def im_detect(sess, net, im, timers, im_idx=None, nbr_gts=None): # Setup image blob blobs = {} blobs['data'], im_scales, blobs['im_shape_orig'] = get_image_blob(im) im_blob = blobs['data'] blobs['im_info'] = np.array([im_blob.shape[1], im_blob.shape[2], im_scales[0]]) # Run drl-RPN scores, pred_bboxes, timers, stats \ = run_drl_rpn(sess, net, blobs, timers, 'test', cfg.DRL_RPN_TEST.BETA, im_idx, nbr_gts) return scores, pred_bboxes, timers, stats
def im_detect(sess, net, im, timers, im_idx=None, nbr_gts=None): # Setup image blob blobs = {} blobs['data'], im_scales, blobs['im_shape_orig'] = get_image_blob(im) im_blob = blobs['data'] blobs['im_info'] = np.array( [im_blob.shape[1], im_blob.shape[2], im_scales[0]]) # Run LRP-HAI scores, pred_bboxes, timers, stats \ = run_LRP_HAI(sess, net, blobs, timers, 'test', cfg.LRP_HAI_TEST.BETA, im_idx, nbr_gts, alpha=cfg.LRP_HAI.ALPHA) return scores, pred_bboxes, timers, stats
def visualize(im, im_idx, boxes, show_text=True): # Setup image blob blob = {} blob['data'], im_scales, blob['im_shape_orig'] = get_image_blob(im) im_blob = blob['data'] im_shape = blob['im_shape_orig'] blob['im_info'] = np.array( [im_blob.shape[1], im_blob.shape[2], im_scales[0]]) im_info = blob['im_info'] # Make sure image in right range im = im_blob[0, :, :, :] im -= np.min(im) im /= np.max(im) im = resize(im, (im_shape[0], im_shape[1]), order=1, mode='reflect') # BGR --> RGB im = im[..., ::-1] # Produce final detections post-NMS cls_dets, names_and_coords = produce_trusted_boxes(boxes, thresh=0.70) # Show image fig, ax = plt.subplots(1) ax.imshow(im) # Draw all detection boxes for j in range(len(names_and_coords)): coords = names_and_coords[j]['coords'] score = names_and_coords[j]['score'] name = names_and_coords[j]['class_name'] color = names_and_coords[j]['color'] cls_det = cls_dets[j] # Show object category + confidence if show_text: ax.text(coords[0], coords[1], name + " " + str(score), weight='bold', color='black', fontsize=8, horizontalalignment='center', verticalalignment='center', bbox=dict(facecolor='white', edgecolor='white', pad=-0.1)) # Show detection bounding boxes rect = patches.Rectangle((cls_det[0], cls_det[1]), cls_det[2] - cls_det[0], cls_det[3] - cls_det[1], linewidth=7, edgecolor=color, facecolor='none') ax.add_patch(rect) # Final save / close of figure im_name = 'im' + str(im_idx + 1) + '.jpg' plt.savefig('img-out-deepSORT/' + im_name) plt.close() # Display success message print("Saved image " + im_name + "!\n")