Esempio n. 1
0
    def __init__(self):
        self.__test_input_size = cfg.TEST_INPUT_SIZE
        self.__anchor_per_scale = cfg.ANCHOR_PER_SCALE
        self.__classes = cfg.CLASSES
        self.__num_classes = len(self.__classes)
        self.__class_to_ind = dict(
            zip(self.__classes, range(self.__num_classes)))
        self.__anchors = np.array(cfg.ANCHORS)
        self.__score_threshold = cfg.SCORE_THRESHOLD
        self.__iou_threshold = cfg.IOU_THRESHOLD
        self.__log_dir = os.path.join(cfg.LOG_DIR, 'test')
        self.__annot_dir_path = cfg.ANNOT_DIR_PATH
        self.__moving_ave_decay = cfg.MOVING_AVE_DECAY
        self.__dataset_path = cfg.DATASET_PATH
        self.__valid_scales = cfg.VALID_SCALES
        self.__training = False

        with tf.name_scope('input'):
            self.__input_data = tf.placeholder(dtype=tf.float32,
                                               name='input_data')
            # self.__training = tf.placeholder(dtype=tf.bool, name='training')
        _, _, _, self.__pred_sbbox, self.__pred_mbbox, self.__pred_lbbox = \
            YOLO_V3(self.__training).build_nework(self.__input_data)
        with tf.name_scope('summary'):
            tf.summary.FileWriter(self.__log_dir).add_graph(
                tf.get_default_graph())
        with tf.name_scope('ema'):
            ema_obj = tf.train.ExponentialMovingAverage(
                self.__moving_ave_decay)
        self.__sess = tf.Session(config=config)
        self.__saver = tf.train.Saver(ema_obj.variables_to_restore())
        self.__saver.restore(self.__sess,
                             os.path.join(cfg.WEIGHTS_DIR, cfg.WEIGHTS_FILE))
Esempio n. 2
0
def freeze_graph(input_checkpoint, output_graph):
    # 指定输出的节点名称,该节点名称必须是原模型中存在的节点
    output_node_names = [
        "input/input_data", "pred_lbbox/pred_bbox", "pred_sbbox/pred_bbox",
        "pred_mbbox/pred_bbox"
    ]
    import config as cfg
    from model.yolo_v3 import YOLO_V3
    __training = False
    with tf.name_scope('input'):
        __input_data = tf.placeholder(dtype=tf.float32, name='input_data')
        #__training = tf.placeholder(dtype=tf.bool, name='training')
    _, _, _, __pred_sbbox, __pred_mbbox, __pred_lbbox = YOLO_V3(
        __training).build_nework(__input_data)
    __moving_ave_decay = cfg.MOVING_AVE_DECAY
    with tf.name_scope('ema'):
        ema_obj = tf.train.ExponentialMovingAverage(__moving_ave_decay)
    saver = tf.train.Saver(ema_obj.variables_to_restore())

    #    saver = tf.train.import_meta_graph(input_checkpoint + '.meta', clear_devices=True) #得到图、clear_devices :Whether or not to clear the device field for an `Operation` or `Tensor` during import.
    graph = tf.get_default_graph()  #获得默认的图
    input_graph_def = graph.as_graph_def()  #返回一个序列化的图代表当前的图

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        saver.restore(sess, input_checkpoint)  #恢复图并得到数据
        print("loading model ...")

        for node in input_graph_def.node:
            if node.op == 'RefSwitch':
                node.op = 'Switch'
                for index in xrange(len(node.input)):
                    if 'moving_' in node.input[index]:
                        node.input[index] = node.input[index] + '/read'
            elif node.op == 'AssignSub':
                node.op = 'Sub'
                if 'use_locking' in node.attr: del node.attr['use_locking']
            elif node.op == 'AssignAdd':
                node.op = 'Add'
                if 'use_locking' in node.attr: del node.attr['use_locking']
            elif node.op == 'Assign':
                node.op = 'Identity'
                if 'use_locking' in node.attr: del node.attr['use_locking']
                if 'validate_shape' in node.attr:
                    del node.attr['validate_shape']
                if len(node.input) == 2:
                    # input0: ref: Should be from a Variable node. May be uninitialized.
                    # input1: value: The value to be assigned to the variable.
                    node.input[0] = node.input[1]
                    del node.input[1]

        #print ("predictions : ", sess.run("predictions:0", feed_dict={"input_holder:0": [10.0]})) # 测试读出来的模型是否正确,注意这里传入的是输出 和输入 节点的 tensor的名字,不是操作节点的名字
        output_graph_def = graph_util.convert_variables_to_constants(  # 模型持久化,将变量值固定
            sess=sess,
            input_graph_def=sess.graph.as_graph_def(),  # 等于:sess.graph_def
            output_node_names=output_node_names)

        with tf.gfile.GFile(output_graph, "wb") as f:  #保存模型
            f.write(output_graph_def.SerializeToString())  #序列化输出
        print("%d ops in the final graph." %
              len(output_graph_def.node))  #得到当前图有几个操作节点
Esempio n. 3
0
            if (var_name_mess[-1] not in ['kernel', 'gamma', 'beta', 'moving_mean', 'moving_variance']) or \
                    (var_name_mess[0] in preserve_org_names):
                continue
            org_weights_mess.append([var_name, var_shape])
            print str(var_name).ljust(50), var_shape
    print
    tf.reset_default_graph()

    cur_weights_mess = []
    tf.Graph().as_default()
    with tf.name_scope('input'):
        input_data = tf.placeholder(dtype=tf.float32,
                                    shape=(1, 416, 416, 3),
                                    name='input_data')
        training = tf.placeholder(dtype=tf.bool, name='training')
    YOLO_V3(training).build_nework(input_data)
    for var in tf.global_variables():
        var_name = var.op.name
        var_name_mess = str(var_name).split('/')
        var_shape = var.shape
        if var_name_mess[0] in preserve_cur_names:
            continue
        cur_weights_mess.append([var_name, var_shape])
        print str(var_name).ljust(50), var_shape

    org_weights_num = len(org_weights_mess)
    cur_weights_num = len(cur_weights_mess)
    if cur_weights_num != org_weights_num:
        raise RuntimeError

    print 'Number of weights that will rename:\t%d' % cur_weights_num
Esempio n. 4
0
    def __init__(self):
        self.__anchor_per_scale = cfg.ANCHOR_PER_SCALE
        self.__classes = cfg.CLASSES
        self.__num_classes = len(self.__classes)
        self.__learn_rate_init = cfg.LEARN_RATE_INIT
        self.__max_periods = cfg.MAX_PERIODS
        self.__max_wave_time = cfg.MAX_WAVE_TIME
        self.__max_learn_rate_decay_time = cfg.MAX_LEARN_RATE_DECAY_TIME
        self.__weights_dir = cfg.WEIGHTS_DIR
        self.__weights_file = cfg.WEIGHTS_FILE
        self.__log_dir = os.path.join(cfg.LOG_DIR, 'train')
        self.__moving_ave_decay = cfg.MOVING_AVE_DECAY
        self.__save_iter = cfg.SAVE_ITER
        self.__max_bbox_per_scale = cfg.MAX_BBOX_PER_SCALE

        self.__train_data = Data('train')
        self.__test_data = Data('test')

        with tf.name_scope('input'):
            self.__input_data = tf.placeholder(dtype=tf.float32, name='input_data')
            self.__label_sbbox = tf.placeholder(dtype=tf.float32, name='label_sbbox')
            self.__label_mbbox = tf.placeholder(dtype=tf.float32, name='label_mbbox')
            self.__label_lbbox = tf.placeholder(dtype=tf.float32, name='label_lbbox')
            self.__sbboxes = tf.placeholder(dtype=tf.float32, name='sbboxes')
            self.__mbboxes = tf.placeholder(dtype=tf.float32, name='mbboxes')
            self.__lbboxes = tf.placeholder(dtype=tf.float32, name='lbboxes')
            self.__training = tf.placeholder(dtype=tf.bool, name='training')

        self.__yolo = YOLO_V3(self.__training)
        self.__conv_sbbox, self.__conv_mbbox, self.__conv_lbbox, \
        self.__pred_sbbox, self.__pred_mbbox, self.__pred_lbbox = self.__yolo.build_nework(self.__input_data)
        self.__net_var = tf.global_variables()
        print 'Load weights:'
        for var in self.__net_var:
            print var.op.name

        self.__loss = self.__yolo.loss(self.__conv_sbbox, self.__conv_mbbox, self.__conv_lbbox,
                                       self.__pred_sbbox, self.__pred_mbbox, self.__pred_lbbox,
                                       self.__label_sbbox, self.__label_mbbox, self.__label_lbbox,
                                       self.__sbboxes, self.__mbboxes, self.__lbboxes)

        with tf.name_scope('learn'):
            self.__learn_rate = tf.Variable(self.__learn_rate_init, trainable=False, name='learn_rate_init')
            moving_ave = tf.train.ExponentialMovingAverage(self.__moving_ave_decay).apply(tf.trainable_variables())

            self.__trainable_var_list = []
            for var in tf.trainable_variables():
                var_name = var.op.name
                var_name_mess = str(var_name).split('/')
                if var_name_mess[0] in ['conv_sbbox', 'conv_mbbox', 'conv_lbbox']:
                    self.__trainable_var_list.append(var)
            optimize0 = tf.train.AdamOptimizer(self.__learn_rate).\
                minimize(self.__loss, var_list=self.__trainable_var_list)
            with tf.control_dependencies([optimize0]):
                with tf.control_dependencies([moving_ave]):
                    self.__train_op_with_frozen_variables = tf.no_op()

            optimize1 = tf.train.AdamOptimizer(self.__learn_rate).\
                minimize(self.__loss, var_list=tf.trainable_variables())
            with tf.control_dependencies([optimize1]):
                with tf.control_dependencies([moving_ave]):
                    self.__train_op_with_all_variables = tf.no_op()

            self.__train_op = self.__train_op_with_frozen_variables
            print 'Default trian step0 is freeze the weight of darknet'
            for var in self.__trainable_var_list:
                print '\t' + str(var.op.name).ljust(50) + str(var.shape)

        with tf.name_scope('load_save'):
            self.__load = tf.train.Saver(self.__net_var)
            self.__save = tf.train.Saver(tf.global_variables(), max_to_keep=50)

        with tf.name_scope('summary'):
            tf.summary.scalar('loss', self.__loss)
            self.__summary_op = tf.summary.merge_all()
            self.__summary_writer = tf.summary.FileWriter(self.__log_dir)
            self.__summary_writer.add_graph(tf.get_default_graph())

        self.__sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
Esempio n. 5
0
            if (var_name_mess[-1] not in ['weights', 'gamma', 'beta', 'moving_mean', 'moving_variance']) or \
                    (var_name_mess[1] == 'yolo-v3' and (var_name_mess[-2] in preserve_org_names)):
                continue
            org_weights_mess.append([var_name, var_shape])
            print str(var_name).ljust(50), var_shape
    print
    tf.reset_default_graph()

    cur_weights_mess = []
    tf.Graph().as_default()
    with tf.name_scope('input'):
        input_data = tf.placeholder(dtype=tf.float32,
                                    shape=(1, 416, 416, 3),
                                    name='input_data')
        training = tf.placeholder(dtype=tf.bool, name='training')
    YOLO_V3(True).build_nework(input_data)
    for var in tf.global_variables():
        var_name = var.op.name
        var_name_mess = str(var_name).split('/')
        var_shape = var.shape
        if var_name_mess[0] in preserve_cur_names:
            continue
        cur_weights_mess.append([var_name, var_shape])
        print str(var_name).ljust(50), var_shape

    org_weights_num = len(org_weights_mess)
    cur_weights_num = len(cur_weights_mess)
    if cur_weights_num != org_weights_num:
        raise RuntimeError

    print 'Number of weights that will rename:\t%d' % cur_weights_num
Esempio n. 6
0
    def __init__(self):
        self.__anchor_per_scale = cfg.ANCHOR_PER_SCALE
        self.__classes = cfg.CLASSES
        self.__num_classes = len(self.__classes)
        self.__learn_rate_init = cfg.LEARN_RATE_INIT
        self.__learn_rate_end = cfg.LEARN_RATE_END
        self.__max_periods = cfg.MAX_PERIODS
        self.__periods_for_step0 = cfg.PERIODS_FOR_STEP0
        self.__warmup_periods = cfg.WARMUP_PERIODS
        self.__weights_dir = cfg.WEIGHTS_DIR
        self.__weights_file = cfg.WEIGHTS_FILE
        self.__time = time.strftime('%Y-%m-%d-%H-%M-%S',
                                    time.localtime(time.time()))
        self.__log_dir = os.path.join(cfg.LOG_DIR, 'train', self.__time)
        self.__moving_ave_decay = cfg.MOVING_AVE_DECAY
        self.__max_bbox_per_scale = cfg.MAX_BBOX_PER_SCALE

        self.__train_data = Data('train')
        self.__test_data = Data('test')
        self.__steps_per_period = len(self.__train_data)

        with tf.name_scope('input'):
            self.__input_data = tf.placeholder(dtype=tf.float32,
                                               name='input_data')
            self.__label_sbbox = tf.placeholder(dtype=tf.float32,
                                                name='label_sbbox')
            self.__label_mbbox = tf.placeholder(dtype=tf.float32,
                                                name='label_mbbox')
            self.__label_lbbox = tf.placeholder(dtype=tf.float32,
                                                name='label_lbbox')
            self.__sbboxes = tf.placeholder(dtype=tf.float32, name='sbboxes')
            self.__mbboxes = tf.placeholder(dtype=tf.float32, name='mbboxes')
            self.__lbboxes = tf.placeholder(dtype=tf.float32, name='lbboxes')
            self.__training = tf.placeholder(dtype=tf.bool, name='training')

        self.__yolo = YOLO_V3(self.__training)
        self.__conv_sbbox, self.__conv_mbbox, self.__conv_lbbox, \
        self.__pred_sbbox, self.__pred_mbbox, self.__pred_lbbox = self.__yolo.build_nework(self.__input_data)
        self.__net_var = tf.global_variables()
        logging.info('Load weights:')
        for var in self.__net_var:
            logging.info(var.op.name)

        self.__loss = self.__yolo.loss(self.__conv_sbbox, self.__conv_mbbox,
                                       self.__conv_lbbox, self.__pred_sbbox,
                                       self.__pred_mbbox, self.__pred_lbbox,
                                       self.__label_sbbox, self.__label_mbbox,
                                       self.__label_lbbox, self.__sbboxes,
                                       self.__mbboxes, self.__lbboxes)

        with tf.name_scope('optimize'):
            with tf.name_scope('learn_rate'):
                self.__global_step = tf.Variable(1.0,
                                                 dtype=tf.float64,
                                                 trainable=False,
                                                 name='global_step')
                warmup_steps = tf.constant(self.__warmup_periods *
                                           self.__steps_per_period,
                                           dtype=tf.float64,
                                           name='warmup_steps')
                train_steps = tf.constant(self.__max_periods *
                                          self.__steps_per_period,
                                          dtype=tf.float64,
                                          name='train_steps')
                self.__learn_rate = tf.cond(
                    pred=self.__global_step < warmup_steps,
                    true_fn=lambda: self.__global_step / warmup_steps * self.
                    __learn_rate_init,
                    false_fn=lambda: self.__learn_rate_end + 0.5 *
                    (self.__learn_rate_init - self.__learn_rate_end) *
                    (1 + tf.cos((self.__global_step - warmup_steps) /
                                (train_steps - warmup_steps) * np.pi)))
                global_step_update = tf.assign_add(self.__global_step, 1.0)

            moving_ave = tf.train.ExponentialMovingAverage(
                self.__moving_ave_decay).apply(tf.trainable_variables())

            self.__trainable_var_list = []
            for var in tf.trainable_variables():
                var_name = var.op.name
                var_name_mess = str(var_name).split('/')
                if var_name_mess[0] in [
                        'conv_sbbox', 'conv_mbbox', 'conv_lbbox'
                ]:
                    self.__trainable_var_list.append(var)
            optimize0 = tf.train.AdamOptimizer(self.__learn_rate).\
                minimize(self.__loss, var_list=self.__trainable_var_list)
            with tf.control_dependencies([optimize0, global_step_update]):
                with tf.control_dependencies([moving_ave]):
                    self.__train_op_with_frozen_variables = tf.no_op()

            optimize1 = tf.train.AdamOptimizer(self.__learn_rate).\
                minimize(self.__loss, var_list=tf.trainable_variables())
            with tf.control_dependencies([optimize1, global_step_update]):
                with tf.control_dependencies([moving_ave]):
                    self.__train_op_with_all_variables = tf.no_op()

            self.__train_op = self.__train_op_with_frozen_variables
            logging.info('Default trian step0 is freeze the weight of darknet')
            for var in self.__trainable_var_list:
                logging.info('\t' + str(var.op.name).ljust(50) +
                             str(var.shape))

        with tf.name_scope('load_save'):
            self.__load = tf.train.Saver(self.__net_var)
            self.__save = tf.train.Saver(tf.global_variables(), max_to_keep=50)

        with tf.name_scope('summary'):
            self.__loss_ave = tf.Variable(0, dtype=tf.float32, trainable=False)
            tf.summary.scalar('loss_ave', self.__loss_ave)
            tf.summary.scalar('learn_rate', self.__learn_rate)
            self.__summary_op = tf.summary.merge_all()
            self.__summary_writer = tf.summary.FileWriter(self.__log_dir)
            self.__summary_writer.add_graph(tf.get_default_graph())

        self.__sess = tf.Session(config=tf.ConfigProto(
            allow_soft_placement=True))
Esempio n. 7
0
    def __init__(self):
        self.__frozen = cfg.FROZEN
        self.__classes = cfg.CLASSES
        self.__learn_rate_init = cfg.LEARN_RATE_INIT
        self.__max_epochs = cfg.MAX_PERIODS
        self.__lr_decay_epoch = cfg.lr_decay_epoch
        self.__weights_dir = cfg.WEIGHTS_DIR
        self.__weights_file = cfg.WEIGHTS_FILE
        self.__time = time.strftime('%Y-%m-%d-%H-%M-%S',
                                    time.localtime(time.time()))
        self.__log_dir = os.path.join(cfg.LOG_DIR, 'train', self.__time)
        self.__moving_ave_decay = cfg.MOVING_AVE_DECAY
        self.__save_iter = cfg.SAVE_ITER
        self.__train_data = Data('train')
        self.__test_data = Data('test')

        with tf.name_scope('input'):
            self.__input_data = tf.placeholder(dtype=tf.float32,
                                               name='input_data')
            self.__label_sbbox = tf.placeholder(dtype=tf.float32,
                                                name='label_sbbox')
            self.__label_mbbox = tf.placeholder(dtype=tf.float32,
                                                name='label_mbbox')
            self.__label_lbbox = tf.placeholder(dtype=tf.float32,
                                                name='label_lbbox')
            self.__sbboxes = tf.placeholder(dtype=tf.float32, name='sbboxes')
            self.__mbboxes = tf.placeholder(dtype=tf.float32, name='mbboxes')
            self.__lbboxes = tf.placeholder(dtype=tf.float32, name='lbboxes')
            self.__training = True

        self.__yolo = YOLO_V3(self.__training)
        self.__conv_sbbox, self.__conv_mbbox, self.__conv_lbbox, \
        self.__pred_sbbox, self.__pred_mbbox, self.__pred_lbbox = self.__yolo.build_nework(self.__input_data)
        self.__net_var = tf.global_variables()
        logging.info('Load weights:')
        for var in self.__net_var:
            logging.info(var.op.name)

        self.__loss = self.__yolo.loss(self.__conv_sbbox, self.__conv_mbbox,
                                       self.__conv_lbbox, self.__pred_sbbox,
                                       self.__pred_mbbox, self.__pred_lbbox,
                                       self.__label_sbbox, self.__label_mbbox,
                                       self.__label_lbbox, self.__sbboxes,
                                       self.__mbboxes, self.__lbboxes)

        with tf.name_scope('learn'):
            self.__learn_rate = tf.Variable(self.__learn_rate_init,
                                            trainable=False,
                                            name='learn_rate_init')
            moving_ave = tf.train.ExponentialMovingAverage(
                self.__moving_ave_decay).apply(tf.trainable_variables())

            self.__trainable_var_list = []
            for var in tf.trainable_variables():
                var_name = var.op.name
                var_name_mess = str(var_name).split('/')
                if var_name_mess[0] in [
                        'conv_sbbox', 'conv_mbbox', 'conv_lbbox'
                ]:
                    self.__trainable_var_list.append(var)
            optimize0 = tf.train.AdamOptimizer(self.__learn_rate).\
                minimize(self.__loss, var_list=self.__trainable_var_list)
            with tf.control_dependencies([optimize0]):
                with tf.control_dependencies([moving_ave]):
                    self.__train_op_with_frozen_variables = tf.no_op()

            optimize1 = tf.train.AdamOptimizer(self.__learn_rate).\
                minimize(self.__loss, var_list=tf.trainable_variables())
            with tf.control_dependencies([optimize1]):
                with tf.control_dependencies([moving_ave]):
                    self.__train_op_with_all_variables = tf.no_op()
            if self.__frozen:
                self.__train_op = self.__train_op_with_frozen_variables
                logging.info('freeze the weight of darknet')
                print('freeze the weight of darknet')
            else:
                self.__train_op = self.__train_op_with_all_variables
                logging.info("train all variables")
                print("train all variables")
            for var in self.__trainable_var_list:
                logging.info("++++++ trainable variables list: ++++++" + "\n")
                logging.info('\t' + str(var.op.name).ljust(50) +
                             str(var.shape))

        with tf.name_scope('load_save'):
            self.__load = tf.train.Saver(self.__net_var)
            self.__save = tf.train.Saver(tf.global_variables(), max_to_keep=50)

        with tf.name_scope('summary'):
            tf.summary.scalar('loss', self.__loss)
            self.__summary_op = tf.summary.merge_all()
            self.__summary_writer = tf.summary.FileWriter(self.__log_dir)
            self.__summary_writer.add_graph(tf.get_default_graph())

        self.__sess = tf.Session(config=tf.ConfigProto(
            allow_soft_placement=True))