Esempio n. 1
0
import code

import json
import torch
import re
import numpy as np
from model.modeling_albert import AlbertConfig, AlbertForSequenceClassification
from model import tokenization_albert
from model.file_utils import WEIGHTS_NAME

tokenizer = tokenization_albert.FullTokenizer(
    vocab_file='./trained_bert_model/albert_small/vocab.txt')
config = AlbertConfig.from_pretrained('./trained_bert_model/albert_small/',
                                      num_labels=2,
                                      finetuning_task='lcqmc')
model = AlbertForSequenceClassification.from_pretrained(
    './trained_bert_model/albert_small/', config=config)

space_pattern = re.compile(r'\s')
alphanum_pattern = re.compile(r'\(?[a-zA-Z0-9]+-?[a-zA-Z0-9]*\)?')
pattern_string = r'^你知道|请问|我想知道|谁知道|我很好奇|有谁知道|大家知道|有人知道|请告诉我|我想了解一下|请说出|告诉我|能告诉我|你了解|你清楚|' \
          r'你能说出|谁是|你能告诉我|我想请问|我想问问|我想问一下|我想了解|我很想知道|你们知道|问一下|我好奇|谁能告诉我|请问一下|你觉得|什么是'


def bert_output(question, predicate):
    question_sep = tokenizer.tokenize(question)
    predicate_sep = tokenizer.tokenize(predicate)
    text = ["[CLS]"] + question_sep + ["[SEP]"] + predicate_sep + ["[SEP]"]
    indexed_tokens = tokenizer.convert_tokens_to_ids(text)
    token_type_ids = [0] * (len(question_sep) +
                            2) + [1] * (len(predicate_sep) + 1)
    tokens_tensor = torch.tensor([indexed_tokens])
Esempio n. 2
0
def main():
    parser = argparse.ArgumentParser()

    # parser.add_argument("--arch", default='albert_xlarge', type=str)
    parser.add_argument("--arch", default='albert_large', type=str)
    parser.add_argument('--bert_dir',
                        default='pretrain/pytorch/albert_large_zh',
                        type=str)
    parser.add_argument('--albert_config_path',
                        default='configs/albert_config_large.json',
                        type=str)

    parser.add_argument('--task_name', default='lcqmc', type=str)
    parser.add_argument(
        "--train_max_seq_len",
        default=64,
        type=int,
        help=
        "The maximum total input sequence length after tokenization. Sequences longer "
        "than this will be truncated, sequences shorter will be padded.")
    parser.add_argument(
        "--eval_max_seq_len",
        default=64,
        type=int,
        help=
        "The maximum total input sequence length after tokenization. Sequences longer "
        "than this will be truncated, sequences shorter will be padded.")
    parser.add_argument('--share_type',
                        default='all',
                        type=str,
                        choices=['all', 'attention', 'ffn', 'None'])
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--do_test",
                        action='store_true',
                        help="Whether to run eval on the test set.")
    parser.add_argument(
        "--evaluate_during_training",
        action='store_true',
        help="Rul evaluation during training at each logging step.")
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help="Set this flag if you are using an uncased model.")

    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Batch size per GPU/CPU for training.")
    parser.add_argument("--eval_batch_size",
                        default=16,
                        type=int,
                        help="Batch size per GPU/CPU for evaluation.")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument("--learning_rate",
                        default=2e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--weight_decay",
                        default=0.1,
                        type=float,
                        help="Weight deay if we apply some.")
    parser.add_argument("--adam_epsilon",
                        default=1e-8,
                        type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm",
                        default=5.0,
                        type=float,
                        help="Max gradient norm.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=int,
        help=
        "Proportion of training to perform linear learning rate warmup for,E.g., 0.1 = 10% of training."
    )

    parser.add_argument(
        "--eval_all_checkpoints",
        action='store_true',
        help=
        "Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number"
    )
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Avoid using CUDA when available")
    parser.add_argument('--overwrite_output_dir',
                        action='store_true',
                        help="Overwrite the content of the output directory")
    parser.add_argument(
        '--overwrite_cache',
        action='store_true',
        help="Overwrite the cached training and evaluation sets")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")

    parser.add_argument(
        '--fp16',
        action='store_true',
        help=
        "Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit"
    )
    parser.add_argument(
        '--fp16_opt_level',
        type=str,
        default='O1',
        help=
        "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="For distributed training: local_rank")
    parser.add_argument('--server_ip',
                        type=str,
                        default='',
                        help="For distant debugging.")
    parser.add_argument('--server_port',
                        type=str,
                        default='',
                        help="For distant debugging.")
    args = parser.parse_args()

    # Fix bug: Config is wrong from base.py if it is not base
    config['bert_dir'] = args.bert_dir
    config['albert_config_path'] = args.albert_config_path

    args.model_save_path = config['checkpoint_dir'] / f'{args.arch}'
    args.model_save_path.mkdir(exist_ok=True)

    # Setudistant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port),
                            redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
        args.n_gpu = 1

    args.device = device
    init_logger(log_file=config['log_dir'] / 'finetuning.log')
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank, device, args.n_gpu, bool(args.local_rank != -1),
        args.fp16)

    # Set seed
    seed_everything(args.seed)
    # --------- data
    processor = AlbertProcessor(vocab_path=config['albert_vocab_path'],
                                do_lower_case=args.do_lower_case)
    label_list = processor.get_labels()
    num_labels = len(label_list)

    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier(
        )  # Make sure only the first process in distributed training will download model & vocab

    bert_config = AlbertConfig.from_pretrained(str(
        config['albert_config_path']),
                                               share_type=args.share_type,
                                               num_labels=num_labels)

    logger.info("Training/evaluation parameters %s", args)
    metrics = Accuracy(topK=1)
    # Training
    if args.do_train:
        train_data = processor.get_train(config['data_dir'] / "train.txt")
        train_examples = processor.create_examples(
            lines=train_data,
            example_type='train',
            cached_examples_file=config['data_dir'] /
            f"cached_train_examples_{args.arch}")
        train_features = processor.create_features(
            examples=train_examples,
            max_seq_len=args.train_max_seq_len,
            cached_features_file=config['data_dir'] /
            "cached_train_features_{}_{}".format(args.train_max_seq_len,
                                                 args.arch))
        train_dataset = processor.create_dataset(train_features)
        train_sampler = RandomSampler(train_dataset)
        train_dataloader = DataLoader(train_dataset,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        valid_data = processor.get_dev(config['data_dir'] / "dev.txt")
        valid_examples = processor.create_examples(
            lines=valid_data,
            example_type='valid',
            cached_examples_file=config['data_dir'] /
            f"cached_valid_examples_{args.arch}")
        valid_features = processor.create_features(
            examples=valid_examples,
            max_seq_len=args.eval_max_seq_len,
            cached_features_file=config['data_dir'] /
            "cached_valid_features_{}_{}".format(args.eval_max_seq_len,
                                                 args.arch))
        valid_dataset = processor.create_dataset(valid_features)
        valid_sampler = SequentialSampler(valid_dataset)
        valid_dataloader = DataLoader(valid_dataset,
                                      sampler=valid_sampler,
                                      batch_size=args.eval_batch_size)

        model = AlbertForSequenceClassification.from_pretrained(
            config['bert_dir'], config=bert_config)
        if args.local_rank == 0:
            torch.distributed.barrier(
            )  # Make sure only the first process in distributed training will download model & vocab
        model.to(args.device)
        train(args, train_dataloader, valid_dataloader, metrics, model)

    if args.do_test:
        test_data = processor.get_train(config['data_dir'] / "test.txt")
        test_examples = processor.create_examples(
            lines=test_data,
            example_type='test',
            cached_examples_file=config['data_dir'] /
            f"cached_test_examples_{args.arch}")
        test_features = processor.create_features(
            examples=test_examples,
            max_seq_len=args.eval_max_seq_len,
            cached_features_file=config['data_dir'] /
            "cached_test_features_{}_{}".format(args.eval_max_seq_len,
                                                args.arch))
        test_dataset = processor.create_dataset(test_features)
        test_sampler = SequentialSampler(test_dataset)
        test_dataloader = DataLoader(test_dataset,
                                     sampler=test_sampler,
                                     batch_size=args.eval_batch_size)
        model = AlbertForSequenceClassification.from_pretrained(
            args.model_save_path, config=bert_config)
        model.to(args.device)
        test_log = evaluate(args, model, test_dataloader, metrics)
        print(test_log)
Esempio n. 3
0
def for_server(
    text: str,
    task: str,
):

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        args.n_gpu = 1
    args.device = device
    text = [''] + [['0'] + ['0'] + [text]]

    processor = processors[task]
    output_mode = output_modes[task]
    label_list = processor.get_labels()
    # num_labels = len(label_list)
    examples = processor._create_examples(text, 'predict')

    if args.local_rank in [-1, 0]:
        tokenizer = tokenization_albert.FullTokenizer(
            vocab_file=args.vocab_file,
            do_lower_case=args.do_lower_case,
        )
        checkpoints = [(0, args.output_dir)]
        if args.eval_all_checkpoints:
            checkpoints = list(
                os.path.dirname(c) for c in sorted(
                    glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME,
                              recursive=True)))
            checkpoints = [(int(checkpoint.split('-')[-1]), checkpoint)
                           for checkpoint in checkpoints
                           if checkpoint.find('checkpoint') != -1]
            checkpoints = sorted(checkpoints, key=lambda x: x[0])
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        if len(checkpoints) == 0:
            checkpoints = [(0, args.output_dir)]
        else:
            checkpoints = [checkpoints[-1]]
        for _, checkpoint in checkpoints:
            if len(os.listdir(checkpoint)) == 0:
                main()
            model = AlbertForSequenceClassification.from_pretrained(checkpoint)
            model.to(args.device)
            features = convert_examples_to_features(
                examples,
                tokenizer,
                label_list=label_list,
                max_seq_length=args.max_seq_length,
                output_mode=output_mode)
            all_input_ids = torch.tensor([f.input_ids for f in features],
                                         dtype=torch.long)

            all_attention_mask = torch.tensor(
                [f.attention_mask for f in features], dtype=torch.long)
            all_token_type_ids = torch.tensor(
                [f.token_type_ids for f in features], dtype=torch.long)
            all_lens = torch.tensor([f.input_len for f in features],
                                    dtype=torch.long)
            all_labels = torch.tensor([f.label for f in features],
                                      dtype=torch.long)
            dataset = TensorDataset(all_input_ids, all_attention_mask,
                                    all_token_type_ids, all_lens, all_labels)

            for step, batch in enumerate(dataset):
                model.eval()
                batch = tuple(t.to(args.device) for t in batch)
                with torch.no_grad():
                    inputs = {
                        'input_ids': batch[0].unsqueeze(0),
                        'attention_mask': batch[1].unsqueeze(0),
                    }
                    inputs['token_type_ids'] = batch[2].unsqueeze(0)
                    outputs = model(**inputs)
                    logits = outputs[0]
                    preds = np.argmax(logits, axis=1)
                    label = tasks_num_labels[task][preds]
                    logger.info('label is {}'.format(label))

    return label
Esempio n. 4
0
def main():
    if not os.path.exists(args.output_dir):
        os.mkdir(args.output_dir)
    # type_task = args.model_type + '_' + '{}'.format(args.task_name)
    # if not os.path.exists(os.path.join(args.output_dir, type_task)):
    #     os.mkdir(os.path.join(args.output_dir, type_task))
    init_logger(log_file=args.output_dir +
                '/{}-{}.log'.format(args.model_type, args.task_name))

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        args.n_gpu = 1
    args.device = device

    # logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
    #                args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
    seed_everything(args.seed)
    args.task_name = args.task_name.lower()
    if args.task_name not in processors:
        raise ValueError("Task not found: %s" % (args.task_name))
    processor = processors[args.task_name]
    args.output_mode = output_modes[args.task_name]
    label_list = processor.get_labels()
    num_labels = len(label_list)

    # if args.local_rank not in [-1, 0]:
    #     torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab

    args.model_type = args.model_type.lower()
    config = AlbertConfig.from_pretrained(
        args.config_name if args.config_name else args.model_name_or_path,
        num_labels=num_labels,
        finetuning_task=args.task_name)
    tokenizer = tokenization_albert.FullTokenizer(
        vocab_file=args.vocab_file,
        do_lower_case=args.do_lower_case,
    )
    model = AlbertForSequenceClassification.from_pretrained(
        args.model_name_or_path, config=config)
    model.to(args.device)
    logger.info("Training/evaluation parameters %s", args)

    # Training
    args.do_train = True
    if args.do_train:
        train_dataset = load_and_cache_examples(args,
                                                args.task_name,
                                                tokenizer,
                                                data_type='train')

        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
        logger.info(" global_step = %s, average loss = %s", global_step,
                    tr_loss)

    if args.do_train:
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)
        model_to_save = model.module if hasattr(
            model,
            'module') else model  # Take care of distributed/parallel training
        model_to_save.save_pretrained(args.output_dir)
        torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))

    # Evaluation
    args.do_eval = True
    results = []
    if args.do_eval and args.local_rank in [-1, 0]:
        tokenizer = tokenization_albert.FullTokenizer(
            vocab_file=args.vocab_file,
            do_lower_case=args.do_lower_case,
        )
        checkpoints = [(0, args.output_dir)]
        if args.eval_all_checkpoints:
            checkpoints = list(
                os.path.dirname(c) for c in sorted(
                    glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME,
                              recursive=True)))
            checkpoints = [(int(checkpoint.split('-')[-1]), checkpoint)
                           for checkpoint in checkpoints
                           if checkpoint.find('checkpoint') != -1]
            checkpoints = sorted(checkpoints, key=lambda x: x[0])
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for _, checkpoint in checkpoints:
            global_step = checkpoint.split(
                '-')[-1] if len(checkpoints) > 1 else ""
            prefix = checkpoint.split(
                '/')[-1] if checkpoint.find('checkpoint') != -1 else ""

            model = AlbertForSequenceClassification.from_pretrained(checkpoint)
            model.to(args.device)
            result = evaluate(args, model, tokenizer, prefix=prefix)
            results.extend([(k + '_{}'.format(global_step), v)
                            for k, v in result.items()])
        output_eval_file = os.path.join(args.output_dir,
                                        "checkpoint_eval_results.txt")

        with open(output_eval_file, "w") as writer:
            for key, value in results:
                writer.write("%s = %s\n" % (key, str(value)))

    args.do_predict = True
    predict_results = []
    if args.do_predict and args.local_rank in [-1, 0]:
        tokenizer = tokenization_albert.FullTokenizer(
            vocab_file=args.vocab_file,
            do_lower_case=args.do_lower_case,
        )
        checkpoints = [(0, args.output_dir)]
        if args.eval_all_checkpoints:
            checkpoints = list(
                os.path.dirname(c) for c in sorted(
                    glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME,
                              recursive=True)))
            checkpoints = [(int(checkpoint.split('-')[-1]), checkpoint)
                           for checkpoint in checkpoints
                           if checkpoint.find('checkpoint') != -1]
            checkpoints = sorted(checkpoints, key=lambda x: x[0])
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        checkpoints = [checkpoints[-1]]
        for _, checkpoint in checkpoints:
            global_step = checkpoint.split(
                '-')[-1] if len(checkpoints) > 1 else ""
            prefix = checkpoint.split(
                '/')[-1] if checkpoint.find('checkpoint') != -1 else ""

            model = AlbertForSequenceClassification.from_pretrained(checkpoint)
            model.to(args.device)
            result = predict(args, model, tokenizer, prefix=prefix)
            predict_results.extend([(k + '_{}'.format(global_step), v)
                                    for k, v in result.items()])
        output_eval_file = os.path.join(args.output_dir,
                                        "checkpoint_eval_results.txt")
        with open(output_eval_file, "w") as writer:
            for key, value in predict_results:
                writer.write("%s = %s\n" % (key, str(value)))
Esempio n. 5
0
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument("--model_type",
                        default=None,
                        type=str,
                        required=True,
                        help="Model type selected in the list: ")
    parser.add_argument(
        "--model_name_or_path",
        default=None,
        type=str,
        required=True,
        help="Path to pre-trained model or shortcut name selected in the list")
    parser.add_argument(
        "--task_name",
        default=None,
        type=str,
        required=True,
        help="The name of the task to train selected in the list: " +
        ", ".join(processors.keys()))
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The output directory where the model predictions and checkpoints will be written."
    )
    parser.add_argument("--vocab_file", default=None, type=str)
    parser.add_argument("--spm_model_file",
                        default=None,
                        required=True,
                        type=str)
    ## Other parameters
    parser.add_argument(
        "--config_name",
        default="",
        type=str,
        help="Pretrained config name or path if not the same as model_name")
    parser.add_argument(
        "--tokenizer_name",
        default="",
        type=str,
        help="Pretrained tokenizer name or path if not the same as model_name")
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help=
        "Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument(
        "--max_seq_length",
        default=512,
        type=int,
        help=
        "The maximum total input sequence length after tokenization. Sequences longer "
        "than this will be truncated, sequences shorter will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--do_predict",
        action='store_true',
        help="Whether to run the model in inference mode on the test set.")
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help="Set this flag if you are using an uncased model.")
    parser.add_argument('--share_type',
                        default='all',
                        type=str,
                        choices=['all', 'attention', 'ffn', 'None'])

    parser.add_argument("--per_gpu_train_batch_size",
                        default=8,
                        type=int,
                        help="Batch size per GPU/CPU for training.")
    parser.add_argument("--per_gpu_eval_batch_size",
                        default=8,
                        type=int,
                        help="Batch size per GPU/CPU for evaluation.")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--weight_decay",
                        default=0.0,
                        type=float,
                        help="Weight deay if we apply some.")
    parser.add_argument("--adam_epsilon",
                        default=1e-6,
                        type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm",
                        default=1.0,
                        type=float,
                        help="Max gradient norm.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help=
        "If > 0: set total number of training steps to perform. Override num_train_epochs."
    )
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for,E.g., 0.1 = 10% of training."
    )

    parser.add_argument('--logging_steps',
                        type=int,
                        default=10,
                        help="Log every X updates steps.")
    parser.add_argument('--save_steps',
                        type=int,
                        default=1000,
                        help="Save checkpoint every X updates steps.")
    parser.add_argument(
        "--eval_all_checkpoints",
        action='store_true',
        help=
        "Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number"
    )
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Avoid using CUDA when available")
    parser.add_argument('--overwrite_output_dir',
                        action='store_true',
                        help="Overwrite the content of the output directory")
    parser.add_argument(
        '--overwrite_cache',
        action='store_true',
        help="Overwrite the cached training and evaluation sets")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")

    parser.add_argument(
        '--fp16',
        action='store_true',
        help=
        "Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit"
    )
    parser.add_argument(
        '--fp16_opt_level',
        type=str,
        default='O1',
        help=
        "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="For distributed training: local_rank")
    parser.add_argument('--server_ip',
                        type=str,
                        default='',
                        help="For distant debugging.")
    parser.add_argument('--server_port',
                        type=str,
                        default='',
                        help="For distant debugging.")
    args = parser.parse_args()

    if not os.path.exists(args.output_dir):
        os.mkdir(args.output_dir)
    init_logger(log_file=args.output_dir +
                '/{}-{}.log'.format(args.model_type, args.task_name))
    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir
    ) and args.do_train and not args.overwrite_output_dir:
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome."
            .format(args.output_dir))

    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port),
                            redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
        args.n_gpu = 1
    args.device = device

    # Setup logging
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank, device, args.n_gpu, bool(args.local_rank != -1),
        args.fp16)

    # Set seed
    seed_everything(args.seed)
    # Prepare GLUE task
    args.task_name = args.task_name.lower()
    if args.task_name not in processors:
        raise ValueError("Task not found: %s" % (args.task_name))
    processor = processors[args.task_name]()
    args.output_mode = output_modes[args.task_name]
    label_list = processor.get_labels()
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier(
        )  # Make sure only the first process in distributed training will download model & vocab

    args.model_type = args.model_type.lower()
    config = BertConfig.from_pretrained(
        args.config_name if args.config_name else args.model_name_or_path,
        num_labels=num_labels,
        finetuning_task=args.task_name,
        share_type=args.share_type)
    tokenizer = tokenization.FullTokenizer(vocab_file=args.vocab_file,
                                           do_lower_case=args.do_lower_case,
                                           spm_model_file=args.spm_model_file)
    model = AlbertForSequenceClassification.from_pretrained(
        args.model_name_or_path,
        from_tf=bool('.ckpt' in args.model_name_or_path),
        config=config)

    if args.local_rank == 0:
        torch.distributed.barrier(
        )  # Make sure only the first process in distributed training will download model & vocab

    model.to(args.device)

    logger.info("Training/evaluation parameters %s", args)

    # Training
    if args.do_train:
        train_dataset = load_and_cache_examples(args,
                                                args.task_name,
                                                tokenizer,
                                                data_type='train')
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
        logger.info(" global_step = %s, average loss = %s", global_step,
                    tr_loss)

    # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
    if args.do_train and (args.local_rank == -1
                          or torch.distributed.get_rank() == 0):
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        model_to_save = model.module if hasattr(
            model,
            'module') else model  # Take care of distributed/parallel training
        model_to_save.save_pretrained(args.output_dir)
        # Good practice: save your training arguments together with the trained model
        torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))

    # Evaluation
    results = []
    if args.do_eval and args.local_rank in [-1, 0]:
        tokenizer = tokenization.FullTokenizer(
            vocab_file=args.vocab_file,
            do_lower_case=args.do_lower_case,
            spm_model_file=args.spm_model_file)
        checkpoints = [(0, args.output_dir)]
        if args.eval_all_checkpoints:
            checkpoints = list(
                os.path.dirname(c) for c in sorted(
                    glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME,
                              recursive=True)))
            logging.getLogger("transformers.modeling_utils").setLevel(
                logging.WARN)  # Reduce logging
            checkpoints = [(int(checkpoint.split('-')[-1]), checkpoint)
                           for checkpoint in checkpoints
                           if checkpoint.find('checkpoint') != -1]
            checkpoints = sorted(checkpoints, key=lambda x: x[0])
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for _, checkpoint in checkpoints:
            global_step = checkpoint.split(
                '-')[-1] if len(checkpoints) > 1 else ""
            prefix = checkpoint.split(
                '/')[-1] if checkpoint.find('checkpoint') != -1 else ""

            model = AlbertForSequenceClassification.from_pretrained(checkpoint)
            model.to(args.device)
            result = evaluate(args, model, tokenizer, prefix=prefix)
            results.extend([(k + '_{}'.format(global_step), v)
                            for k, v in result.items()])
        output_eval_file = os.path.join(args.output_dir,
                                        "checkpoint_eval_results.txt")
        with open(output_eval_file, "w") as writer:
            for key, value in results:
                writer.write("%s = %s\n" % (key, str(value)))
Esempio n. 6
0
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--data_dir", default='dataset/car_data', type=str, required=False,
                        help="输入数据文件地址")
    parser.add_argument("--model_type", default='albert', type=str, required=False,
                        help="模型种类")
    parser.add_argument("--model_name_or_path", default='prev_trained_model/albert_chinese_small', type=str,
                        required=False,
                        help="模型参数文件地址")
    parser.add_argument("--task_name", default='car', type=str, required=False,
                        help="那个种类数据" + ", ".join(processors.keys()))
    parser.add_argument("--output_dir", default='outputs', type=str, required=False,
                        help="输出文件地址")
    parser.add_argument("--vocab_file", default='prev_trained_model/albert_chinese_small/vocab.txt', type=str)

    ## Other parameters
    parser.add_argument("--config_name", default="", type=str,
                        help="配置文件地址")
    parser.add_argument("--tokenizer_name", default="", type=str,
                        help="Pretrained tokenizer name or path if not the same as model_name")
    parser.add_argument("--cache_dir", default="", type=str,
                        help="Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument("--max_seq_length", default=512, type=int,
                        help="句子最大长度")
    parser.add_argument("--do_train", action='store_true',
                        help="训练")
    parser.add_argument("--do_eval", action='store_true',
                        help="验证")
    parser.add_argument("--do_predict", action='store_true',
                        help="预测")
    parser.add_argument("--do_lower_case", action='store_true',
                        help="Set this flag if you are using an uncased model.")

    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int,
                        help="批量大小")
    parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int,
                        help="验证批量大小")
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
    parser.add_argument("--learning_rate", default=5e-5, type=float,
                        help="Adam学习率")
    parser.add_argument("--weight_decay", default=0.0, type=float,
                        help="Weight deay if we apply some.")
    parser.add_argument("--adam_epsilon", default=1e-6, type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float,
                        help="Max gradient norm.")
    parser.add_argument("--num_train_epochs", default=3.0, type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--max_steps", default=-1, type=int,
                        help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
    parser.add_argument("--warmup_proportion", default=0.1, type=float,
                        help="Proportion of training to perform linear learning rate warmup for,E.g., 0.1 = 10% of training.")

    parser.add_argument('--logging_steps', type=int, default=10,
                        help="Log every X updates steps.")
    parser.add_argument('--save_steps', type=int, default=1000,
                        help="每多少部保存一次")
    parser.add_argument("--eval_all_checkpoints",type=str,default='do',# action='store_true',
                        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
    parser.add_argument("--no_cuda", type=int, default=0,  # action='store_true',
                        help="GPU")
    parser.add_argument('--overwrite_output_dir', action='store_true',
                        help="Overwrite the content of the output directory")
    parser.add_argument('--overwrite_cache', action='store_true',
                        help="Overwrite the cached training and evaluation sets")
    parser.add_argument('--seed', type=int, default=42,
                        help="随机种子")

    parser.add_argument('--fp16', action='store_true',
                        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
    parser.add_argument('--fp16_opt_level', type=str, default='O1',
                        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
                             "See details at https://nvidia.github.io/apex/amp.html")
    parser.add_argument("--local_rank", type=int, default=0,
                        help="For distributed training: local_rank")

    args = parser.parse_args()

    if not os.path.exists(args.output_dir):
        os.mkdir(args.output_dir)
    type_task = args.model_type + '_' + '{}'.format(args.task_name)
    if not os.path.exists(os.path.join(args.output_dir, type_task)):
        os.mkdir(os.path.join(args.output_dir, type_task))
    init_logger(log_file=args.output_dir + '/{}-{}.log'.format(args.model_type, args.task_name))

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        # torch.distributed.init_process_group(backend='nccl')
        args.n_gpu = 1
    args.device = device

    # Setup logging
    logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
                   args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
    # Set seed
    seed_everything(args.seed)
    # Prepare GLUE task
    args.task_name = args.task_name.lower()
    if args.task_name not in processors:
        raise ValueError("Task not found: %s" % (args.task_name))
    processor = processors[args.task_name]()
    args.output_mode = output_modes[args.task_name]
    label_list = processor.get_labels()
    num_labels = len(label_list)

    args.model_type = args.model_type.lower()
    config = AlbertConfig.from_pretrained(args.config_name if args.config_name else args.model_name_or_path,
                                          num_labels=num_labels,
                                          finetuning_task=args.task_name)
    tokenizer = tokenization_albert.FullTokenizer(vocab_file=args.vocab_file, do_lower_case=args.do_lower_case,
                                                 )
    model =AlbertForSequenceClassification.from_pretrained(args.model_name_or_path,                                                            config=config)
    #if args.local_rank == 0:
    #    torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
    model.to(args.device)
    logger.info("Training/evaluation parameters %s", args)

    # Training
    # args.do_train = True
    if args.do_train:
        train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, data_type='train')
        
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)

    # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
    if args.do_train:# and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        model_to_save = model.module if hasattr(model,
                                                'module') else model  # Take care of distributed/parallel training
        model_to_save.save_pretrained(args.output_dir)
        # Good practice: save your training arguments together with the trained model
        torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))

    # Evaluation
    # args.do_eval = True
    results = []
    if args.do_eval and args.local_rank in [-1, 0]:
        tokenizer = tokenization_albert.FullTokenizer(vocab_file=args.vocab_file,
                                                      do_lower_case=args.do_lower_case,
                                                      )
        checkpoints = [(0,args.output_dir)]
        if args.eval_all_checkpoints:
            checkpoints = list(
                os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
            checkpoints = [(int(checkpoint.split('-')[-1]),checkpoint) for checkpoint in checkpoints if checkpoint.find('checkpoint') != -1]
            checkpoints = sorted(checkpoints,key =lambda x:x[0])
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for _,checkpoint in checkpoints:
            global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
            prefix = checkpoint.split('/')[-1] if checkpoint.find('checkpoint') != -1 else ""

            model =AlbertForSequenceClassification.from_pretrained(checkpoint)
            model.to(args.device)
            result = evaluate(args, model, tokenizer, prefix=prefix)
            results.extend([(k + '_{}'.format(global_step), v) for k, v in result.items()])
        output_eval_file = os.path.join(args.output_dir, "checkpoint_eval_results.txt")
        with open(output_eval_file, "w") as writer:
            for key,value in results:
                writer.write("%s = %s\n" % (key, str(value)))

    # args.do_predict = True
    predict_results = []
    if args.do_predict and args.local_rank in [-1, 0]:
        tokenizer = tokenization_albert.FullTokenizer(vocab_file=args.vocab_file,
                                                      do_lower_case=args.do_lower_case,
                                                      )
        # checkpoints_path = os.path.join(args.output_dir, 'checkpoint-4000')
        checkpoints = [(0, args.output_dir)]
        
        if args.eval_all_checkpoints:
            checkpoints = list(
                os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
            checkpoints = [(int(checkpoint.split('-')[-1]), checkpoint) for checkpoint in checkpoints if
                           checkpoint.find('checkpoint') != -1]
            checkpoints = sorted(checkpoints, key=lambda x: x[0])
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        checkpoints = [checkpoints[-1]]

        for _, checkpoint in checkpoints:
            global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
            prefix = checkpoint.split('/')[-1] if checkpoint.find('checkpoint') != -1 else ""

            model = AlbertForSequenceClassification.from_pretrained(checkpoint)
            model.to(args.device)
            result = predict(args, model, tokenizer, prefix=prefix)
            predict_results.extend([(k + '_{}'.format(global_step), v) for k, v in result.items()])
        output_eval_file = os.path.join(args.output_dir, "checkpoint_eval_results.txt")
        with open(output_eval_file, "w") as writer:
            for key, value in predict_results:
                writer.write("%s = %s\n" % (key, str(value)))