Esempio n. 1
0
def main(args):
    """main"""
    model_config = UNIMOConfig(args.unimo_config_path)
    model_config.print_config()

    gpu_id = 0
    gpus = fluid.core.get_cuda_device_count()
    if args.is_distributed and os.getenv("FLAGS_selected_gpus") is not None:
        gpu_list = os.getenv("FLAGS_selected_gpus").split(",")
        gpus = len(gpu_list)
        gpu_id = int(gpu_list[0])

    if args.use_cuda:
        place = fluid.CUDAPlace(gpu_id)
        dev_count = gpus
    else:
        place = fluid.CPUPlace()
        dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))

    tokenizer = GptBpeTokenizer(vocab_file=args.unimo_vocab_file,
                                encoder_json_file=args.encoder_json_file,
                                vocab_bpe_file=args.vocab_bpe_file,
                                do_lower_case=args.do_lower_case)

    if not (args.do_train or args.do_val or args.do_test or args.do_test_hard):
        raise ValueError(
            "For args `do_train`, `do_val`, `do_test`, `do_test_hard`, at "
            "least one of them must be True.")

    startup_prog = fluid.Program()
    if args.random_seed is not None:
        startup_prog.random_seed = args.random_seed

    trainers_num = int(os.getenv("PADDLE_TRAINERS_NUM", "1"))

    if args.do_train:
        train_data_reader = ClassifyReader(args.train_filelist,
                                           args.max_seq_len, tokenizer)
        train_data_generator = train_data_reader.data_generator(
            batch_size=args.batch_size, epoch=args.epoch, phase="train")

        if args.num_train_examples:
            num_train_examples = args.num_train_examples
        else:
            num_train_examples = train_data_reader.get_num_examples()
        step_num_per_epoch = num_train_examples // args.batch_size // trainers_num
        max_train_steps = args.epoch * step_num_per_epoch

        warmup_steps = int(max_train_steps * args.warmup_proportion)
        print("Device count: %d, gpu_id: %d" % (dev_count, gpu_id))
        print("Num train examples: %d" % num_train_examples)
        print("Max train steps: %d" % max_train_steps)
        print("Num warmup steps: %d" % warmup_steps)

        train_program = fluid.Program()

        with fluid.program_guard(train_program, startup_prog):
            with fluid.unique_name.guard():
                train_pyreader, graph_vars = create_model(
                    args,
                    config=model_config,
                    pyreader_name="train_reader",
                    is_train=True)

                scheduled_lr, loss_scaling = optimization(
                    loss=graph_vars["loss"],
                    warmup_steps=warmup_steps,
                    num_train_steps=max_train_steps,
                    learning_rate=args.learning_rate,
                    train_program=train_program,
                    weight_decay=args.weight_decay,
                    scheduler=args.lr_scheduler,
                    use_fp16=args.use_fp16,
                    use_dynamic_loss_scaling=args.use_dynamic_loss_scaling,
                    init_loss_scaling=args.init_loss_scaling,
                    beta1=args.beta1,
                    beta2=args.beta2,
                    epsilon=args.epsilon)

    if args.do_val or args.do_test or args.do_test_hard:
        test_prog = fluid.Program()
        with fluid.program_guard(test_prog, startup_prog):
            with fluid.unique_name.guard():
                test_pyreader, test_graph_vars = create_model(
                    args,
                    config=model_config,
                    pyreader_name="dev_reader",
                    is_train=False)
        test_prog = test_prog.clone(for_test=True)
        if args.do_val:
            dev_data_reader = ClassifyReader(args.dev_filelist,
                                             args.max_seq_len, tokenizer)
            dev_data_generator = dev_data_reader.data_generator(
                batch_size=args.test_batch_size, epoch=1, phase="dev")

        if args.do_test:
            test_data_reader = ClassifyReader(args.test_filelist,
                                              args.max_seq_len, tokenizer)
            test_data_generator = test_data_reader.data_generator(
                batch_size=args.test_batch_size, epoch=1, phase="test")

        if args.do_test_hard:
            test_hard_data_reader = ClassifyReader(args.test_hard_filelist,
                                                   args.max_seq_len, tokenizer)
            test_hard_data_generator = test_hard_data_reader.data_generator(
                batch_size=args.test_batch_size, epoch=1, phase="test_hard")

    nccl2_num_trainers = 1
    nccl2_trainer_id = 0
    print("args.is_distributed:", args.is_distributed)
    if args.is_distributed:
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
        worker_endpoints_env = os.getenv("PADDLE_TRAINER_ENDPOINTS")
        current_endpoint = os.getenv("PADDLE_CURRENT_ENDPOINT")
        worker_endpoints = worker_endpoints_env.split(",")
        trainers_num = len(worker_endpoints)

        print("worker_endpoints:{} trainers_num:{} current_endpoint:{} \
              trainer_id:{}".format(worker_endpoints, trainers_num,
                                    current_endpoint, trainer_id))

        # prepare nccl2 env.
        config = fluid.DistributeTranspilerConfig()
        config.mode = "nccl2"
        if args.nccl_comm_num > 1:
            config.nccl_comm_num = args.nccl_comm_num
        if args.use_hierarchical_allreduce and trainers_num > args.hierarchical_allreduce_inter_nranks:
            config.use_hierarchical_allreduce = args.use_hierarchical_allreduce
            config.hierarchical_allreduce_inter_nranks = args.hierarchical_allreduce_inter_nranks

            assert config.hierarchical_allreduce_inter_nranks > 1
            assert trainers_num % config.hierarchical_allreduce_inter_nranks == 0

            config.hierarchical_allreduce_exter_nranks = \
                trainers_num / config.hierarchical_allreduce_inter_nranks

        t = fluid.DistributeTranspiler(config=config)
        t.transpile(trainer_id,
                    trainers=worker_endpoints_env,
                    current_endpoint=current_endpoint,
                    program=train_program if args.do_train else test_prog,
                    startup_program=startup_prog)
        nccl2_num_trainers = trainers_num
        nccl2_trainer_id = trainer_id

    exe = fluid.Executor(place)
    exe.run(startup_prog)

    if args.do_train:
        if args.init_checkpoint and args.init_pretraining_params:
            print(
                "WARNING: args 'init_checkpoint' and 'init_pretraining_params' "
                "both are set! Only arg 'init_checkpoint' is made valid.")
        if args.init_checkpoint:
            init_checkpoint(exe,
                            args.init_checkpoint,
                            main_program=train_program)
        elif args.init_pretraining_params:
            init_pretraining_params(exe,
                                    args.init_pretraining_params,
                                    main_program=train_program)
    elif args.do_val or args.do_test or args.do_test_hard:
        args.init_checkpoint = args.init_pretraining_params
        if not args.init_checkpoint:
            raise ValueError("args 'init_checkpoint' should be set if"
                             "only doing validation or testing!")
        init_checkpoint(exe, args.init_checkpoint, main_program=startup_prog)

    if args.do_train:
        exec_strategy = fluid.ExecutionStrategy()
        if args.use_fast_executor:
            exec_strategy.use_experimental_executor = True
        exec_strategy.num_threads = 4 if args.use_fp16 else 2
        exec_strategy.num_iteration_per_drop_scope = min(
            args.num_iteration_per_drop_scope, args.skip_steps)

        build_strategy = fluid.BuildStrategy()
        build_strategy.remove_unnecessary_lock = False

        if args.use_fuse:
            build_strategy.fuse_all_reduce_ops = True

        train_exe = fluid.ParallelExecutor(use_cuda=args.use_cuda,
                                           loss_name=graph_vars["loss"].name,
                                           build_strategy=build_strategy,
                                           exec_strategy=exec_strategy,
                                           main_program=train_program,
                                           num_trainers=nccl2_num_trainers,
                                           trainer_id=nccl2_trainer_id)
        train_pyreader.decorate_tensor_provider(train_data_generator)
    else:
        train_exe = None

    if args.do_val or args.do_test or args.do_test_hard:
        test_exe = fluid.ParallelExecutor(use_cuda=args.use_cuda,
                                          main_program=test_prog,
                                          share_vars_from=train_exe)

    dev_ret_history = []  # (steps, key_eval, eval)
    test_ret_history = []  # (steps, key_eval, eval)
    test_hard_ret_history = []  # (steps, key_eval, eval)
    steps = 0

    if args.do_train:
        train_pyreader.start()
        time_begin = time.time()
        skip_steps = args.skip_steps
        while True:
            try:
                steps += 1
                if steps % skip_steps == 0:
                    train_fetch_list = [
                        graph_vars["loss"].name, scheduled_lr.name
                    ]
                    res = train_exe.run(fetch_list=train_fetch_list)
                    outputs = {
                        "loss": np.mean(res[0]),
                        'learning_rate': float(res[1][0])
                    }
                    if args.verbose:
                        verbose = "train pyreader queue size: %d, learning_rate: %.10f" % \
                                (train_pyreader.queue.size(), outputs['learning_rate'])
                        print(verbose)
                    current_epoch, current_example, current_file_index, total_file, current_file = \
                            train_data_reader.get_progress()

                    time_end = time.time()
                    used_time = time_end - time_begin
                    print("%s - epoch: %d, progress: %d/%d, %d/%d, step: %d, ave loss: %f, speed: %f steps/s" % \
                          (get_time(), current_epoch, current_example, num_train_examples, current_file_index, \
                          total_file, steps, outputs["loss"], args.skip_steps / used_time))
                    time_begin = time.time()
                else:
                    train_exe.run(fetch_list=[])

                if nccl2_trainer_id == 0:
                    if steps % args.save_steps == 0 and args.save_checkpoints:
                        save_path = os.path.join(args.checkpoints,
                                                 "step_" + str(steps))
                        fluid.io.save_persistables(exe, save_path,
                                                   train_program)

                if steps % args.validation_steps == 0:
                    # evaluate dev set
                    if args.do_val:
                        test_pyreader.decorate_tensor_provider(
                            dev_data_generator)
                        outputs = evaluate(args, test_exe, test_pyreader, test_graph_vars, \
                                "dev", trainers_num, nccl2_trainer_id)
                        if nccl2_trainer_id == 0:
                            dev_ret_history.append(
                                (steps, outputs['key_eval'],
                                 outputs[outputs['key_eval']]))

                    # evaluate test set
                    if args.do_test:
                        test_pyreader.decorate_tensor_provider(
                            test_data_generator)
                        outputs = evaluate(args, test_exe, test_pyreader, test_graph_vars, \
                                "test", trainers_num, nccl2_trainer_id)
                        if nccl2_trainer_id == 0:
                            test_ret_history.append(
                                (steps, outputs['key_eval'],
                                 outputs[outputs['key_eval']]))

                    # evaluate test set
                    if args.do_test_hard:
                        test_pyreader.decorate_tensor_provider(
                            test_hard_data_generator)
                        outputs = evaluate(args, test_exe, test_pyreader, test_graph_vars, \
                                "test_hard", trainers_num, nccl2_trainer_id)
                        if nccl2_trainer_id == 0:
                            test_hard_ret_history.append(
                                (steps, outputs['key_eval'],
                                 outputs[outputs['key_eval']]))

            except fluid.core.EOFException:
                if args.save_checkpoints:
                    save_path = os.path.join(args.checkpoints,
                                             "step_" + str(steps))
                    fluid.io.save_persistables(exe, save_path, train_program)
                train_pyreader.reset()
                break

    # final eval on dev set
    if args.do_val:
        test_pyreader.decorate_tensor_provider(dev_data_generator)
        outputs = evaluate(args, test_exe, test_pyreader, test_graph_vars,
                           "dev", trainers_num, nccl2_trainer_id)
        if nccl2_trainer_id == 0:
            dev_ret_history.append(
                (steps, outputs['key_eval'], outputs[outputs['key_eval']]))

    # final eval on test set
    if args.do_test:
        test_pyreader.decorate_tensor_provider(test_data_generator)
        outputs = evaluate(args, test_exe, test_pyreader, test_graph_vars,
                           "test", trainers_num, nccl2_trainer_id)
        if nccl2_trainer_id == 0:
            test_ret_history.append(
                (steps, outputs['key_eval'], outputs[outputs['key_eval']]))

    # final eval on test_hard set
    if args.do_test_hard:
        test_pyreader.decorate_tensor_provider(test_hard_data_generator)
        outputs = evaluate(args, test_exe, test_pyreader, test_graph_vars,
                           "test_hard", trainers_num, nccl2_trainer_id)
        if nccl2_trainer_id == 0:
            test_hard_ret_history.append(
                (steps, outputs['key_eval'], outputs[outputs['key_eval']]))

    if nccl2_trainer_id == 0:
        if args.do_val:
            dev_ret_history = sorted(dev_ret_history,
                                     key=lambda a: a[2],
                                     reverse=True)
            print("Best validation result: step %d %s %f" % \
                    (dev_ret_history[0][0], dev_ret_history[0][1], dev_ret_history[0][2]))
Esempio n. 2
0
def main(args):
    """main"""
    model_config = UNIMOConfig(args.unimo_config_path)
    model_config.print_config()

    gpu_id = 0
    gpus = fluid.core.get_cuda_device_count()
    if args.is_distributed and os.getenv("FLAGS_selected_gpus") is not None:
        gpu_list = os.getenv("FLAGS_selected_gpus").split(",")
        gpus = len(gpu_list)
        gpu_id = int(gpu_list[0])

    if args.use_cuda:
        place = fluid.CUDAPlace(gpu_id)
        dev_count = gpus
    else:
        place = fluid.CPUPlace()
        dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))

    tokenizer = GptBpeTokenizer(vocab_file=args.unimo_vocab_file,
                                encoder_json_file=args.encoder_json_file,
                                vocab_bpe_file=args.vocab_bpe_file,
                                do_lower_case=args.do_lower_case)

    data_reader = RegressionReader(tokenizer, args)

    if not (args.do_train or args.do_val or args.do_test):
        raise ValueError("For args `do_train`, `do_val` and `do_test`, at "
                         "least one of them must be True.")

    startup_prog = fluid.Program()
    if args.random_seed is not None:
        startup_prog.random_seed = args.random_seed

    if args.do_train:
        trainers_num = int(os.getenv("PADDLE_TRAINERS_NUM", "1"))
        train_data_generator = data_reader.data_generator(
            input_file=args.train_set,
            batch_size=args.batch_size,
            epoch=args.epoch,
            dev_count=trainers_num,
            shuffle=True,
            phase="train")

        num_train_examples = data_reader.get_num_examples(args.train_set)

        if args.in_tokens:
            max_train_steps = args.epoch * num_train_examples // (
                    args.batch_size // args.max_seq_len) // trainers_num
        else:
            max_train_steps = args.epoch * num_train_examples // args.batch_size // trainers_num

        warmup_steps = int(max_train_steps * args.warmup_proportion)
        print("Device count: %d, gpu_id: %d" % (dev_count, gpu_id))
        print("Num train examples: %d" % num_train_examples)
        print("Max train steps: %d" % max_train_steps)
        print("Num warmup steps: %d" % warmup_steps)

        train_program = fluid.Program()

        with fluid.program_guard(train_program, startup_prog):
            with fluid.unique_name.guard():
                train_pyreader, graph_vars = create_model(
                    args,
                    pyreader_name='train_reader',
                    config=model_config)
                scheduled_lr, loss_scaling = optimization(
                    loss=graph_vars["loss"],
                    warmup_steps=warmup_steps,
                    num_train_steps=max_train_steps,
                    learning_rate=args.learning_rate,
                    train_program=train_program,
                    weight_decay=args.weight_decay,
                    scheduler=args.lr_scheduler,
                    use_fp16=args.use_fp16,
                    use_dynamic_loss_scaling=args.use_dynamic_loss_scaling,
                    init_loss_scaling=args.init_loss_scaling,
                    beta1=args.beta1,
                    beta2=args.beta2,
                    epsilon=args.epsilon)

        if args.verbose:
            if args.in_tokens:
                lower_mem, upper_mem, unit = fluid.contrib.memory_usage(
                    program=train_program,
                    batch_size=args.batch_size // args.max_seq_len)
            else:
                lower_mem, upper_mem, unit = fluid.contrib.memory_usage(
                    program=train_program, batch_size=args.batch_size)
            print("Theoretical memory usage in training: %.3f - %.3f %s" %
                  (lower_mem, upper_mem, unit))

    if args.do_val or args.do_test or args.do_pred:
        test_prog = fluid.Program()
        with fluid.program_guard(test_prog, startup_prog):
            with fluid.unique_name.guard():
                test_pyreader, graph_vars = create_model(
                    args,
                    pyreader_name='test_reader',
                    config=model_config)

        test_prog = test_prog.clone(for_test=True)

    nccl2_num_trainers = 1
    nccl2_trainer_id = 0
    print("args.is_distributed:", args.is_distributed)
    if args.is_distributed:
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
        worker_endpoints_env = os.getenv("PADDLE_TRAINER_ENDPOINTS")
        current_endpoint = os.getenv("PADDLE_CURRENT_ENDPOINT")
        worker_endpoints = worker_endpoints_env.split(",")
        trainers_num = len(worker_endpoints)

        print("worker_endpoints:{} trainers_num:{} current_endpoint:{} \
              trainer_id:{}".format(worker_endpoints, trainers_num,
                                    current_endpoint, trainer_id))

        # prepare nccl2 env.
        config = fluid.DistributeTranspilerConfig()
        config.mode = "nccl2"
        if args.nccl_comm_num > 1:
            config.nccl_comm_num = args.nccl_comm_num
        if args.use_hierarchical_allreduce and trainers_num > args.hierarchical_allreduce_inter_nranks:
            config.use_hierarchical_allreduce = args.use_hierarchical_allreduce
            config.hierarchical_allreduce_inter_nranks = args.hierarchical_allreduce_inter_nranks

            assert config.hierarchical_allreduce_inter_nranks > 1
            assert trainers_num % config.hierarchical_allreduce_inter_nranks == 0

            config.hierarchical_allreduce_exter_nranks = \
                trainers_num / config.hierarchical_allreduce_inter_nranks

        t = fluid.DistributeTranspiler(config=config)
        t.transpile(
            trainer_id,
            trainers=worker_endpoints_env,
            current_endpoint=current_endpoint,
            program=train_program if args.do_train else test_prog,
            startup_program=startup_prog)
        nccl2_num_trainers = trainers_num
        nccl2_trainer_id = trainer_id

    exe = fluid.Executor(place)
    exe.run(startup_prog)

    if args.do_train:
        if args.init_checkpoint and args.init_pretraining_params:
            print(
                "WARNING: args 'init_checkpoint' and 'init_pretraining_params' "
                "both are set! Only arg 'init_checkpoint' is made valid.")
        if args.init_checkpoint:
            init_checkpoint(
                exe,
                args.init_checkpoint,
                main_program=train_program)
        elif args.init_pretraining_params:
            init_pretraining_params(
                exe,
                args.init_pretraining_params,
                main_program=train_program)
    elif args.do_val or args.do_test or args.do_pred:
        if not args.init_checkpoint:
            raise ValueError("args 'init_checkpoint' should be set if"
                             "only doing validation or testing!")
        init_checkpoint(
            exe,
            args.init_checkpoint,
            main_program=startup_prog)

    if args.do_train:
        exec_strategy = fluid.ExecutionStrategy()
        if args.use_fast_executor:
            exec_strategy.use_experimental_executor = True
        exec_strategy.num_threads = dev_count
        exec_strategy.num_iteration_per_drop_scope = args.num_iteration_per_drop_scope

        train_exe = fluid.ParallelExecutor(
            use_cuda=args.use_cuda,
            loss_name=graph_vars["loss"].name,
            exec_strategy=exec_strategy,
            main_program=train_program,
            num_trainers=nccl2_num_trainers,
            trainer_id=nccl2_trainer_id)

        train_pyreader.decorate_tensor_provider(train_data_generator)
    else:
        train_exe = None

    test_exe = exe
    if args.do_val or args.do_test or args.do_pred:
        if args.use_multi_gpu_test:
            test_exe = fluid.ParallelExecutor(
                use_cuda=args.use_cuda,
                main_program=test_prog,
                share_vars_from=train_exe)

    dev_ret_history = [] # (steps, key_eval, eval)
    if args.do_train:
        train_pyreader.start()
        steps = 0
        if warmup_steps > 0:
            graph_vars["learning_rate"] = scheduled_lr

        time_begin = time.time()
        skip_steps = args.skip_steps
        while True:
            try:
                steps += 1
                if steps % skip_steps == 0:
                    train_fetch_list = [
                        graph_vars["loss"].name,
                    ]
                    if "learning_rate" in graph_vars:
                        train_fetch_list.append(graph_vars["learning_rate"].name)
                    res = train_exe.run(fetch_list=train_fetch_list)

                    outputs = {"loss": np.mean(res[0])}
                    if "learning_rate" in graph_vars:
                        outputs["learning_rate"] = float(res[1][0])

                    if args.verbose:
                        verbose = "train pyreader queue size: %d, " % train_pyreader.queue.size(
                        )
                        verbose += "learning rate: %f" % (
                            outputs["learning_rate"]
                            if warmup_steps > 0 else args.learning_rate)
                        print(verbose)

                    current_example, current_epoch = data_reader.get_train_progress()
                    time_end = time.time()
                    used_time = time_end - time_begin
                    print("%s - epoch: %d, progress: %d/%d, step: %d, ave loss: %f, speed: %f steps/s" % \
                          (get_time(), current_epoch, current_example, num_train_examples, steps, \
                          outputs["loss"], args.skip_steps / used_time))
                    time_begin = time.time()
                else:
                    train_exe.run(fetch_list=[])

                if nccl2_trainer_id == 0:
                    if steps % args.save_steps == 0 and args.save_checkpoints:
                        save_path = os.path.join(args.checkpoints,
                                                 "step_" + str(steps))
                        fluid.io.save_persistables(exe, save_path, train_program)

                    if steps % args.validation_steps == 0:
                        # evaluate dev set
                        if args.do_val:
                            test_pyreader.decorate_tensor_provider(
                                data_reader.data_generator(
                                    args.dev_set,
                                    batch_size=args.batch_size,
                                    epoch=1,
                                    dev_count=1,
                                    shuffle=False))
                            outputs = evaluate(args, test_exe, test_prog, test_pyreader, graph_vars, "dev")
                            dev_ret_history.append((steps, outputs['key_eval'], outputs[outputs['key_eval']]))

                        # evaluate test set
                        if args.do_test:
                            test_pyreader.decorate_tensor_provider(
                                data_reader.data_generator(
                                    args.test_set,
                                    batch_size=args.batch_size,
                                    epoch=1,
                                    dev_count=1,
                                    shuffle=False))
                            outputs = evaluate(args, test_exe, test_prog, test_pyreader, graph_vars, "test")

                        if args.do_pred:
                            test_pyreader.decorate_tensor_provider(
                                data_reader.data_generator(
                                    args.test_set,
                                    batch_size=args.batch_size,
                                    epoch=1,
                                    dev_count=1,
                                    shuffle=False))
                            qids, preds, probs = predict(test_exe, test_prog, test_pyreader, graph_vars, dev_count=1)
                            save_path = args.pred_save + '.test.' + str(steps) + '.txt'
                            print("testing {}, save to {}".format(args.test_set, save_path))
                            with open(save_path, 'w') as f:
                                for id, s, p in zip(qids, preds, probs):
                                    f.write('{}\t{}\t{}\n'.format(id, s, p))

            except fluid.core.EOFException:
                if args.save_checkpoints:
                    save_path = os.path.join(args.checkpoints, "step_" + str(steps))
                    fluid.io.save_persistables(exe, save_path, train_program)
                train_pyreader.reset()
                break

    if nccl2_trainer_id == 0:
        # final eval on dev set
        if args.do_val:
            test_pyreader.decorate_tensor_provider(
                data_reader.data_generator(
                    args.dev_set,
                    batch_size=args.batch_size,
                    epoch=1,
                    dev_count=1,
                    shuffle=False))
            print("Final validation result:")
            outputs = evaluate(args, test_exe, test_prog, test_pyreader, graph_vars, "dev")
            dev_ret_history.append((steps, outputs['key_eval'], outputs[outputs['key_eval']]))
            dev_ret_history = sorted(dev_ret_history, key=lambda a: a[2], reverse=True)
            print("Best validation result: step %d %s %f" \
                    % (dev_ret_history[0][0], dev_ret_history[0][1], dev_ret_history[0][2]))
 
        # final eval on test set
        if args.do_test:
            test_pyreader.decorate_tensor_provider(
                data_reader.data_generator(
                    args.test_set,
                    batch_size=args.batch_size,
                    epoch=1,
                    dev_count=1,
                    shuffle=False))
            print("Final test result:")
            outputs = evaluate(args, test_exe, test_prog, test_pyreader, graph_vars, "test")

       # final eval on test set
        if args.do_pred:
            test_pyreader.decorate_tensor_provider(
                data_reader.data_generator(
                    args.test_set,
                    batch_size=args.batch_size,
                    epoch=1,
                    dev_count=1,
                    shuffle=False))
            qids, preds, probs = predict(test_exe, test_prog, test_pyreader, graph_vars, dev_count=1)
            save_path = args.pred_save + '.' + str(steps) + '.txt'
            print("testing {}, save to {}".format(args.test_set, save_path))
            with open(save_path, 'w') as f:
                for id, s, p in zip(qids, preds, probs):
                    f.write('{}\t{}\t{}\n'.format(id, s, p))
Esempio n. 3
0
def main(args):
    """main func"""
    unimo_config = UNIMOConfig(args.unimo_config_path)
    if args.task_type == "dialog":
        unimo_config["role_type_size"] = args.role_type_size
        unimo_config["turn_type_size"] = args.turn_type_size
    if args.hidden_dropout_prob >= 0:
        unimo_config["hidden_dropout_prob"] = args.hidden_dropout_prob
    if args.attention_probs_dropout_prob >= 0:
        unimo_config[
            "attention_probs_dropout_prob"] = args.attention_probs_dropout_prob
    unimo_config.print_config()

    if args.pred_batch_size <= 0:
        args.pred_batch_size = args.batch_size

    gpu_id = 0
    gpus = fluid.core.get_cuda_device_count()
    if args.is_distributed and os.getenv("FLAGS_selected_gpus") is not None:
        gpu_list = os.getenv("FLAGS_selected_gpus").split(",")
        gpus = len(gpu_list)
        gpu_id = int(gpu_list[0])

    if args.use_cuda:
        place = fluid.CUDAPlace(gpu_id)
        dev_count = gpus
    else:
        place = fluid.CPUPlace()
        dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
    """load vocabulary"""
    tokenizer = GptBpeTokenizer(vocab_file=args.unimo_vocab_file,
                                encoder_json_file=args.encoder_json_file,
                                vocab_bpe_file=args.vocab_bpe_file,
                                do_lower_case=True)

    reader = Seq2SeqReader(tokenizer, args)
    unimo_seq2seq = Seq2Seq(args, unimo_config, tokenizer)

    if not (args.do_train or args.do_val or args.do_test or args.do_pred):
        raise ValueError("For args `do_train`, `do_val` and `do_test`, at "
                         "least one of them must be True.")

    startup_prog = fluid.Program()
    if args.random_seed is not None:
        startup_prog.random_seed = args.random_seed

    if args.do_train:
        trainers_num = int(os.getenv("PADDLE_TRAINERS_NUM", 1))
        train_data_generator = reader.data_generator(
            input_file=args.train_set,
            batch_size=args.batch_size,
            epoch=args.epoch,
            dev_count=trainers_num,
            shuffle=True,
            phase="train")

        num_train_examples = reader.get_num_examples(args.train_set)

        if args.in_tokens:
            max_train_steps = args.epoch * num_train_examples // (
                args.batch_size // args.max_seq_len) // trainers_num
        else:
            max_train_steps = args.epoch * num_train_examples // args.batch_size // trainers_num

        warmup_steps = int(max_train_steps * args.warmup_proportion)
        print("Device count: %d, gpu_id: %d" % (dev_count, gpu_id))
        print("Num train examples: %d" % num_train_examples)
        print("Max train steps: %d" % max_train_steps)
        print("Num warmup steps: %d" % warmup_steps)

        train_program = fluid.Program()
        with fluid.program_guard(train_program, startup_prog):
            with fluid.unique_name.guard():
                train_pyreader, graph_vars = unimo_seq2seq.create_model()
                scheduled_lr, loss_scaling = optimization(
                    loss=graph_vars["loss"],
                    warmup_steps=warmup_steps,
                    num_train_steps=max_train_steps,
                    learning_rate=args.learning_rate,
                    train_program=train_program,
                    weight_decay=args.weight_decay,
                    scheduler=args.lr_scheduler,
                    use_fp16=args.use_fp16,
                    use_dynamic_loss_scaling=args.use_dynamic_loss_scaling,
                    init_loss_scaling=args.init_loss_scaling,
                    beta1=args.beta1,
                    beta2=args.beta2,
                    epsilon=args.epsilon)

        if args.verbose:
            if args.in_tokens:
                lower_mem, upper_mem, unit = fluid.contrib.memory_usage(
                    program=train_program,
                    batch_size=args.batch_size // args.max_seq_len)
            else:
                lower_mem, upper_mem, unit = fluid.contrib.memory_usage(
                    program=train_program, batch_size=args.batch_size)
            print("Theoretical memory usage in training: %.3f - %.3f %s" %
                  (lower_mem, upper_mem, unit))

    if args.do_val or args.do_test or args.do_pred:
        test_prog = fluid.Program()
        with fluid.program_guard(test_prog, startup_prog):
            with fluid.unique_name.guard():
                test_pyreader, test_graph_vars = unimo_seq2seq.create_model(
                    decoding=args.do_decode)
        test_prog = test_prog.clone(for_test=True)

    nccl2_num_trainers = 1
    nccl2_trainer_id = 0
    print("args.is_distributed:", args.is_distributed)
    if args.is_distributed:
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
        worker_endpoints_env = os.getenv("PADDLE_TRAINER_ENDPOINTS")
        current_endpoint = os.getenv("PADDLE_CURRENT_ENDPOINT")
        worker_endpoints = worker_endpoints_env.split(",")
        trainers_num = len(worker_endpoints)

        print("worker_endpoints:{} trainers_num:{} current_endpoint:{} \
              trainer_id:{}".format(worker_endpoints, trainers_num,
                                    current_endpoint, trainer_id))
        # prepare nccl2 env.
        config = fluid.DistributeTranspilerConfig()
        config.mode = "nccl2"
        if args.nccl_comm_num > 1:
            config.nccl_comm_num = args.nccl_comm_num
        if args.use_hierarchical_allreduce and trainers_num > args.hierarchical_allreduce_inter_nranks:
            config.use_hierarchical_allreduce = args.use_hierarchical_allreduce
            config.hierarchical_allreduce_inter_nranks = args.hierarchical_allreduce_inter_nranks

            assert config.hierarchical_allreduce_inter_nranks > 1
            assert trainers_num % config.hierarchical_allreduce_inter_nranks == 0

            config.hierarchical_allreduce_exter_nranks = \
                trainers_num / config.hierarchical_allreduce_inter_nranks

        t = fluid.DistributeTranspiler(config=config)
        t.transpile(trainer_id,
                    trainers=worker_endpoints_env,
                    current_endpoint=current_endpoint,
                    program=train_program if args.do_train else test_prog,
                    startup_program=startup_prog)
        nccl2_num_trainers = trainers_num
        nccl2_trainer_id = trainer_id

    exe = fluid.Executor(place)
    exe.run(startup_prog)
    init_model(args, exe, train_program if args.do_train else test_prog)

    if args.do_train:
        exec_strategy = fluid.ExecutionStrategy()
        if args.use_fast_executor:
            exec_strategy.use_experimental_executor = True
        exec_strategy.num_threads = 4 if args.use_fp16 else 2  # 2 for fp32 4 for fp16
        exec_strategy.num_iteration_per_drop_scope = min(
            args.num_iteration_per_drop_scope, args.skip_steps)

        build_strategy = fluid.BuildStrategy()
        build_strategy.remove_unnecessary_lock = False

        if args.use_fuse:
            build_strategy.fuse_all_reduce_ops = True

        train_exe = fluid.ParallelExecutor(use_cuda=args.use_cuda,
                                           loss_name=graph_vars["loss"].name,
                                           build_strategy=build_strategy,
                                           exec_strategy=exec_strategy,
                                           main_program=train_program,
                                           num_trainers=nccl2_num_trainers,
                                           trainer_id=nccl2_trainer_id)
        train_pyreader.set_batch_generator(train_data_generator)
        train_resource = {
            "exe": train_exe,
            "program": train_program,
            "pyreader": train_pyreader
        }
        save_model = partial(save_checkpoint, program=train_program, exe=exe)

    test_dev_count = 1
    if args.do_val or args.do_test or args.do_pred:
        test_exe = exe
        if args.use_multi_gpu_test:
            test_dev_count = nccl2_num_trainers
        test_resource = {
            "exe": test_exe,
            "program": test_prog,
            "pyreader": test_pyreader
        }
        eval_data_generator = partial(reader.data_generator,
                                      batch_size=args.pred_batch_size,
                                      epoch=1,
                                      dev_count=test_dev_count,
                                      shuffle=False,
                                      do_decode=args.do_decode,
                                      place=place)
        eval_func = partial(unimo_seq2seq.evaluate,
                            resource=test_resource,
                            graph_vars=test_graph_vars,
                            dev_count=test_dev_count,
                            output_path=args.checkpoints,
                            gpu_id=nccl2_trainer_id)
        evaluate = partial(evaluate_datasets,
                           pyreader=test_pyreader,
                           reader=reader,
                           eval_func=eval_func,
                           data_generator=eval_data_generator)

    if args.do_train:
        train_pyreader.start()
        steps = 0
        last_epoch = 0
        if warmup_steps > 0:
            graph_vars["learning_rate"] = scheduled_lr

        time_begin = time.time()

        skip_steps = args.skip_steps
        while True:
            try:
                steps += 1
                if args.save_and_valid_by_epoch:
                    suffix = "epoch_" + str(last_epoch)
                else:
                    suffix = "step_" + str(steps)
                if steps % skip_steps == 0:
                    outputs = unimo_seq2seq.evaluate(train_resource, "train",
                                                     graph_vars)
                    if args.verbose:
                        verbose = "train pyreader queue size: %d, " % train_pyreader.queue.size(
                        )
                        verbose += "learning rate: %.8f" % (
                            outputs["learning_rate"]
                            if warmup_steps > 0 else args.learning_rate)
                        print(verbose)

                    if args.in_tokens:
                        current_example, current_epoch = reader.get_train_progress(
                        )
                    else:
                        current_epoch = steps * args.batch_size * trainers_num // num_train_examples
                        current_example = steps * args.batch_size * trainers_num % num_train_examples

                    time_end = time.time()
                    used_time = time_end - time_begin
                    print("epoch: %d, progress: %d/%d, step: %d, loss: %f, "
                          "ppl: %f, speed: %f steps/s" %
                          (current_epoch, current_example, num_train_examples,
                           steps, outputs["loss"], outputs["ppl"],
                           args.skip_steps / used_time))
                    time_begin = time.time()

                    if args.visualdl_log and nccl2_trainer_id == 0:
                        visuallog_dict = OrderedDict()
                        visuallog_dict["ppl"] = outputs["ppl"]
                        visualdl_log(visuallog_dict,
                                     outputs["ppl"],
                                     steps,
                                     phase='train')
                else:
                    train_exe.run(fetch_list=[])

                if nccl2_trainer_id >= test_dev_count:
                    continue

                do_save = False
                do_eval = False
                if not args.save_and_valid_by_epoch:
                    if steps % args.save_steps == 0 and nccl2_trainer_id == 0:
                        do_save = True
                    if steps % args.validation_steps == 0:
                        do_eval = True
                else:
                    if args.in_tokens:
                        current_example, current_epoch = reader.get_train_progress(
                        )
                    else:
                        current_epoch = steps * args.batch_size * trainers_num // num_train_examples
                    if current_epoch != last_epoch:
                        if nccl2_trainer_id == 0:
                            do_save = True
                        do_eval = True

                if do_save:
                    save_model(suffix=suffix)
                if do_eval:
                    evaluate(suffix=suffix)

                if args.save_and_valid_by_epoch:
                    last_epoch = current_epoch

            except fluid.core.EOFException:
                save_model(suffix=suffix)
                train_pyreader.reset()
                break

    if nccl2_trainer_id >= test_dev_count:
        return

    if args.do_val or args.do_test or args.do_pred:
        suffix = "output"
        if args.do_train:
            if not args.save_and_valid_by_epoch:
                suffix = "step_" + str(steps)
            else:
                suffix = "epoch_" + str(last_epoch)

        evaluate(suffix=suffix, do_pred=True)