Esempio n. 1
0
def test_ridge(data):
    estimator = make_pipeline(
        StandardScaler(),
        MLPRegressor(hidden_layer_sizes=(50, 15,))
    )

    ttr.check_model(data, "MLPRegressor", estimator)
Esempio n. 2
0
def test(data):
    svr = make_pipeline(
        # PolynomialFeatures(),
        StandardScaler(),
        SVR(kernel="rbf", C=25, gamma="scale"),
    )
    ttr.check_model(data, "SVR rbf", svr)
Esempio n. 3
0
def test_linear_model(data):
    ttr.check_model(
        data,
        "SGD",
        make_pipeline(
            # StandardScaler(),
            PolynomialFeatures(),
            SGDRegressor(max_iter=1000, tol=1e-3)))
def test_search_random_forest(data):

    grid_params = {
        "randomforestregressor__n_estimators": [20, 50, 100, 150, 200],
        "randomforestregressor__criterion": ["mse"],
        "randomforestregressor__min_samples_leaf": [2, 4, 8, 16, 32],
    }
    model = make_pipeline(
        ColumnRemover(("timeStamp", )),
        RandomForestRegressor(),
    )

    ttr.search(data, "Random Forest", model, grid_params)
Esempio n. 5
0
def test_scan(data):
    parameters = {
        "svr__kernel": ["rbf"],
        # "kernel": ["rbf", "poly", "sigmoid"],
        "svr__C": [1, 10, 25, 30],
        "svr__gamma": ["auto", 2. / 16, 4. / 16, 1.]
    }

    svr = make_pipeline(
        ColumnRemover(("timeStamp",)),
        StandardScaler(),
        SVR(),
    )
    ttr.search(data, "SVR ", svr, parameters)
def test_bagging(data):
    ttr.check_model(data, "Bagging", BaggingRegressor())
def test_gradient(data):
    ttr.check_model(data, "Gradient boost", GradientBoostingRegressor())
def test_ada(data):
    ttr.check_model(data, "Ada boost", AdaBoostRegressor())
def test_random_forest(data):
    ttr.check_model(data, "Random Forest", RandomForestRegressor())
Esempio n. 10
0
def main():
    rf = make_pipeline(
        StandardScaler(),
        SVR(kernel="rbf", C=25),
    )
    ttr.check_model("SVR", rf)