def main(args): with open(os.path.join(args.model, 'params.json'), 'r') as f: params = json.loads(f.read()) params.update(vars(args)) params = namedtuple('Params', params.keys())(*params.values()) dataset = data.Dataset(args.dataset) x = tf.placeholder(tf.int32, shape=(None, None), name='x') seq_lengths = tf.placeholder(tf.int32, shape=(None), name='seq_lengths') model = m.DocNADE(x, seq_lengths, params) evaluate(model, dataset, params)
def main(args): if not os.path.isdir(args.model): os.mkdir(args.model) with open(os.path.join(args.model, 'params.json'), 'w') as f: f.write(json.dumps(vars(args))) dataset = data.Dataset(args.dataset) x = tf.placeholder(tf.int32, shape=(None, None), name='x') seq_lengths = tf.placeholder(tf.int32, shape=(None), name='seq_lengths') model = m.DocNADE(x, seq_lengths, args) train(model, dataset, args)