ids AND NOT n.label_id CONTAINS "MRNA" RETURN distinct(n.`_id`) """
            results = session.run(query, parameters={'r_id': rna_id})
            rna = RNA([rna_id], [])
            network.add_node(rna)
            for result in results:
                second_rna_id = result['(n.`_id`)']
                second_rnas.append(second_rna_id)
                second_rna = RNA([second_rna_id], [])
                network.add_node(second_rna)
                network.add_edge(Edge(second_rna, rna, 'REGULATES', {}))
            # the value of common_rnas is now changed to an array where at the first position the array with the regulated
            # genes from this subgraph is stored and at the second position the array with RNAs regulating the RNA is stored
            common_rnas[rna_id] = [common_rnas[rna_id], second_rnas]

        new_networks.append(network)

        if len(common_rnas) > 0 and writing_files:
            temp_id1 = disease_pair[0].replace(':', '-')
            temp_id2 = disease_pair[1].replace(':', '-')
            path = '../analysis/disease_pairs/' + temp_id1 + '_' + temp_id2
            try:
                os.mkdir(path)
            except FileExistsError:
                pass
            with io.open(path + '/' + temp_id1 + '_' + temp_id2 + '_common_rnas.tsv', 'w', encoding='utf-8', newline='') as common_rnas_file:
                common_rnas_file.write('#Common rnas of ' + disease_pair[0] + ' and ' + disease_pair[1] + '\tsorted by number of regulated genes\tRegulated genes\tRNAs regulating the RNA\n')
                for key, value in sorted(common_rnas.items(), key=lambda item: len(item[1][0]), reverse=True):
                    # sort by the number of genes in this subgraph which are regulated by the RNA
                    regulated_genes = str(value[0])
                    regulated_genes = regulated_genes.replace('[', '')
                    regulated_genes = regulated_genes.replace(']', '')
                    regulated_genes = regulated_genes.replace('\'', '')
                    second_rnas = str(value[1])
                    second_rnas = second_rnas.replace('[', '')
                    second_rnas = second_rnas.replace(']', '')
                    second_rnas = second_rnas.replace('\'', '')
                    common_rnas_file.write(key + '\t' + str(len(value[0])) + '\t' + regulated_genes + '\t' + second_rnas + '\n')
    print('Done getting RNAs')
    return new_networks
Esempio n. 6
0
def get_common_drugs(disease_pairs, networks, writing_files):
    new_networks = []
    for index, disease_pair in enumerate(disease_pairs):
        network = networks[index]
        d1 = Disease([disease_pair[0]], [])
        network.add_node(d1)
        d2 = Disease([disease_pair[1]], [])
        network.add_node(d2)

        # the drug INDICATES, CONTRAINDICATES or INDUCES both diseases
        common_drugs = set()
        query = """ MATCH (d1:Disease)-[a]-(n:Drug)--(d2:Disease) WHERE {d1_id} IN d1.ids AND {d2_id} IN d2.ids RETURN distinct(type(a)), n.`_id` """
        results = session.run(query, parameters={'d1_id': disease_pair[0], 'd2_id': disease_pair[1]})
        for result in results:
            drug_id = result['n.`_id`']
            type = result['(type(a))']
            common_drugs.add(drug_id)
            drug = Drug([drug_id], [])
            network.add_node(drug)
            network.add_edge(Edge(drug, d1, type, {}))
        query = """ MATCH (d1:Disease)--(n:Drug)-[a]-(d2:Disease) WHERE {d1_id} IN d1.ids AND {d2_id} IN d2.ids RETURN distinct(type(a)), n.`_id` """
        results = session.run(query, parameters={'d1_id': disease_pair[0], 'd2_id': disease_pair[1]})
        for result in results:
            drug_id = result['n.`_id`']
            type = result['(type(a))']
            common_drugs.add(drug_id)
            drug = Drug([drug_id], [])
            network.add_node(drug)
            network.add_edge(Edge(drug, d2, type, {}))

        # the drug targets a gene of one disease and is associated to the other disease
        query = """ MATCH (d1:Disease)-[a]-(n:Drug)-[:TARGETS]-(g:Gene)-[:ASSOCIATES_WITH]-(d2:Disease) WHERE {d1_id} IN d1.ids AND {d2_id} IN d2.ids RETURN distinct(type(a)), n.`_id`, g.`_id` """
        results = session.run(query, parameters={'d1_id': disease_pair[0], 'd2_id': disease_pair[1]})
        for result in results:
            drug_id = result['n.`_id`']
            type = result['(type(a))']
            common_drugs.add(drug_id)
            drug = Drug([drug_id], [])
            network.add_node(drug)
            network.add_edge(Edge(drug, d1, type, {}))
            gene_id = result['g.`_id`']
            gene = Gene([gene_id], [])
            network.add_node(gene)
            network.add_edge(Edge(drug, gene, 'TARGETS', {'actions': []}))
            network.add_edge(Edge(gene, d2, 'ASSOCIATES_WITH', {}))
        query = """ MATCH (d2:Disease)-[a]-(n:Drug)-[:TARGETS]-(g:Gene)-[:ASSOCIATES_WITH]-(d1:Disease) WHERE {d1_id} IN d1.ids AND {d2_id} IN d2.ids RETURN distinct(type(a)), n.`_id`, g.`_id` """
        results = session.run(query, parameters={'d1_id': disease_pair[0], 'd2_id': disease_pair[1]})
        for result in results:
            drug_id = result['n.`_id`']
            type = result['(type(a))']
            common_drugs.add(drug_id)
            drug = Drug([drug_id], [])
            network.add_node(drug)
            network.add_edge(Edge(drug, d2, type, {}))
            gene_id = result['g.`_id`']
            gene = Gene([gene_id], [])
            network.add_node(gene)
            network.add_edge(Edge(drug, gene, 'TARGETS', {'actions': []}))
            network.add_edge(Edge(gene, d1, 'ASSOCIATES_WITH', {}))

        # the drug targets one gene which is associated to both diseases or the drug targets two different genes
        # where each gene is associated to one of the diseases
        query = """ MATCH (d1:Disease)-[:ASSOCIATES_WITH]-(g1:Gene)-[:TARGETS]-(n:Drug)-[:TARGETS]-(g2:Gene)-
        [:ASSOCIATES_WITH]-(d2:Disease) WHERE {d1_id} IN d1.ids AND {d2_id} IN d2.ids RETURN n.`_id`, g1.`_id`, g2.`_id` """
        results = session.run(query, parameters={'d1_id': disease_pair[0], 'd2_id': disease_pair[1]})
        for result in results:
            drug_id = result['n.`_id`']
            common_drugs.add(drug_id)
            g1_id = result['g1.`_id`']
            g2_id = result['g2.`_id`']
            g1 = Gene([g1_id], [])
            network.add_node(g1)
            network.add_edge(Edge(g1, d1, 'ASSOCIATES_WITH', {}))
            drug = Drug([drug_id], [])
            network.add_node(drug)
            network.add_edge(Edge(drug, g1, 'TARGETS', {'actions': []}))
            g2 = Gene([g2_id], [])
            network.add_node(g2)
            network.add_edge(Edge(drug, g2, 'TARGETS', {'actions': []}))
            network.add_edge(Edge(g2, d2, 'ASSOCIATES_WITH', {}))

        new_networks.append(network)

        if len(common_drugs) > 0 and writing_files:
            temp_id1 = disease_pair[0].replace(':', '-')
            temp_id2 = disease_pair[1].replace(':', '-')
            path = '../analysis/disease_pairs/' + temp_id1 + '_' + temp_id2
            try:
                os.mkdir(path)
            except FileExistsError:
                pass
            with io.open(path + '/' + temp_id1 + '_' + temp_id2 + '_common_drugs.tsv', 'w', encoding='utf-8', newline='') as common_drugs_file:
                common_drugs_file.write('#Common drugs of ' + disease_pair[0] + ' and ' + disease_pair[1] + '\n')
                for drug in common_drugs:
                    common_drugs_file.write(drug + '\n')
    print('Done getting drugs')
    return new_networks
Esempio n. 7
0
#!/usr/bin/env python3

import io
import csv
from model.network import Network
from model.drug import Drug
from model.disease import Disease
from model.edge import Edge

network = Network()

with io.open('../data/PubMed/drug_disease.csv',
             'r',
             encoding='utf-8',
             newline='') as f:
    reader = csv.reader(f, delimiter=',', quotechar='"')
    next(reader, None)
    for row in reader:
        drug = Drug(['DrugBank:%s' % row[1]], [row[0]])
        disease = Disease([row[4]], [row[3]])
        network.add_node(drug)
        network.add_node(disease)
        network.add_edge(
            Edge(drug, disease, row[2], {
                'source': 'PubMed',
                'pmid': row[5]
            }))

network.save('../data/PubMed/graph.json')
Esempio n. 8
0
    reader = csv.reader(f, delimiter=',', quotechar='"')
    next(reader, None)
    for row in reader:
        ids = ['DrugCentral:%s' % row[0], 'DrugBank:%s' % row[1]]
        if row[2]:
            ids.append('RxNorm:%s' % row[2])
        network.add_node(Drug(ids, [row[3]]))

with io.open('../data/DrugCentral/drugcentral_indications.csv',
             'r',
             encoding='utf-8',
             newline='') as f:
    reader = csv.reader(f, delimiter=',', quotechar='"')
    next(reader, None)
    for row in reader:
        disease = Disease(['SnoMedCT:%s' % row[2],
                           'UMLS:%s' % row[3]], [row[1]])
        network.add_node(disease)
        drug = network.get_node_by_id('DrugBank:%s' % row[0], 'Drug')
        e = Edge(drug, disease, 'INDICATES', {'source': 'DrugCentral'})
        network.add_edge(e)

with io.open('../data/DrugCentral/drugcentral_contraindications.csv',
             'r',
             encoding='utf-8',
             newline='') as f:
    reader = csv.reader(f, delimiter=',', quotechar='"')
    next(reader, None)
    for row in reader:
        disease = Disease(['SnoMedCT:%s' % row[2],
                           'UMLS:%s' % row[3]], [row[1]])
        network.add_node(disease)
Esempio n. 9
0
                network.add_edge(
                    Edge(gene, variant, "CODES", {'source': 'PharmGKB'}))

with open_file_in_zip('../data/PharmGKB/phenotypes.zip',
                      'phenotypes.tsv') as f:
    reader = csv.reader(f, delimiter='\t', quotechar='"')
    next(reader, None)
    for row in reader:
        disease_ids = {'PharmGKB:%s' % row[0]}
        disease_names = {row[1]}
        for id_name_pair in process_disease_external_vocabulary(
                split_list(row[4])):
            disease_ids.add(id_name_pair[0])
            if id_name_pair[1] is not None:
                disease_names.add(id_name_pair[1])
        disease = Disease(disease_ids, disease_names)
        network.add_node(disease)

with open_file_in_zip('../data/PharmGKB/annotations.zip',
                      'clinical_ann_metadata.tsv') as f:
    reader = csv.reader(f, delimiter='\t', quotechar='"')
    next(reader, None)
    #  0 - Clinical Annotation ID
    #  1 - Location
    #  2 - Gene
    #  3 - Level of Evidence
    #  4 - Clinical Annotation Types
    #  5 - Genotype-Phenotype IDs       TODO
    #  6 - Annotation Text
    #  7 - Variant Annotations IDs      TODO
    #  8 - Variant Annotations
Esempio n. 10
0
                network.add_edge(
                    Edge(drug, ('NDFRT:%s' % role[1], 'Disease'), 'INDUCES',
                         rel))
            elif role_name == 'CI_with {NDFRT}':
                network.add_edge(
                    Edge(drug, ('NDFRT:%s' % role[1], 'Disease'),
                         'CONTRAINDICATES', rel))
            elif role_name == 'may_treat {NDFRT}':
                network.add_edge(
                    Edge(drug, ('NDFRT:%s' % role[1], 'Disease'), 'INDICATES',
                         rel))
    elif concept['kind'] == kind_defs_rev['DISEASE_KIND']:
        disease_ids = ['NDFRT:%s' % concept['code']]
        disease_names = [concept['name']]
        for prop in concept['properties']:
            if property_defs[prop[0]] == 'SNOMED_CID':
                disease_ids.append('SnoMedCT:%s' % prop[1])
            elif property_defs[prop[0]] == 'UMLS_CUI':
                disease_ids.append('UMLS:%s' % prop[1])
            elif property_defs[prop[0]] == 'MeSH_CUI':
                disease_ids.append('MeSH:%s' % prop[1])
            elif property_defs[prop[0]] == 'Synonym':
                disease_names.append(prop[1])
        disease_names = [
            x.replace('[Disease/Finding]', '').strip() for x in disease_names
        ]
        disease = Disease(disease_ids, disease_names)
        network.add_node(disease)

network.save('../data/NDF-RT/graph.json')
Esempio n. 11
0
    to_namespace = association.find('to_namespace').text
    to_id = association.find('to_code').text
    to_name = association.find('to_name').text
    if from_namespace != 'RxNorm' or to_namespace != 'MeSH':
        continue
    if association_type not in ['induces', 'CI_with', 'may_treat']:
        continue
    drug_id = 'RxNorm:%s' % from_id
    if from_id not in added_rxnorm_drugs:
        drug = Drug([drug_id], [from_name])
        network.add_node(drug)
        added_rxnorm_drugs.add(from_id)
    else:
        drug = network.get_node_by_id(drug_id, 'Drug')
    disease_id = 'MeSH:%s' % to_id
    if to_id not in added_mesh_diseases:
        disease = Disease([disease_id], [to_name])
        network.add_node(disease)
        added_mesh_diseases.add(to_id)
    else:
        disease = network.get_node_by_id(disease_id, 'Disease')
    rel = {'source': 'MEDRT'}
    if association_type == 'induces':
        network.add_edge(Edge(drug, disease, 'INDUCES', rel))
    elif association_type == 'CI_with':
        network.add_edge(Edge(drug, disease, 'CONTRAINDICATES', rel))
    elif association_type == 'may_treat':
        network.add_edge(Edge(drug, disease, 'INDICATES', rel))

network.save('../data/MED-RT/graph.json')
Esempio n. 12
0
if not os.path.exists(file):
    print('Database does not exist. Trying to download...')
    data = urllib.parse.urlencode({
        'downLoadType': 'all_pheno',
        'Mysubmit': 'Download'
    }).encode()
    with urllib.request.urlopen(urllib.request.Request(url,
                                                       data=data)) as response:
        with open(file, 'wb') as f:
            f.write(response.read())

network = Network()

with io.open(file, 'r', encoding='utf-8', newline='') as f:
    for skip in range(0, 4):
        f.readline()
    for line in f:
        parts = [[y.strip() for y in x[:-1].split('(')]
                 for x in line.strip().split('\t')]
        if len(parts) > 1:
            disease = Disease(['UMLS:%s' % parts[0][1]], [parts[0][0]])
            network.add_node(disease)
            for part in parts[1::]:
                gene = Gene(['HGNC:%s' % part[0],
                             'Entrez:%s' % part[1]], [part[0]])
                network.add_node(gene)
                rel = {'source': 'HuGE Navigator'}
                network.add_edge(Edge(gene, disease, 'ASSOCIATES_WITH', rel))

network.save('../data/HuGE-Navigator/graph.json')
Esempio n. 13
0
import io
import csv
from model.network import Network
from model.disease import Disease
from model.gene import Gene

file = '../data/HPO/OMIM_FREQUENT_FEATURES_diseases_to_genes_to_phenotypes.txt'
url = 'http://compbio.charite.de/jenkins/job/hpo.annotations.monthly/lastSuccessfulBuild/artifact/annotation/' + \
      'OMIM_FREQUENT_FEATURES_diseases_to_genes_to_phenotypes.txt'

if not os.path.exists(file):
    print('Database does not exist. Trying to download...')
    with urllib.request.urlopen(url) as response, open(file, 'wb') as f:
        f.write(response.read())

network = Network()

with io.open(file, 'r', encoding='utf-8', newline='') as f:
    reader = csv.reader(f, delimiter='\t', quotechar='"')
    next(reader, None)
    for row in reader:
        disease = Disease([row[0]], [])
        network.add_node(disease)
        gene = Gene(['HGNC:%s' % row[1], 'Entrez:%s' % row[2]], [])
        network.add_node(gene)
        hpo_id = row[3]
        hpo_term_name = row[4]
        # TODO

network.save('../data/HPO/graph.json')
Esempio n. 14
0
network = Network()

drug_lookup = {}
with io.open(drug_file, 'r', encoding='utf-8', newline='') as f:
    reader = csv.reader(f, delimiter='\t', quotechar='"')
    for row in reader:
        drug_lookup[row[0].strip()] = row[1].strip()

# 1: STITCH compound id (flat, see above)
# 2: UMLS concept id as it was found on the label
# 3: method of detection: NLP_indication / NLP_precondition / text_mention
# 4: concept name
# 5: MedDRA concept type (LLT = lowest level term, PT = preferred term; in a few cases the term is neither LLT nor PT)
# 6: UMLS concept id for MedDRA term
# 7: MedDRA concept name

# All side effects found on the labels are given as LLT. Additionally, the PT is shown. There is at least one
# PT for every LLT, but sometimes the PT is the same as the LLT.
with io.open(file, 'r', encoding='utf-8', newline='') as f:
    reader = csv.reader(f, delimiter='\t', quotechar='"')
    for row in reader:
        pubchem_id = row[0][4::].lstrip('0')
        drug = Drug(['PubChem:CID%s' % pubchem_id], [drug_lookup[row[0]]] if row[0] in drug_lookup else [])
        network.add_node(drug)
        disease = Disease(['UMLS:%s' % row[1], 'UMLS:%s' % row[5]], [row[3], row[6]])
        network.add_node(disease)
        network.add_edge(Edge(drug, disease, 'INDICATES', {'source': 'SIDER'}))

network.save('../data/SIDER/graph.json')
Esempio n. 15
0
network = Network()

# 0 Location
# 1 Phenotype
# 2 Phenotype MIM number
# 3 Inheritance
# 4 Phenotype mapping key
# 5 Gene/Locus
# 6 Gene/Locus MIM number
with io.open('../data/OMIM/filtered_associations.csv',
             'r',
             encoding='utf-8',
             newline='') as f:
    reader = csv.reader(f, delimiter=',', quotechar='"')
    next(reader, None)
    for row in reader:
        disease = Disease(['OMIM:%s' % row[2]], [])
        network.add_node(disease)
        gene = Gene(['HGNC:%s' % row[5]], [])  # , 'OMIM:%s' % row[6]
        network.add_node(gene)
        rel = {
            'source': 'OMIM',
            'location': row[0],
            'phenotype': row[1],
            'inheritance': row[2],
            'phenotype_mapping_key': row[4]
        }
        network.add_edge(Edge(gene, disease, 'ASSOCIATES_WITH', rel))

network.save('../data/OMIM/graph.json')
Esempio n. 16
0
 # Fusion
 print('[INFO] Network fusion')
 for graph in graphs:
     print('[INFO] Add network', graph)
     with io.open(graph, 'r', encoding='utf-8', newline='') as f:
         g = json.loads(f.read())
         network.load_from_dict(g)
 # Mapping
 print('[INFO] Add disease mappings')
 all_disease_ids = set()
 for node in network.get_nodes_by_label('Disease'):
     all_disease_ids.update(node.ids)
 for disease_id in all_disease_ids:
     mapped_ids, mapped_names = mondo_mapper.map_from(disease_id)
     if mapped_ids:
         network.add_node(Disease(mapped_ids, mapped_names))
 # Cleanup
 print('[INFO] Prune network')
 network.prune()
 print('[INFO] Merge duplicate node names')
 merge_duplicate_node_names(network)
 print('[INFO] Merge duplicate edges')
 network.merge_duplicate_edges()
 # Export
 print('[INFO] Export network')
 directory_utils.create_clean_directory(config['output-path'])
 with io.open(os.path.join(config['output-path'], 'graph.json'),
              'w',
              encoding='utf-8',
              newline='') as f:
     f.write(json.dumps(network.to_dict(), separators=(',', ':')))
Esempio n. 17
0
        #  4 - diseaseId
        #  5 - diseaseName
        #  6 - diseaseType
        #  7 - diseaseClass
        #  8 - diseaseSemanticType
        #  9 - score
        # 10 - EI
        # 11 - YearInitial
        # 12 - YearFinal
        # 13 - NofPmids
        # 14 - NofSnps
        # 15 - source
        if int(row[13]) >= PUBMED_COUNT_THRESHOLD:
            gene = Gene(['HGNC:%s' % row[1]], [])
            network.add_node(gene)
            disease = Disease(['UMLS:%s' % row[4]], [row[5]])
            network.add_node(disease)
            rel = {
                'source': 'DisGeNet,%s' % row[15],
                'num_pmids': int(row[13]),
                'num_snps': int(row[14]),
                'score': row[9]
            }
            network.add_edge(Edge(gene, disease, 'ASSOCIATES_WITH', rel))

with io.open('../data/DisGeNet/curated_variant_disease_associations.tsv',
             'r',
             encoding='utf-8',
             newline='') as f:
    reader = csv.reader(f, delimiter='\t', quotechar='"')
    next(reader, None)