Esempio n. 1
0
def nms(dets, thresh, force_cpu=False):
    """Dispatch to either CPU or GPU NMS implementations."""
    if dets.shape[0] == 0:
        return []
    # ---numpy version---
    # original: return gpu_nms(dets, thresh, device_id=cfg.GPU_ID)
    # ---pytorch version---

    # Force nms_gpu Compile check
    try:
        return nms_gpu(dets, thresh) if force_cpu == False else nms_cpu(
            dets, thresh)
    except NameError:
        return nms_cpu(dets, thresh)
Esempio n. 2
0
def nms(dets, thresh, force_cpu=False):
    """Dispatch to either CPU or GPU NMS implementations."""
    if dets.shape[0] == 0:
        return []
    # ---numpy version---
    # original: return gpu_nms(dets, thresh, device_id=cfg.GPU_ID)
    # ---pytorch version---

    return nms_gpu(dets, thresh) if force_cpu == False else nms_cpu(dets, thresh)
Esempio n. 3
0
    def forward(self, loc_data, conf_data, prior_data):
        bs = loc_data.size(0)  # batch size
        num_priors = prior_data.size(0)
        output = torch.zeros(bs, self.num_classes * self.top_k,
                             6).to(loc_data.device)
        conf_preds = \
            conf_data.view(bs, num_priors, self.num_classes).transpose(2, 1)

        # Decode predictions into bboxes.
        for i in range(bs):
            decoded_boxes = decode(loc_data[i], prior_data, self.variance)
            # For each class, perform nms
            conf_scores = conf_preds[i].clone()
            det_max = []
            for cl in range(1, self.num_classes):
                c_mask = conf_scores[cl].gt(self.conf_thresh)
                scores = conf_scores[cl][c_mask].view(-1)
                if scores.size(0) == 0:
                    continue
                l_mask = c_mask.unsqueeze(1).expand_as(decoded_boxes)
                boxes = decoded_boxes[l_mask].view(-1, 4)
                # idx of highest scoring and non-overlapping boxes per class
                keep = nms_cpu(boxes, scores, self.nms_thresh, self.top_k)
                count = len(keep)
                if count > 0:
                    _classes = torch.tensor([[cl * 1.0] for _ in range(count)
                                             ]).to(loc_data.device)
                    det_max.append(
                        torch.cat(
                            (boxes[keep], scores[keep].unsqueeze(1), _classes),
                            1))
            if len(det_max):
                det_max = torch.cat(det_max)
                output[i, :len(det_max)] = det_max[det_max[:, 4].argsort(
                    descending=True)]

        return output
Esempio n. 4
0
        if vis:
            im = cv2.imread(imdb.image_path_at(i))
            im2show = np.copy(im)
        for j in xrange(1, imdb.num_obj_classes):
            inds = torch.nonzero(scores[:, j] >= thresh).view(-1)
            # if there is det
            if inds.numel() > 0:
                cls_scores = scores[:, j][inds.data]
                _, order = torch.sort(cls_scores, 0, True)
                cls_boxes = torch.FloatTensor(
                    np.array(pred_boxes)[inds.data, j, :])
                cls_dets = torch.cat(
                    (cls_boxes, cls_scores.data.cpu().unsqueeze(1)), 1)
                cls_dets = cls_dets[order.data.cpu()]
                keep = nms_cpu(cls_dets, cfg.TEST.NMS)
                cls_dets = cls_dets[keep.view(-1).long()]
                if vis:
                    im2show = vis_detections(im2show, imdb._obj_classes[j],
                                             cls_dets.cpu().numpy(), 0.3)
                all_boxes[j][i] = cls_dets.cpu().numpy()
            else:
                all_boxes[j][i] = empty_array

        # Limit to max_per_image detections *over all classes*
        if max_per_image > 0:
            image_scores = np.hstack([
                all_boxes[j][i][:, -1] for j in xrange(1, imdb.num_obj_classes)
            ])
            if len(image_scores) > max_per_image:
                image_thresh = np.sort(image_scores)[-max_per_image]