def main(): data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000, oneHot=False) myMLP = MultilayerPerceptron(data.trainingSet, data.validationSet, data.testSet, learningRate=0.005, epochs=30) # myMLP.fortest() myMLP.train() # Do the recognizer # Explicitly specify the test set to be evaluated MLPPred = myMLP.evaluate() # Report the result print("=========================") evaluator = Evaluator() print("\nResult of the MLP:") evaluator.printAccuracy(data.testSet, MLPPred) # Draw plot = PerformancePlot("MLP validation") plot.draw_performance_epoch(myMLP.performances, myMLP.epochs)
def runMultilayerClassifier(data): c = MultilayerPerceptron(data.training_set, data.validation_set, data.test_set, epochs=30, layers=MultilayerPerceptron.createLayers([784, 100, 10], 0.05)) trainAndEvaluateClassifier(c, data.test_set, verbose=True)
def main(): # ------------ NOTE -------------- # oneHot = False, as the framwork provided implements binary one-hot encoding (is it a 7 = True/False) # Our targets are one-of-k encoded (e.g. 1= (0,1,0,0,0,0,0,0,0)). Network predicts the exact number on the picture not just 7 = True/False data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000, oneHot=False) myMLPClassifier = MultilayerPerceptron( data.trainingSet, data.validationSet, data.testSet, hiddenLayerSizes=[ 65, 30 ], # size of hidden layers, input and output layers sizes are constant learningRate=0.028, # learning rate epochs=50) # epochs # Train the classifiers print("=========================") print("Training..") print("\nMLP has been training..") myMLPClassifier.train() print("Done..") # Do the recognizer # Explicitly specify the test set to be evaluated mlpPred = myMLPClassifier.evaluate() # Report the result print("=========================") evaluator = Evaluator() print("Result of the stupid recognizer:") print("\nResult of the MLP:") #evaluator.printComparison(data.testSet, lrPred) evaluator.printAccuracy(data.testSet, mlpPred) # Draw plot = PerformancePlot("MLP validation") plot.draw_performance_epoch(myMLPClassifier.performances, myMLPClassifier.epochs)
def classify_all(): data = MNISTSeven("../data/mnist_seven.csv", 4000, 500, 500, one_hot=False) mlp = MultilayerPerceptron(data.training_set, data.validation_set, data.test_set, output_task="classify_all", cost='crossentropy', output_activation='softmax', learning_rate=0.30, epochs=50) mlp.train() pred = mlp.evaluate() evaluator = Evaluator() evaluator.printAccuracy(data.test_set, pred)
def main(): data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000, oneHot=False) myMLPClassifier = MultilayerPerceptron(data.trainingSet, data.validationSet, data.testSet, learningRate=0.05, epochs=20) #no more changes after 20 epochs #Removed old stuff # Report the result # print("=========================") evaluator = Evaluator() # Train the classifiers print("=========================") print("Training..") print("\nMLP has been training..") myMLPClassifier.train() print("Done..") # Do the recognizer # Explicitly specify the test set to be evaluated mlpPred = myMLPClassifier.evaluate() # Report the result print("=========================") evaluator = Evaluator() print("\nResult of the MLP recognizer:") #evaluator.printComparison(data.testSet, lrPred) evaluator.printAccuracy(data.testSet, mlpPred) # Draw plot = PerformancePlot("MLP validation") plot.draw_performance_epoch(myMLPClassifier.performances, myMLPClassifier.epochs)
def main(): # ------------ NOTE -------------- # oneHot does not work: It makes not sense to have binary labeled data (targetDigit or notTargetDigit), # but having a MLP with 10 output nodes and softmax function. It needs to be trained with digit labels, not binary ones! data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000, oneHot=False) myMLPClassifier = MultilayerPerceptron(data.trainingSet, data.validationSet, data.testSet, hiddenLayerSizes=[65,30], # size of hidden layers, input and output layers sizes are constant learningRate=0.028, # learning rate epochs=50) # epochs # Train the classifiers print("=========================") print("Training..") print("\nMLP has been training..") myMLPClassifier.train() print("Done..") # Do the recognizer # Explicitly specify the test set to be evaluated mlpPred = myMLPClassifier.evaluate() # Report the result print("=========================") evaluator = Evaluator() print("Result of the stupid recognizer:") print("\nResult of the MLP:") #evaluator.printComparison(data.testSet, lrPred) evaluator.printAccuracy(data.testSet, mlpPred) # Draw plot = PerformancePlot("MLP validation") plot.draw_performance_epoch(myMLPClassifier.performances, myMLPClassifier.epochs)
def main(): data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000, oneHot=False) myMLPClassifier = MultilayerPerceptron(data.trainingSet, data.validationSet, data.testSet, loss='ce', layers=[128, 150], learningRate=0.005, epochs=10) # Report the result # # Train the classifiers print("=========================") print("Training..") print("\nMultilayer Perceptron has been training..") myMLPClassifier.train() print("Done..") # Do the recognizer # Explicitly specify the test set to be evaluated mlpPred = myMLPClassifier.evaluate() # Report the result print("=========================") evaluator = Evaluator() print("\nResult of the Multi Layer Perceptron recognizer:") evaluator.printComparison(data.testSet, mlpPred) evaluator.printAccuracy(data.testSet, mlpPred) # Draw plot = PerformancePlot("Multi Layer Perceptron validation") plot.draw_performance_epoch(myMLPClassifier.performances, myMLPClassifier.epochs)
def __init__(self, train, valid, test, learning_rate=0.1, epochs=30): """ Parameters ---------- train : list valid : list test : list learning_rate : float epochs : positive int Attributes ---------- training_set : list validation_set : list test_set : list learning_rate : float epochs : positive int performances: array of floats """ self.learning_rate = learning_rate self.epochs = epochs self.training_set = train self.validation_set = valid self.test_set = test self.performances = [] self.layers = [] # First hidden layer number_of_1st_hidden_layer = 400 self.layers.append(LogisticLayer(train.input.shape[1], number_of_1st_hidden_layer, None, activation="tanh", is_classifier_layer=False)) # Output layer self.layers.append(LogisticLayer(number_of_1st_hidden_layer, train.input.shape[1], None, activation="tanh", is_classifier_layer=True)) self.MLP = MultilayerPerceptron(self.training_set, self.validation_set, self.test_set, layers = self.layers, learning_rate=0.05, epochs=30)
def main(): # data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000, # one_hot=True, target_digit='7') # NOTE: # Comment out the MNISTSeven instantiation above and # uncomment the following to work with full MNIST task data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000, one_hot=False) # NOTE: # Other 1-digit classifiers do not make sense now for comparison purpose # So you should comment them out, let alone the MLP training and evaluation # Train the classifiers # print("=========================") print("Training..") # Stupid Classifier # myStupidClassifier = StupidRecognizer(data.training_set, # data.validation_set, # data.test_set) # print("\nStupid Classifier has been training..") # myStupidClassifier.train() # print("Done..") # Do the recognizer # Explicitly specify the test set to be evaluated # stupidPred = myStupidClassifier.evaluate() # Perceptron # myPerceptronClassifier = Perceptron(data.training_set, # data.validation_set, # data.test_set, # learning_rate=0.005, # epochs=10) # # print("\nPerceptron has been training..") # myPerceptronClassifier.train() # print("Done..") # Do the recognizer # Explicitly specify the test set to be evaluated # perceptronPred = myPerceptronClassifier.evaluate() # Logistic Regression # myLRClassifier = LogisticRegression(data.training_set, # data.validation_set, # data.test_set, # learning_rate=0.005, # epochs=30) # # print("\nLogistic Regression has been training..") # myLRClassifier.train() # print("Done..") # Do the recognizer # Explicitly specify the test set to be evaluated # lrPred = myLRClassifier.evaluate() # Multi layer perceptron layers = [LogisticLayer(data.training_set.input.shape[1], 30, None, 'sigmoid', False), LogisticLayer(30, 10, None, 'softmax', True)] myMLPClassifier = MultilayerPerceptron(data.training_set, data.validation_set, data.test_set, layers=layers, learning_rate=0.005, epochs=30) print("\nLogistic Regression has been training..") myMLPClassifier.train() print("Done..") # Do the recognizer # Explicitly specify the test set to be evaluated mlpPred = myMLPClassifier.evaluate() # Report the result # print("=========================") evaluator = Evaluator() # print("Result of the stupid recognizer:") # evaluator.printComparison(data.testSet, stupidPred) # evaluator.printAccuracy(data.test_set, stupidPred) # print("\nResult of the Perceptron recognizer (on test set):") # evaluator.printComparison(data.testSet, perceptronPred) # evaluator.printAccuracy(data.test_set, perceptronPred) # print("\nResult of the Logistic Regression recognizer (on test set):") # evaluator.printComparison(data.testSet, perceptronPred) # evaluator.printAccuracy(data.test_set, lrPred) print("\nResult of the Multi-layer Perceptron recognizer (on test set):") evaluator.printComparison(data.test_set, mlpPred) evaluator.printAccuracy(data.test_set, mlpPred)
def main(): data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000, oneHot=False) # myLRClassifier = LogisticRegression(data.trainingSet, # data.validationSet, # data.testSet, # learningRate=0.005, # epochs=30) hidden_layers = [ LogisticLayer(128, 32, isClassifierLayer=True) for layer in range(1) ] mlp = MultilayerPerceptron(data.trainingSet, data.validationSet, data.testSet, hidden_layers, learningRate=0.005, epochs=30) # Train the classifiers #print("=========================") print("Training...") # print("\nLogistic Regression has been training..") # myLRClassifier.train() # print("Done..") print("Training MLP...") mlp.train() print("Done.") # Do the recognizer # Explicitly specify the test set to be evaluated # stupidPred = myStupidClassifier.evaluate() # perceptronPred = myPerceptronClassifier.evaluate() # lrPred = myLRClassifier.evaluate() mlpPred = mlp.evaluate() # Report the result print("=========================") evaluator = Evaluator() # print("Result of the stupid recognizer:") # # #evaluator.printComparison(data.testSet, stupidPred) # # evaluator.printAccuracy(data.testSet, stupidPred) # # # # print("\nResult of the Perceptron recognizer:") # # #evaluator.printComparison(data.testSet, perceptronPred) # # evaluator.printAccuracy(data.testSet, perceptronPred) # # # # print("\nResult of the Logistic Regression recognizer:") # # #evaluator.printComparison(data.testSet, lrPred) # # evaluator.printAccuracy(data.testSet, lrPred) print("Result of the MLP recognizer:") evaluator.printComparison(data.testSet, mlpPred) evaluator.printAccuracy(data.testSet, mlpPred) # Draw plot = PerformancePlot("Logistic Regression validation") # plot.draw_performance_epoch(myLRClassifier.performances, # myLRClassifier.epochs) plot.draw_performance_epoch(mlp.performances, mlp.epochs)
class DenoisingAutoEncoder(AutoEncoder): """ A denoising autoencoder. """ def __init__(self, train, valid, test, learning_rate=0.1, epochs=30): """ Parameters ---------- train : list valid : list test : list learning_rate : float epochs : positive int Attributes ---------- training_set : list validation_set : list test_set : list learning_rate : float epochs : positive int performances: array of floats """ self.learning_rate = learning_rate self.epochs = epochs self.training_set = train self.validation_set = valid self.test_set = test self.performances = [] self.layers = [] # First hidden layer number_of_1st_hidden_layer = 400 self.layers.append(LogisticLayer(train.input.shape[1], number_of_1st_hidden_layer, None, activation="tanh", is_classifier_layer=False)) # Output layer self.layers.append(LogisticLayer(number_of_1st_hidden_layer, train.input.shape[1], None, activation="tanh", is_classifier_layer=True)) self.MLP = MultilayerPerceptron(self.training_set, self.validation_set, self.test_set, layers = self.layers, learning_rate=0.05, epochs=30) def train(self, verbose=True): """ Train the denoising autoencoder """ for epoch in range(self.epochs): if verbose: print("Training DAE epoch {0}/{1}.." .format(epoch + 1, self.epochs)) self._train_one_epoch() if False:#verbose: accuracy = accuracy_score(self.validation_set.label, self.evaluate(self.validation_set)) # Record the performance of each epoch for later usages # e.g. plotting, reporting.. self.performances.append(accuracy) print("Accuracy on validation: {0:.2f}%" .format(accuracy * 100)) print("-----------------------------") pass def _train_one_epoch(self): """ Train one epoch, seeing all input instances """ for img in self.training_set.input: self.noise = 0.1 noisy = img + self.noise * np.random.uniform(-1.0,1.0) normalized = Activation.tanh(noisy) self.MLP._feed_forward(normalized) self.MLP._compute_error(normalized[1:]) self.MLP._update_weights() pass def _get_weights(self): """ Get the weights (after training) """ return self.MLP._get_input_layer().weights
def main(): #data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000, # one_hot=True, target_digit='7') # NOTE: # Comment out the MNISTSeven instantiation above and # uncomment the following to work with full MNIST task data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000, one_hot=False) # # NOTE: # # Other 1-digit classifiers do not make sense now for comparison purpose # # So you should comment them out, let alone the MLP training and evaluation # # # Train the classifiers # # print("=========================") # print("Training..") # # # Stupid Classifier # myStupidClassifier = StupidRecognizer(data.training_set, # data.validation_set, # data.test_set) # # print("\nStupid Classifier has been training..") # myStupidClassifier.train() # print("Done..") # # Do the recognizer # # Explicitly specify the test set to be evaluated # stupidPred = myStupidClassifier.evaluate() # # # Perceptron # myPerceptronClassifier = Perceptron(data.training_set, # data.validation_set, # data.test_set, # learning_rate=0.005, # epochs=10) # # print("\nPerceptron has been training..") # myPerceptronClassifier.train() # print("Done..") # # Do the recognizer # # Explicitly specify the test set to be evaluated # perceptronPred = myPerceptronClassifier.evaluate() # # # Logistic Regression # myLRClassifier = LogisticRegression(data.training_set, # data.validation_set, # data.test_set, # learning_rate=0.005, # epochs=30) # # print("\nLogistic Regression has been training..") # myLRClassifier.train() # print("Done..") # # Do the recognizer # # Explicitly specify the test set to be evaluated # lrPred = myLRClassifier.evaluate() # Build up the network from specific layers # Here is an example of a MLP acting like the Logistic Regression layers = [] layers.append(LogisticLayer(784, 5, None, "sigmoid", True)) layers.append(LogisticLayer(5, 10, None, "softmax", False)) myMLPClassifier = MultilayerPerceptron(data.training_set, data.validation_set, data.test_set, learning_rate=0.5, epochs=30, layers=layers) print("\nLogistic Regression has been training..") myMLPClassifier.train() print("Done..") # Do the recognizer # Explicitly specify the test set to be evaluated mlpPred = myMLPClassifier.evaluate() # # Report the result # print("=========================") evaluator = Evaluator() # # # print("Result of the stupid recognizer:") # # evaluator.printComparison(data.testSet, stupidPred) # evaluator.printAccuracy(data.test_set, stupidPred) # # # # print("\nResult of the Perceptron recognizer (on test set):") # # evaluator.printComparison(data.testSet, perceptronPred) # evaluator.printAccuracy(data.test_set, perceptronPred) # # # # print("\nResult of the Logistic Regression recognizer (on test set):") # # evaluator.printComparison(data.testSet, perceptronPred) # evaluator.printAccuracy(data.test_set, lrPred) # print("\nResult of the Multi-layer Perceptron recognizer (on test set):") # evaluator.printComparison(data.testSet, perceptronPred) evaluator.printAccuracy(data.test_set, mlpPred) # # # Draw # plot = PerformancePlot("Logistic Regression") # plot.draw_performance_epoch(myLRClassifier.performances, # myLRClassifier.epochs) # 3D Plot learning_rates + epochs -> accuracies print("Creating 3D plot. This may take some minutes...") learning_rate_sample_count = 5 epochs_sample_count = 20 xticks = np.logspace(-10.0, 0, base=10, num=learning_rate_sample_count, endpoint=False) accuracies = [] learning_rates = [] epoch_values = [] for i in itertools.product(range(learning_rate_sample_count)): learning_rate = 100 / np.exp(i) print("Calculating accuracy for: learning rate = %s" % (learning_rate)) myMLPClassifier = MultilayerPerceptron(data.training_set, data.validation_set, data.test_set, learning_rate=learning_rate, epochs=epochs_sample_count, layers=layers) epoch_accuracies = myMLPClassifier.train(False) lrPred = myMLPClassifier.evaluate() epoch_values.append([e for e in range(epochs_sample_count)]) learning_rates.append([learning_rate for _ in range(epochs_sample_count)]) accuracies.append(epoch_accuracies) accuracies_merged = list(itertools.chain(*accuracies)) epochs_merged = list(itertools.chain(*epoch_values)) learning_rates_merged = list(itertools.chain(*learning_rates)) print(accuracies_merged) print(epochs_merged) print(learning_rates) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(np.log10(learning_rates_merged), epochs_merged, accuracies_merged) ax.set_xlabel("Learning Rate") ax.set_xticks(np.log10(xticks)) ax.set_xticklabels(xticks) ax.set_ylabel('Epochs') ax.set_zlabel('Accuracy') plt.show()
def main(): # data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000, # one_hot=True, target_digit='7') # NOTE: # Comment out the MNISTSeven instantiation above and # uncomment the following to work with full MNIST task data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000, one_hot=False) # NOTE: # Other 1-digit classifiers do not make sense now for comparison purpose # So you should comment them out, let alone the MLP training and evaluation # Train the classifiers # print("=========================") print("Training the autoencoder..") myDAE = DenoisingAutoEncoder(data.training_set, data.validation_set, data.test_set, learning_rate=0.05, epochs=30) print("\nAutoencoder has been training..") myDAE.train() print("Done..") # Multi-layer Perceptron # NOTES: # Now take the trained weights (layer) from the Autoencoder # Feed it to be a hidden layer of the MLP, continue training (fine-tuning) # And do the classification # Correct the code here myMLPClassifier = MultilayerPerceptron(data.training_set, data.validation_set, data.test_set, learning_rate=0.05, epochs=30) print("\nMulti-layer Perceptron has been training..") myMLPClassifier.train() print("Done..") # Do the recognizer # Explicitly specify the test set to be evaluated mlpPred = myMLPClassifier.evaluate() # Report the result # print("=========================") evaluator = Evaluator() # print("Result of the stupid recognizer:") # evaluator.printComparison(data.testSet, stupidPred) # evaluator.printAccuracy(data.test_set, stupidPred) # print("\nResult of the Perceptron recognizer (on test set):") # evaluator.printComparison(data.testSet, perceptronPred) # evaluator.printAccuracy(data.test_set, perceptronPred) # print("\nResult of the Logistic Regression recognizer (on test set):") # evaluator.printComparison(data.testSet, perceptronPred) # evaluator.printAccuracy(data.test_set, lrPred) print("\nResult of the DAE + MLP recognizer (on test set):") # evaluator.printComparison(data.testSet, perceptronPred) evaluator.printAccuracy(data.test_set, mlpPred) # Draw plot = PerformancePlot("DAE + MLP on MNIST task") plot.draw_performance_epoch(myMLPClassifier.performances, myMLPClassifier.epochs)
def main(): # data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000, # one_hot=True, target_digit='7') # NOTE: # Comment out the MNISTSeven instantiation above and # uncomment the following to work with full MNIST task data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000, one_hot=False) # NOTE: # Other 1-digit classifiers do not make sense now for comparison purpose # So you should comment them out, let alone the MLP training and evaluation # Train the classifiers # print("=========================") print("Training the autoencoder..") myDAE = DenoisingAutoEncoder(data.training_set, data.validation_set, data.test_set, learning_rate=dae_lr, noiseRatio=dae_nr, hiddenLayerNeurons=hiddenLayerNeurons, epochs=dae_epochs) print("\nAutoencoder has been training..") myDAE.train() print("Done..") # Multi-layer Perceptron # NOTES: # Now take the trained weights (layer) from the Autoencoder # Feed it to be a hidden layer of the MLP, continue training (fine-tuning) # And do the classification myMLPLayers = [] # First hidden layer number_of_1st_hidden_layer = hiddenLayerNeurons myMLPLayers.append(LogisticLayer(data.training_set.input.shape[1]-1, # bias "1" already added so remove one number_of_1st_hidden_layer, weights=myDAE._get_weights(), activation="sigmoid", is_classifier_layer=False)) # Output layer number_of_output_layer = 10 myMLPLayers.append(LogisticLayer(number_of_1st_hidden_layer, number_of_output_layer, None, activation="softmax", is_classifier_layer=True)) # Correct the code here myMLPClassifier = MultilayerPerceptron(data.training_set, data.validation_set, data.test_set, layers=myMLPLayers, learning_rate=mlp_lr, epochs=mlp_epochs) # remove double added bias "1" myMLPClassifier.__del__() print("\nMulti-layer Perceptron has been training..") myMLPClassifier.train() print("Done..") # Do the recognizer # Explicitly specify the test set to be evaluated mlpPred = myMLPClassifier.evaluate() # Report the result # print("=========================") evaluator = Evaluator() # print("Result of the stupid recognizer:") # evaluator.printComparison(data.testSet, stupidPred) # evaluator.printAccuracy(data.test_set, stupidPred) # print("\nResult of the Perceptron recognizer (on test set):") # evaluator.printComparison(data.testSet, perceptronPred) # evaluator.printAccuracy(data.test_set, perceptronPred) # print("\nResult of the Logistic Regression recognizer (on test set):") # evaluator.printComparison(data.testSet, perceptronPred) # evaluator.printAccuracy(data.test_set, lrPred) print("\nResult of the DAE + MLP recognizer (on test set):") # evaluator.printComparison(data.testSet, perceptronPred) evaluator.printAccuracy(data.test_set, mlpPred) os.chdir("..") # Draw plot = PerformancePlot("DAE + MLP on MNIST task on validation set") plot.draw_performance_epoch(myMLPClassifier.performances, myMLPClassifier.epochs, "plots", filename) print("drawing weights of auto encoder mlp input…") weight_plotter = WeightVisualizationPlot(myDAE.autoencMLP) weight_plotter.plot()
def main(): #data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000, # one_hot=True, target_digit='7') # NOTE: # Comment out the MNISTSeven instantiation above and # uncomment the following to work with full MNIST task data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000, one_hot=False) # # NOTE: # # Other 1-digit classifiers do not make sense now for comparison purpose # # So you should comment them out, let alone the MLP training and evaluation # # # Train the classifiers # # print("=========================") # print("Training..") # # # Stupid Classifier # myStupidClassifier = StupidRecognizer(data.training_set, # data.validation_set, # data.test_set) # # print("\nStupid Classifier has been training..") # myStupidClassifier.train() # print("Done..") # # Do the recognizer # # Explicitly specify the test set to be evaluated # stupidPred = myStupidClassifier.evaluate() # # # Perceptron # myPerceptronClassifier = Perceptron(data.training_set, # data.validation_set, # data.test_set, # learning_rate=0.005, # epochs=10) # # print("\nPerceptron has been training..") # myPerceptronClassifier.train() # print("Done..") # # Do the recognizer # # Explicitly specify the test set to be evaluated # perceptronPred = myPerceptronClassifier.evaluate() # # # Logistic Regression # myLRClassifier = LogisticRegression(data.training_set, # data.validation_set, # data.test_set, # learning_rate=0.005, # epochs=30) # # print("\nLogistic Regression has been training..") # myLRClassifier.train() # print("Done..") # # Do the recognizer # # Explicitly specify the test set to be evaluated # lrPred = myLRClassifier.evaluate() # Build up the network from specific layers # Here is an example of a MLP acting like the Logistic Regression layers = [] layers.append(LogisticLayer(784, 5, None, "sigmoid", True)) layers.append(LogisticLayer(5, 10, None, "softmax", False)) myMLPClassifier = MultilayerPerceptron(data.training_set, data.validation_set, data.test_set, learning_rate=0.5, epochs=30, layers=layers) print("\nLogistic Regression has been training..") myMLPClassifier.train() print("Done..") # Do the recognizer # Explicitly specify the test set to be evaluated mlpPred = myMLPClassifier.evaluate() # # Report the result # print("=========================") evaluator = Evaluator() # # # print("Result of the stupid recognizer:") # # evaluator.printComparison(data.testSet, stupidPred) # evaluator.printAccuracy(data.test_set, stupidPred) # # # # print("\nResult of the Perceptron recognizer (on test set):") # # evaluator.printComparison(data.testSet, perceptronPred) # evaluator.printAccuracy(data.test_set, perceptronPred) # # # # print("\nResult of the Logistic Regression recognizer (on test set):") # # evaluator.printComparison(data.testSet, perceptronPred) # evaluator.printAccuracy(data.test_set, lrPred) # print("\nResult of the Multi-layer Perceptron recognizer (on test set):") # evaluator.printComparison(data.testSet, perceptronPred) evaluator.printAccuracy(data.test_set, mlpPred) # # # Draw # plot = PerformancePlot("Logistic Regression") # plot.draw_performance_epoch(myLRClassifier.performances, # myLRClassifier.epochs) # 3D Plot learning_rates + epochs -> accuracies print("Creating 3D plot. This may take some minutes...") learning_rate_sample_count = 5 epochs_sample_count = 20 xticks = np.logspace(-10.0, 0, base=10, num=learning_rate_sample_count, endpoint=False) accuracies = [] learning_rates = [] epoch_values = [] for i in itertools.product(range(learning_rate_sample_count)): learning_rate = 100 / np.exp(i) print("Calculating accuracy for: learning rate = %s" % (learning_rate)) myMLPClassifier = MultilayerPerceptron(data.training_set, data.validation_set, data.test_set, learning_rate=learning_rate, epochs=epochs_sample_count, layers=layers) epoch_accuracies = myMLPClassifier.train(False) lrPred = myMLPClassifier.evaluate() epoch_values.append([e for e in range(epochs_sample_count)]) learning_rates.append( [learning_rate for _ in range(epochs_sample_count)]) accuracies.append(epoch_accuracies) accuracies_merged = list(itertools.chain(*accuracies)) epochs_merged = list(itertools.chain(*epoch_values)) learning_rates_merged = list(itertools.chain(*learning_rates)) print(accuracies_merged) print(epochs_merged) print(learning_rates) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(np.log10(learning_rates_merged), epochs_merged, accuracies_merged) ax.set_xlabel("Learning Rate") ax.set_xticks(np.log10(xticks)) ax.set_xticklabels(xticks) ax.set_ylabel('Epochs') ax.set_zlabel('Accuracy') plt.show()
def main(): # data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000, # one_hot=True, target_digit='7') # NOTE: # Comment out the MNISTSeven instantiation above and # uncomment the following to work with full MNIST task data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000, one_hot=False) # NOTE: # Other 1-digit classifiers do not make sense now for comparison purpose # So you should comment them out, let alone the MLP training and evaluation # Train the classifiers # print("=========================") print("Training the autoencoder..") myDAE = DenoisingAutoEncoder(data.training_set, data.validation_set, data.test_set, learning_rate=0.05, epochs=10) print("\nAutoencoder has been training..") myDAE.train() print("Done..") # Multi-layer Perceptron # NOTES: # Now take the trained weights (layer) from the Autoencoder # Feed it to be a hidden layer of the MLP, continue training (fine-tuning) # And do the classification # Correct the code here myMLPClassifier = MultilayerPerceptron(data.training_set, data.validation_set, data.test_set, learning_rate=0.05, epochs=30, input_weights=myDAE._get_weights()) print("\nMulti-layer Perceptron has been training..") myMLPClassifier.train() print("Done..") # Do the recognizer # Explicitly specify the test set to be evaluated mlpPred = myMLPClassifier.evaluate() # Report the result # print("=========================") evaluator = Evaluator() # print("Result of the stupid recognizer:") # evaluator.printComparison(data.testSet, stupidPred) # evaluator.printAccuracy(data.test_set, stupidPred) # print("\nResult of the Perceptron recognizer (on test set):") # evaluator.printComparison(data.testSet, perceptronPred) # evaluator.printAccuracy(data.test_set, perceptronPred) # print("\nResult of the Logistic Regression recognizer (on test set):") # evaluator.printComparison(data.testSet, perceptronPred) # evaluator.printAccuracy(data.test_set, lrPred) print("\nResult of the DAE + MLP recognizer (on test set):") # evaluator.printComparison(data.testSet, perceptronPred) evaluator.printAccuracy(data.test_set, mlpPred) # Draw #plot = PerformancePlot("DAE + MLP on MNIST task") #plot.draw_performance_epoch(myMLPClassifier.performances, # myMLPClassifier.epochs) #print myDAE._get_weights().shape[1] weights = 0.5 * myDAE._get_weights() + 0.5 wplot = WeightVisualizationPlot(weights) wplot.draw_weights()
def main(): data = MNISTSeven("data/mnist_seven.csv", 3000, 1000, 1000, oneHot=True) myStupidClassifier = StupidRecognizer(data.trainingSet, data.validationSet, data.testSet) myPerceptronClassifier = Perceptron(data.trainingSet, data.validationSet, data.testSet, learningRate=0.005, epochs=30) myLRClassifier = LogisticRegression(data.trainingSet, data.validationSet, data.testSet, learningRate=0.005, epochs=30) # Report the result # print("=========================") evaluator = Evaluator() # Train the classifiers print("=========================") print("Training..") # print("\nStupid Classifier has been training..") # myStupidClassifier.train() # print("Done..") # print("\nPerceptron has been training..") # myPerceptronClassifier.train() # print("Done..") # print("\nLogistic Regression has been training..") # myLRClassifier.train() # print("Done..") myMLP = MultilayerPerceptron(data.trainingSet, data.validationSet, data.testSet, learningRate=0.01, epochs=30, loss="ce", outputActivation="softmax", weight_decay=0.1) print("\nMLP has been training..") myMLP.train() print("Done..") # Do the recognizer # Explicitly specify the test set to be evaluated # stupidPred = myStupidClassifier.evaluate() # perceptronPred = myPerceptronClassifier.evaluate() # lrPred = myLRClassifier.evaluate() mlpPred = myMLP.evaluate(data.validationSet) # # Report the result # print("=========================") # evaluator = Evaluator() # print("Result of the stupid recognizer:") # #evaluator.printComparison(data.testSet, stupidPred) # evaluator.printAccuracy(data.testSet, stupidPred) # print("\nResult of the Perceptron recognizer:") # #evaluator.printComparison(data.testSet, perceptronPred) # evaluator.printAccuracy(data.testSet, perceptronPred) # print("\nResult of the Logistic Regression recognizer:") # #evaluator.printComparison(data.testSet, lrPred) # evaluator.printAccuracy(data.testSet, lrPred) print("\nResult of the Multilayer Perceptron recognizer:") #evaluator.printComparison(data.testSet, lrPred) # evaluator.printAccuracy(data.testSet, mlpPred) plot = PerformancePlot("MLP validation") plot.draw_performance_epoch(myMLP.performances, myMLP.epochs)
def main(): data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000) myStupidClassifier = StupidRecognizer(data.trainingSet, data.validationSet, data.testSet) myPerceptronClassifier = Perceptron(data.trainingSet, data.validationSet, data.testSet, learningRate=0.005, epochs=30) myLRClassifier = LogisticRegression(data.trainingSet, data.validationSet, data.testSet, learningRate=0.005, epochs=30) MlpClassifier = MultilayerPerceptron(data.trainingSet, data.validationSet, data.testSet, learningRate=0.1, epochs = 30) # Train the classifiers print("=========================") print("Training..") print("\nStupid Classifier has been training..") myStupidClassifier.train() print("Done..") # print("\nPerceptron has been training..") # myPerceptronClassifier.train() # print("Done..") # print("\nLogistic Regression has been training..") # myLRClassifier.train() # print("Done..") print("\nStarting Backpropagation MLP training...") MlpClassifier.train() print("Done..") # Do the recognizer # Explicitly specify the test set to be evaluated stupidPred = myStupidClassifier.evaluate() # perceptronPred = myPerceptronClassifier.evaluate() # lrPred = myLRClassifier.evaluate() mlpPred = MlpClassifier.evaluate() # Report the result print("=========================") evaluator = Evaluator() print("Result of the stupid recognizer:") # evaluator.printComparison(data.testSet, stupidPred) evaluator.printAccuracy(data.testSet, stupidPred) # print("\nResult of the Perceptron recognizer:") # evaluator.printComparison(data.testSet, perceptronPred) # evaluator.printAccuracy(data.testSet, perceptronPred) # print("\nResult of the Logistic Regression recognizer:") # evaluator.printComparison(data.testSet, perceptronPred) # evaluator.printAccuracy(data.testSet, lrPred) print("\nResult of the MLP recognizer:") # evaluator.printComparison(data.testSet, perceptronPred) evaluator.printAccuracy(data.testSet, mlpPred) # eval.printConfusionMatrix(data.testSet, pred) # eval.printClassificationResult(data.testSet, pred, target_names) print("=========================")
def main(): # data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000, # one_hot=True, target_digit='7') # NOTE: # Comment out the MNISTSeven instantiation above and # uncomment the following to work with full MNIST task data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000, one_hot=False) # NOTE: # Other 1-digit classifiers do not make sense now for comparison purpose # So you should comment them out, let alone the MLP training and evaluation # Train the classifiers # print("=========================") print("Training..") # Stupid Classifier # myStupidClassifier = StupidRecognizer(data.training_set, # data.validation_set, # data.test_set) # print("\nStupid Classifier has been training..") # myStupidClassifier.train() # print("Done..") # Do the recognizer # Explicitly specify the test set to be evaluated # stupidPred = myStupidClassifier.evaluate() # Perceptron # myPerceptronClassifier = Perceptron(data.training_set, # data.validation_set, # data.test_set, # learning_rate=0.005, # epochs=10) # print("\nPerceptron has been training..") # myPerceptronClassifier.train() # print("Done..") # Do the recognizer # Explicitly specify the test set to be evaluated # perceptronPred = myPerceptronClassifier.evaluate() # Logistic Regression # myLRClassifier = LogisticRegression(data.training_set, # data.validation_set, # data.test_set, # learning_rate=0.005, # epochs=30) # print("\nLogistic Regression has been training..") # myLRClassifier.train() # print("Done..") # Do the recognizer # Explicitly specify the test set to be evaluated # lrPred = myLRClassifier.evaluate() # Multi-layer Perceptron myMLPClassifier = MultilayerPerceptron(data.training_set, data.validation_set, data.test_set, learning_rate=0.05, epochs=30) print("\nMulti-layer Perceptron has been training..") myMLPClassifier.train() print("Done..") # Do the recognizer # Explicitly specify the test set to be evaluated mlpPred = myMLPClassifier.evaluate() # Report the result # print("=========================") evaluator = Evaluator() # print("Result of the stupid recognizer:") # evaluator.printComparison(data.testSet, stupidPred) # evaluator.printAccuracy(data.test_set, stupidPred) # print("\nResult of the Perceptron recognizer (on test set):") # evaluator.printComparison(data.testSet, perceptronPred) # evaluator.printAccuracy(data.test_set, perceptronPred) # print("\nResult of the Logistic Regression recognizer (on test set):") # evaluator.printComparison(data.testSet, perceptronPred) # evaluator.printAccuracy(data.test_set, lrPred) print("\nResult of the Multi-layer Perceptron recognizer (on test set):") # evaluator.printComparison(data.testSet, perceptronPred) evaluator.printAccuracy(data.test_set, mlpPred) # Draw plot = PerformancePlot("Multi-layer Perceptron on MNIST task") plot.draw_performance_epoch(myMLPClassifier.performances, myMLPClassifier.epochs)
def classify_one(): data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000, one_hot=True, target_digit='7') # NOTE: # Comment out the MNISTSeven instantiation above and # uncomment the following to work with full MNIST task # data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000, # one_hot=False) # NOTE: # Other 1-digit classifiers do not make sense now for comparison purpose # So you should comment them out, let alone the MLP training and evaluation # Train the classifiers # print("=========================") print("Training..") # Stupid Classifier myStupidClassifier = StupidRecognizer(data.training_set, data.validation_set, data.test_set) print("\nStupid Classifier has been training..") myStupidClassifier.train() print("Done..") # Do the recognizer # Explicitly specify the test set to be evaluated stupidPred = myStupidClassifier.evaluate() # Perceptron myPerceptronClassifier = Perceptron(data.training_set, data.validation_set, data.test_set, learning_rate=0.005, epochs=10) print("\nPerceptron has been training..") myPerceptronClassifier.train() print("Done..") # Do the recognizer # Explicitly specify the test set to be evaluated perceptronPred = myPerceptronClassifier.evaluate() # Logistic Regression myLRClassifier = LogisticRegression(data.training_set, data.validation_set, data.test_set, learning_rate=0.20, epochs=30) print("\nLogistic Regression has been training..") myLRClassifier.train() print("Done..") # Do the recognizer # Explicitly specify the test set to be evaluated lrPred = myLRClassifier.evaluate() # Logistic Regression myMLPClassifier = MultilayerPerceptron(data.training_set, data.validation_set, data.test_set, learning_rate=0.30, epochs=50) print("\nMultilayer Perceptron has been training..") myMLPClassifier.train() print("Done..") # Do the recognizer # Explicitly specify the test set to be evaluated mlpPred = myMLPClassifier.evaluate() # Report the result # print("=========================") evaluator = Evaluator() print("Result of the stupid recognizer:") # evaluator.printComparison(data.testSet, stupidPred) evaluator.printAccuracy(data.test_set, stupidPred) print("\nResult of the Perceptron recognizer (on test set):") # evaluator.printComparison(data.testSet, perceptronPred) evaluator.printAccuracy(data.test_set, perceptronPred) print("\nResult of the Logistic Regression recognizer (on test set):") # evaluator.printComparison(data.testSet, perceptronPred) evaluator.printAccuracy(data.test_set, lrPred) print("\nResult of the Multi-layer Perceptron recognizer (on test set):") # evaluator.printComparison(data.testSet, perceptronPred) evaluator.printAccuracy(data.test_set, mlpPred) # Draw plot = PerformancePlot("Logistic Regression") plot.draw_performance_epoch(myLRClassifier.performances, myLRClassifier.epochs)
def main(): data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000, oneHot=False) myStupidClassifier = StupidRecognizer(data.trainingSet, data.validationSet, data.testSet) #myPerceptronClassifier = Perceptron(data.trainingSet, #data.validationSet, #data.testSet, #learningRate=0.005, #epochs=30) #myLRClassifier = LogisticRegression(data.trainingSet, #data.validationSet, #data.testSet, #learningRate=0.005, #epochs=30) mlp = MultilayerPerceptron(data.trainingSet, data.validationSet, data.testSet, layers=None, inputWeights=None, outputTask='classification', outputActivation='softmax', loss='cee', learningRate=0.01, epochs=50) # Report the result # print("=========================") evaluator = Evaluator() # Train the classifiers print("=========================") print("Training..") print("\nStupid Classifier has been training..") myStupidClassifier.train() print("Done..") print("\nPerceptron has been training..") #myPerceptronClassifier.train() print("Done..") print("\nLogistic Regression has been training..") #myLRClassifier.train() print("Done..") print("\nmlp has been training..") mlp.train() print("Done..") # Do the recognizer # Explicitly specify the test set to be evaluated stupidPred = myStupidClassifier.evaluate() #perceptronPred = myPerceptronClassifier.evaluate() #lrPred = myLRClassifier.evaluate() mlppred = MultilayerPerceptron.evaluate() # Report the result print("=========================") evaluator = Evaluator() print("Result of the stupid recognizer:") #evaluator.printComparison(data.testSet, stupidPred) evaluator.printAccuracy(data.testSet, stupidPred) print("\nResult of the Perceptron recognizer:") #evaluator.printComparison(data.testSet, perceptronPred) #evaluator.printAccuracy(data.testSet, perceptronPred) print("\nResult of the Logistic Regression recognizer:") #evaluator.printComparison(data.testSet, lrPred) #evaluator.printAccuracy(data.testSet, lrPred) print("Result of the mlp:") evaluator.printAccuracy(data.testSet, mlppred) # Draw #plot = PerformancePlot("Logistic Regression validation") #plot.draw_performance_epoch(myLRClassifier.performances, #myLRClassifier.epochs) ####可能有问题 plot = PerformancePlot("mlp validation") plot.draw_performance_epoch(mlp.performances, mlp.epochs)
def main(): data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000, oneHot=False) # myStupidClassifier = StupidRecognizer(data.trainingSet, # data.validationSet, # data.testSet) # myPerceptronClassifier = Perceptron(data.trainingSet, # data.validationSet, # data.testSet, # learningRate=0.005, # epochs=30) # # myLRClassifier = LogisticRegression(data.trainingSet, # data.validationSet, # data.testSet, # learningRate=0.005, # epochs=30) myMLPlassifier = MultilayerPerceptron(data.trainingSet, data.validationSet, data.testSet, learningRate=0.005, epochs=30) # Report the result # print("=========================") evaluator = Evaluator() # Train the classifiers print("=========================") print("Training..") # print("\nStupid Classifier has been training..") # myStupidClassifier.train() # print("Done..") # print("\nPerceptron has been training..") # myPerceptronClassifier.train() # print("Done..") # # print("\nLogistic Regression has been training..") # myLRClassifier.train() # print("Done..") print("\nMLP has been training..") myMLPlassifier.train() print("Done..") # Do the recognizer # Explicitly specify the test set to be evaluated # stupidPred = myStupidClassifier.evaluate() # perceptronPred = myPerceptronClassifier.evaluate() # lrPred = myLRClassifier.evaluate() mplPred = myMLPlassifier.evaluate() # Report the result print("=========================") evaluator = Evaluator() # print("Result of the stupid recognizer:") #evaluator.printComparison(data.testSet, stupidPred) # evaluator.printAccuracy(data.testSet, stupidPred) # print("\nResult of the Perceptron recognizer:") # #evaluator.printComparison(data.testSet, perceptronPred) # evaluator.printAccuracy(data.testSet, perceptronPred) # # print("\nResult of the Logistic Regression recognizer:") # #evaluator.printComparison(data.testSet, lrPred) # evaluator.printAccuracy(data.testSet, lrPred) print("Result of the MLP recognizer:") #evaluator.printComparison(data.testSet, stupidPred) evaluator.printAccuracy(data.testSet, mplPred) # Draw plot = PerformancePlot("MLP validation") plot.draw_performance_epoch(myMLPlassifier.performances, myMLPlassifier.epochs)
def main(): data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000, oneHot=False) data.trainingSet.input = np.insert(data.trainingSet.input, 0, 1, axis=1) data.validationSet.input = np.insert(data.validationSet.input, 0, 1, axis=1) data.testSet.input = np.insert(data.testSet.input, 0, 1, axis=1) myStupidClassifier = StupidRecognizer(data.trainingSet, data.validationSet, data.testSet) # myPerceptronClassifier = Perceptron(data.trainingSet, # data.validationSet, # data.testSet, # learningRate=0.005, # epochs=30) # myLRClassifier = LogisticRegression(data.trainingSet, # data.validationSet, # data.testSet, # learningRate=0.005, # epochs=30) MLPClassifier = MultilayerPerceptron(data.trainingSet, data.validationSet, data.testSet, netStruct = [800, 100, 10], actFunc = ['relu', 'relu', 'softmax'], dropout = True, loss = 'crossentropy', learningRate = 0.001, epochs = 300) # Report the result # print("=========================") evaluator = Evaluator() # Train the classifiers print("=========================") print("Training..") # print("\nStupid Classifier has been training..") # myStupidClassifier.train() # print("Done..") # # print("\nPerceptron has been training..") # myPerceptronClassifier.train() # print("Done..") # print("\nLogistic Regression has been training..") # myLRClassifier.train() # print("Done..") print("\nMLP has been training..") MLPClassifier.train() print("Done..") # Do the recognizer # Explicitly specify the test set to be evaluated # stupidPred = myStupidClassifier.evaluate() # perceptronPred = myPerceptronClassifier.evaluate() # lrPred = myLRClassifier.evaluate() mlpPred = MLPClassifier.evaluate() # Report the result print("=========================") evaluator = Evaluator() # print("Result of the stupid recognizer:") # #evaluator.printComparison(data.testSet, stupidPred) # evaluator.printAccuracy(data.testSet, stupidPred) # # print("\nResult of the Perceptron recognizer:") # #evaluator.printComparison(data.testSet, perceptronPred) # evaluator.printAccuracy(data.testSet, perceptronPred) # print("\nResult of the Logistic Regression recognizer:") # #evaluator.printComparison(data.testSet, lrPred) # evaluator.printAccuracy(data.testSet, lrPred) print("\nResult of the MLP recognizer:") # evaluator.printComparison(data.testSet, lrPred) evaluator.printAccuracy(data.testSet, mlpPred) # Draw # plot = PerformancePlot("MLP validation") # plot.draw_performance_epoch(MLPClassifier.performances, # MLPClassifier.epochs) plt.plot(range(MLPClassifier.epochs), MLPClassifier.performances, 'r--') plt.show()
def main(): data = MNISTSeven("../data/mnist_seven.csv", 3000, 1000, 1000, one_hot=False) # Train # Denoising Auto Encoder n_encoder_neurons = 100 myDAE = DenoisingAutoEncoder(data.training_set, data.validation_set, data.test_set, n_hidden_neurons=n_encoder_neurons, noise_ratio=0.2, learning_rate=0.05, epochs=5) print("Train autoencoder..") myDAE.train(verbose=True) print("Done..") # Multilayer Perceptron layers = [] # Add auto envoder hidden layer. layers.append(LogisticLayer(data.training_set.input.shape[1], n_encoder_neurons, weights=myDAE.get_weights(), cost="mse", activation="sigmoid", learning_rate=0.05)) # Add another hidden layer just like in the previous exercise. n_second_hidden_neurons = 100 layers.append(LogisticLayer(n_encoder_neurons, n_second_hidden_neurons, cost="mse", activation="sigmoid", learning_rate=0.05)) # Add output classifier layer with one neuron per digit. n_out_neurons = 10 layers.append(LogisticLayer(n_second_hidden_neurons, n_out_neurons, cost="crossentropy", activation="softmax", learning_rate=0.05)) myMLPClassifier = MultilayerPerceptron(data.training_set, data.validation_set, data.test_set, layers=layers, epochs=15) print("Train MLP..") myMLPClassifier.train(verbose=True) print("Done..") print("") # Evaluate print("Evaluate..") mlpPred = myMLPClassifier.evaluate() print("Done..") print("") print("Results:") evaluator = Evaluator() print("") # print("Result of the stupid recognizer:") # evaluator.printComparison(data.testSet, stupidPred) # evaluator.printAccuracy(data.test_set, stupidPred) # print("\nResult of the Perceptron recognizer (on test set):") # evaluator.printComparison(data.testSet, perceptronPred) # evaluator.printAccuracy(data.test_set, perceptronPred) # print("\nResult of the Logistic Regression recognizer (on test set):") # evaluator.printComparison(data.testSet, perceptronPred) # evaluator.printAccuracy(data.test_set, lrPred) # evaluator.printComparison(data.testSet, perceptronPred) evaluator.printAccuracy(data.test_set, mlpPred) # Draw plot = PerformancePlot("DAE + MLP on MNIST task") plot.draw_performance_epoch(myMLPClassifier.performances, myMLPClassifier.epochs)