def test(dataset, config, log_dir): """Test model, output prediction as json file.""" model_config = config['model'] sess_config = config['session'] answerset = pd.read_csv(os.path.join(config['preprocess_dir'], 'answer_set.txt'), header=None)[0] with tf.Graph().as_default(): model = EVQA(model_config) model.build_inference() with tf.Session(config=sess_config) as sess: ckpt_dir = os.path.join(log_dir, 'checkpoint') save_path = tf.train.latest_checkpoint(ckpt_dir) saver = tf.train.Saver() if save_path: print('load checkpoint {}.'.format(save_path)) saver.restore(sess, save_path) else: print('no checkpoint.') exit() # test iterate over examples result = DataFrame(columns=['id', 'answer']) correct = 0 failed = 0 while dataset.has_test_example: try: vgg, c3d, question, answer, example_id = dataset.get_test_example( ) feed_dict = { model.video_feature: [np.add(vgg, c3d) / 2], model.question_encode: [question], } prediction = sess.run(model.prediction, feed_dict=feed_dict) prediction = prediction[0] result = result.append( { 'id': example_id, 'answer': answerset[prediction] }, ignore_index=True) if answerset[prediction] == answer: correct += 1 except: failed += 1 result.to_json(os.path.join(log_dir, 'prediction.json'), 'records') acc = correct / (dataset.test_example_total - failed) print('\n[TEST] acc {:.5f}.\n'.format(acc)) dataset.reset_test() return acc
def val(epoch, dataset, config, log_dir): """Validate model.""" model_config = config['model'] sess_config = config['session'] answerset = pd.read_csv(os.path.join(config['preprocess_dir'], 'answer_set.txt'), header=None)[0] with tf.Graph().as_default(): model = EVQA(model_config) model.build_inference() with tf.Session(config=sess_config) as sess: sum_dir = os.path.join(log_dir, 'summary') summary_writer = tf.summary.FileWriter(sum_dir) ckpt_dir = os.path.join(log_dir, 'checkpoint') save_path = tf.train.latest_checkpoint(ckpt_dir) saver = tf.train.Saver() if save_path: print('load checkpoint {}.'.format(save_path)) saver.restore(sess, save_path) else: print('no checkpoint.') exit() stats_dir = os.path.join(log_dir, 'stats') stats_path = os.path.join(stats_dir, 'val.json') if os.path.exists(stats_path): print('load stats file {}.'.format(stats_path)) stats = pd.read_json(stats_path, 'records') else: print('no stats file.') if not os.path.exists(stats_dir): os.makedirs(stats_dir) stats = pd.DataFrame(columns=['epoch', 'acc']) # val iterate over examples correct = 0 while dataset.has_val_example: vgg, c3d, question, answer = dataset.get_val_example() feed_dict = { model.video_feature: [np.add(vgg, c3d) / 2], model.question_encode: [question], } prediction = sess.run(model.prediction, feed_dict=feed_dict) prediction = prediction[0] if answerset[prediction] == answer: correct += 1 acc = correct / dataset.val_example_total print('\n[VAL] epoch {}, acc {:.5f}.\n'.format(epoch, acc)) summary = tf.Summary() summary.value.add(tag='val/acc', simple_value=float(acc)) summary_writer.add_summary(summary, epoch) record = Series([epoch, acc], ['epoch', 'acc']) stats = stats.append(record, ignore_index=True) stats.to_json(stats_path, 'records') dataset.reset_val() return acc
def train(epoch, dataset, config, log_dir): """Train model for one epoch.""" model_config = config['model'] train_config = config['train'] sess_config = config['session'] with tf.Graph().as_default(): model = EVQA(model_config) model.build_inference() model.build_loss(train_config['reg_coeff']) model.build_train(train_config['learning_rate']) with tf.Session(config=sess_config) as sess: sum_dir = os.path.join(log_dir, 'summary') # create event file for graph if not os.path.exists(sum_dir): summary_writer = tf.summary.FileWriter(sum_dir, sess.graph) summary_writer.close() summary_writer = tf.summary.FileWriter(sum_dir) ckpt_dir = os.path.join(log_dir, 'checkpoint') ckpt_path = tf.train.latest_checkpoint(ckpt_dir) saver = tf.train.Saver() if ckpt_path: print('load checkpoint {}.'.format(ckpt_path)) saver.restore(sess, ckpt_path) else: print('no checkpoint.') if not os.path.exists(ckpt_dir): os.makedirs(ckpt_dir) sess.run(tf.global_variables_initializer()) stats_dir = os.path.join(log_dir, 'stats') stats_path = os.path.join(stats_dir, 'train.json') if os.path.exists(stats_path): print('load stats file {}.'.format(stats_path)) stats = pd.read_json(stats_path, 'records') else: print('no stats file.') if not os.path.exists(stats_dir): os.makedirs(stats_dir) stats = pd.DataFrame(columns=['epoch', 'loss', 'acc']) # train iterate over batch batch_idx = 0 total_loss = 0 total_acc = 0 batch_total = np.sum(dataset.train_batch_total) while dataset.has_train_batch: vgg, c3d, question, answer = dataset.get_train_batch() feed_dict = { model.video_feature: np.add(vgg, c3d) / 2, model.question_encode: question, model.answer_encode: answer } _, loss, acc = sess.run([model.train, model.loss, model.acc], feed_dict) total_loss += loss total_acc += acc if batch_idx % 100 == 0: print( '[TRAIN] epoch {}, batch {}/{}, loss {:.5f}, acc {:.5f}.' .format(epoch, batch_idx, batch_total, loss, acc)) batch_idx += 1 loss = total_loss / batch_total acc = total_acc / batch_total print('\n[TRAIN] epoch {}, loss {:.5f}, acc {:.5f}.\n'.format( epoch, loss, acc)) summary = tf.Summary() summary.value.add(tag='train/loss', simple_value=float(loss)) summary.value.add(tag='train/acc', simple_value=float(acc)) summary_writer.add_summary(summary, epoch) record = Series([epoch, loss, acc], ['epoch', 'loss', 'acc']) stats = stats.append(record, ignore_index=True) saver.save(sess, os.path.join(ckpt_dir, 'model.ckpt'), epoch) stats.to_json(stats_path, 'records') dataset.reset_train() return loss, acc