def load_G(filename, opt): opt.netG = filename netG = model.MLP_G(opt) netG.load_state_dict( torch.load(os.path.join(f'{opt.outf}{opt.outname}', opt.netG))) netG = netG.cuda() return netG
if torch.cuda.is_available() and not opt.cuda: print("WARNING: You have a CUDA device, so you should probably run with --cuda") if opt.gzsl: mode = 'GZSL' else: mode = 'ZSL' # load data data = util.DATA_LOADER(opt) #print("# of training samples: ", data.ntrain) # initialize generator and quality classifier netG = model.MLP_G(opt) if opt.netG != '': netG.load_state_dict(torch.load(opt.netG)) print(netG) netC = model.MLP_C(opt) if opt.netC != '': netC.load_state_dict(torch.load(opt.netC)) print(netC) input_label = torch.LongTensor(data.ntrain_class*opt.syn_num_train) input_att = torch.FloatTensor(data.ntrain_class*opt.syn_num_train, opt.attSize) noise = torch.FloatTensor(data.ntrain_class*opt.syn_num_train, opt.nz) input_feature = torch.FloatTensor(opt.batch_size, opt.resSize)
def train(opt): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") data = util.DATA_LOADER(opt) # get train data opt['attSize'] = data.attribute.shape[1] opt['nz'] = opt['latent_feature_size'] opt['device'] = device input_res = torch.FloatTensor(opt['batch_size'], opt['resSize']).to( device) # batch_size*2048 pretrained image features? input_att = torch.FloatTensor(opt['batch_size'], opt['attSize']).to(device) # batch_size*312 noise = torch.FloatTensor(opt['batch_size'], opt['nz']).to( device) # batch_size*312 generate the noise vectors unseen_noise = torch.FloatTensor(opt['batch_size'], opt['nz']).to(device) one = torch.tensor(1, dtype=torch.float).to(device) # tensor number: 1 mone = (one * -1).to(device) # number: -1 input_label = torch.LongTensor(opt['batch_size']).to(device) # label input_label_ori = torch.LongTensor(opt['batch_size']).to(device) # label unseen_res = torch.FloatTensor(opt['batch_size'], opt['resSize']).to( device) # batch_size*2048 pretrained image features? unseen_att = torch.FloatTensor(opt['batch_size'], opt['attSize']).to(device) unseen_label = torch.LongTensor(opt['batch_size']).to(device) # label unseen_label_ori = torch.LongTensor(opt['batch_size']).to(device) # label def sample(): # get a batch of seen class data and attributes batch_feature, batch_label, batch_att = data.next_batch( opt['batch_size']) input_res.copy_(batch_feature) input_att.copy_(batch_att) input_label_ori.copy_(batch_label) input_label.copy_(util.map_label(batch_label, data.seenclasses)) def sample_unseen(): # get a batch of unseen classes data and attributes batch_feature, batch_label, batch_att = data.next_batch_unseen( opt['batch_size']) unseen_res.copy_(batch_feature) unseen_att.copy_(batch_att) unseen_label_ori.copy_(batch_label) unseen_label.copy_(util.map_label(batch_label, data.unseenclasses)) if opt['manualSeed'] is None: opt.manualSeed = random.randint(1, 10000) print("Random Seed: ", opt['manualSeed']) random.seed(opt['manualSeed']) torch.manual_seed(opt['manualSeed']) # random seed if torch.cuda.is_available(): torch.cuda.manual_seed_all(opt['manualSeed']) cudnn.benchmark = True attE = model.Encoder_Att(opt).to(device) attD = model.Decoder_Att(opt).to(device) # initialize generator and discriminator netG = model.MLP_G(opt).to(device) # initialize G and decoder print(netG) netD = model.MLP_D(opt).to(device) # initialize D print(netD) netD2 = model.MLP_D2(opt).to(device) print(netD2) netE = model.Encoder(opt).to(device) # initialize Encoder print(netE) netAlign = model.Discriminator_align(opt).to(device) logsoftmax = nn.LogSoftmax(dim=1) # classification loss, Equation (4) of the paper cls_criterion = nn.NLLLoss().to(device) netS = model.MLP_V2S(opt).to(device) # setup optimizer optimizerD = optim.Adam(netD.parameters(), lr=opt['lr'], betas=(0.5, 0.999)) optimizerD2 = optim.Adam(netD2.parameters(), lr=opt['lr'], betas=(0.5, 0.999)) optimizerG = optim.Adam(netG.parameters(), lr=opt['lr'], betas=(0.5, 0.999)) optimizerE = optim.Adam(netE.parameters(), lr=opt['lr'], betas=(0.5, 0.999)) optimizerAE = optim.Adam(attE.parameters(), lr=opt['lr'], betas=(0.5, 0.999)) optimizerAD = optim.Adam(attD.parameters(), lr=opt['lr'], betas=(0.5, 0.999)) optimizerAlign = optim.Adam(netAlign.parameters(), lr=opt['lr'], betas=(0.5, 0.999)) if opt['dataset'] == 'FLO': optimizerS = optim.Adam(netS.parameters(), lr=opt['lr'] * 1.5, betas=(0.5, 0.999)) else: optimizerS = optim.Adam(netS.parameters(), lr=opt['lr'], betas=(0.5, 0.999)) reg_criterion = nn.MSELoss().to(device) cro_criterion = nn.CrossEntropyLoss().to(device) binary_cross_entropy_crition = nn.BCELoss().to(device) nll_criterion = nn.NLLLoss().to(device) KL_criterion = nn.KLDivLoss().to(device) def getTestUnseenAcc(): fake_unseen_attr = netS( Variable(data.test_unseen_feature.cuda(), volatile=True)) dist = pairwise_distances( fake_unseen_attr.data, data.attribute[data.unseenclasses].cuda()) # range 50 pred_idx = torch.min(dist, 1)[1] # relative pred pred = data.unseenclasses[ pred_idx.cpu()] # map relative pred to absolute pred acc = sum( pred == data.test_unseen_label) / data.test_unseen_label.size()[0] print('Test Unseen Acc: {:.2f}%'.format(acc * 100)) return logsoftmax(Variable(dist.cuda())).data def getTestAllAcc(): fake_unseen_attr = netS( Variable(data.test_unseen_feature.cuda(), volatile=True)) # dist1 = pairwise_distances(fake_unseen_attr.data, data.attribute.cuda()) # 2967*200 pred_idx = torch.min(dist1, 1)[1] # absolute pred 2967 acc_unseen = sum(pred_idx.cpu() == data.test_unseen_label).float( ) / data.test_unseen_label.size()[0] fake_seen_attr = netS( Variable(data.test_seen_feature.cuda(), volatile=True)) dist2 = pairwise_distances(fake_seen_attr.data, data.attribute.cuda()) # range 200 pred_idx = torch.min(dist2, 1)[1] # absolute pred acc_seen = sum(pred_idx.cpu() == data.test_seen_label).float( ) / data.test_seen_label.size()[0] if (acc_seen == 0) or (acc_unseen == 0): H = 0 else: H = 2 * acc_seen * acc_unseen / (acc_seen + acc_unseen) print('Forward Seen:{:.2f}%, Unseen:{:.2f}%, H:{:.2f}%'.format( acc_seen * 100, acc_unseen * 100, H * 100)) return logsoftmax(Variable(dist1.cuda())).data, logsoftmax( Variable(dist2.cuda())).data def caculateCosineSim(predAtt, allAtt): sims = torch.zeros((predAtt.shape[0], allAtt.shape[0])).to(device) for i, att in enumerate(predAtt): for j in range(allAtt.shape[0]): sims[i, j] = torch.nn.CosineSimilarity(dim=0)(att, allAtt[j]) return sims modelStr = { 'CUB': 'netS_CUB_Acc415900_03_15_11_23.pth', 'FLO': 'netS_FLO_Acc269300_03_15_10_26.pth', 'SUN': 'netS_SUN_Acc457600_03_15_10_44.pth', 'AWA1': 'netS_AWA1_Acc450100_03_15_10_58.pth', 'AWA2': 'netS_AWA2_Acc450100_03_15_10_58.pth', 'APY': 'netS_APY_Acc203100_03_15_11_08.pth' } # if opt['use_pretrain_s'] == 1: # netS = loadPretrainedMain(netS, modelStr[opt['dataset']]) # else: # netS.train() # for epoch in range(opt['nets_epoch']): # for i in range(0, data.ntrain, opt['batch_size']): # optimizerS.zero_grad() # sample() # input_resv = Variable(input_res) # input_attv = Variable(input_att) # attv = Variable(data.most_sim_att[input_label_ori].to(device)) # pred = netS(input_resv) # # sim_self = torch.nn.CosineSimilarity(dim=1)(pred, input_attv) # # sim_most = torch.nn.CosineSimilarity(dim=1)(pred, attv) # # ones = torch.ones_like(sim_most).to(device) # # tmp = (sim_most > sim_self).sum() # # loss_sim = (ones - sim_self).sum() # mse_loss = reg_criterion(pred, input_attv) # loss = mse_loss # + loss_sim # loss.backward() # optimizerS.step() # # print("epoch:%d, loss:%.4f" % (epoch, loss.item())) # print(100 * '-') # print("epoch:%d, mse_loss:%.4f" % (epoch, mse_loss)) # _ = getTestAllAcc() # for p in netS.parameters(): # p.requires_grad = False # netS.eval() # os.makedirs('./checkpoint', exist_ok=True) # torch.save(netS.state_dict(), './checkpoint/' + modelStr[opt['dataset']]) # pretrain_cls = classifier.CLASSIFIER(data, opt, 0.001, 0.5, 100, 100) # load pretrained model # for p in pretrain_cls.model.parameters(): # set requires_grad to False # p.requires_grad = False # pretrain_cls.model.eval() # netS = loadPretrainedMain(netS, modelStr[opt['dataset']]) if opt['generalized']: opt['gzsl_unseen_output'], opt['gzsl_seen_output'] = getTestAllAcc() with torch.no_grad(): opt['fake_test_seen_attr'] = netS(data.test_seen_feature.cuda( )).data # generate the corresponding fake_attr opt['fake_test_unseen_attr'] = netS( data.test_unseen_feature.cuda()).data else: opt['gzsl_unseen_output'] = getTestUnseenAcc() with torch.no_grad(): opt['fake_test_attr'] = netS(data.test_unseen_feature.cuda()).data def generate_syn_feature(netG, classes, attribute, num): # only generate the unseen feature nclass = classes.size(0) syn_feature = torch.FloatTensor(nclass * num, opt['resSize']) syn_label = torch.LongTensor(nclass * num) syn_att = torch.FloatTensor(num, opt['attSize']).to(device) syn_noise = torch.FloatTensor(num, opt['nz']).to(device) with torch.no_grad(): for i in range(nclass): iclass = classes[i] iclass_att = attribute[iclass] syn_att.copy_(iclass_att.repeat(num, 1)) syn_noise.normal_( 0, 1 ) # directly sample noise from normal distribution and input the noise set Z into the G to get the newly generated features output = netG(syn_noise, syn_att) syn_feature.narrow(0, i * num, num).copy_(output.data.cpu( )) # narrow method is to get some dimension data syn_label.narrow(0, i * num, num).fill_(iclass) return syn_feature, syn_label def generate_seen_latent_feature( netG, netE, classes, attribute, num): # only generate the unseen latent feature nclass = classes.size(0) syn_feature = torch.FloatTensor(nclass * num, opt['nz']) syn_label = torch.LongTensor(nclass * num) syn_att = torch.FloatTensor(num, opt['attSize']).to(device) syn_noise = torch.FloatTensor(num, opt['nz']).to(device) with torch.no_grad(): for i in range(nclass): iclass = classes[i] iclass_att = attribute[iclass] syn_att.copy_(iclass_att.repeat(num, 1)) syn_noise.normal_( 0, 1 ) # directly sample noise from normal distribution and input the noise set Z into the G to get the newly generated features output = netG(syn_noise, syn_att) output_mu, output_logvar = netE(output) output = reparameterize(output_mu, output_logvar) syn_feature.narrow(0, i * num, num).copy_(output.data.cpu( )) # narrow method is to get some dimension data syn_label.narrow(0, i * num, num).fill_(iclass) return syn_feature, syn_label def generate_unseen_latent_feature( netE, classes, attribute, num): # only generate the unseen latent feature nclass = classes.size(0) syn_feature = torch.FloatTensor(nclass * num, opt['nz']) syn_label = torch.LongTensor(nclass * num) syn_att = torch.FloatTensor(num, opt['attSize']).to(device) syn_noise = torch.FloatTensor(num, opt['nz']).to(device) with torch.no_grad(): for i in range(nclass): iclass = classes[i] iclass_att = attribute[iclass] syn_att.copy_(iclass_att.repeat(num, 1)) # syn_noise.normal_(0, 1) # directly sample noise from normal distribution and input the noise set Z into the G to get the newly generated features # output = netG(syn_noise, syn_att) output_mu, output_logvar = netE(syn_att) output = reparameterize(output_mu, output_logvar) syn_feature.narrow(0, i * num, num).copy_(output.data.cpu( )) # narrow method is to get some dimension data syn_label.narrow(0, i * num, num).fill_(iclass) return syn_feature, syn_label def generate_syn_feature_with_grad(netG, classes, attribute, num): nclass = classes.size(0) # 150 # syn_feature = torch.FloatTensor(nclass*num, opt['resSize']) syn_label = torch.LongTensor(nclass * num).to(device) syn_att = torch.FloatTensor(nclass * num, opt['attSize']).to(device) syn_noise = torch.FloatTensor(nclass * num, opt['nz']).to(device) syn_noise.normal_(0, 1) for i in range(nclass): iclass = classes[i] # seen_classes iclass_att = attribute[iclass] syn_att.narrow(0, i * num, num).copy_(iclass_att.repeat(num, 1)) # 3000*312 0:row syn_label.narrow(0, i * num, num).fill_(iclass) syn_feature = netG(Variable(syn_noise), Variable(syn_att)) return syn_feature, syn_label.cpu() def calc_gradient_penalty(netD, real_data, fake_data, input_att): # print real_data.size() alpha = torch.rand(opt['batch_size'], 1) alpha = alpha.expand(real_data.size()).to(device) interpolates = alpha * real_data + ( (1 - alpha) * fake_data ) # get new input base on the real and fake features interpolates = interpolates.to(device) interpolates = Variable(interpolates, requires_grad=True) disc_interpolates = netD(interpolates, input_att) # ones = torch.ones(disc_interpolates.size()).to(device) gradients = autograd.grad( outputs=disc_interpolates, inputs=interpolates, # WGAN penalty grad_outputs=ones, create_graph=True, retain_graph=True, only_inputs=True)[0] gradient_penalty = ((gradients.norm(2, dim=1) - 1)**2).mean() * 10 return gradient_penalty def calc_gradient_penalty_without_att(netD2, real_data, fake_data, att): # print real_data.size() alpha = torch.rand(opt['batch_size'], 1) alpha = alpha.expand(real_data.size()).to(device) interpolates = alpha * real_data + ( (1 - alpha) * fake_data ) # get new input base on the real and fake features interpolates = interpolates.to(device) interpolates = Variable(interpolates, requires_grad=True) disc_interpolates = netD2(interpolates, att) # ones = torch.ones(disc_interpolates.size()).to(device) gradients = autograd.grad( outputs=disc_interpolates, inputs=interpolates, # WGAN penalty grad_outputs=ones, create_graph=True, retain_graph=True, only_inputs=True)[0] gradient_penalty = ((gradients.norm(2, dim=1) - 1)**2).mean() * 10 return gradient_penalty def reparameterize(mu, logvar): sigma = torch.exp(logvar / 2) eps = torch.cuda.FloatTensor(logvar.size()[0], 1).normal_(0, 1) eps = eps.expand(sigma.size()) return mu + sigma * eps def KL_distance(mu, logvar): return -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp()) def Align_distance( f_mu, f_logvar, att_mu, att_logvar): # align the distribution in the third space s = torch.sqrt(torch.sum((f_mu - att_mu) ** 2, dim=1) + \ torch.sum((torch.sqrt(f_logvar.exp()) - torch.sqrt(att_logvar.exp())) ** 2, dim=1)) return s.sum() # train a classifier on seen classes, obtain \theta of Equation (4) mse = nn.MSELoss().to(device) # freeze the classifier during the optimization best_H_cls = 0.0 ones = torch.ones_like(input_label).type(torch.float).to(device) zeros = torch.zeros_like(input_label).type(torch.float).to(device) # pretrain_cls.model.eval() hyper_beta = {0.8, 1.2, 1.5, 2.0} hyper_distance = {5.13, 8.13, 12.13, 15.13} hyper_cycle = {1000, 3000, 5000, 7000} best_H = [] tmp_H = [] # for (beta, distance, cycle) in itertools.product(hyper_beta,hyper_distance,hyper_cycle): if not os.path.exists('./checkpoint/' + 'pretrained_cadavae_' + opt['dataset'] + '-' + str(opt['pretrained_num']) + '.pth'): for ae_epoch in range(opt['pretrained_num']): # warm up parameter() f1 = 1.0 * (ae_epoch- opt['warmup']['cross_reconstruction']['start_epoch']) / \ (1.0 * (opt['warmup']['cross_reconstruction']['end_epoch'] - opt['warmup']['cross_reconstruction']['start_epoch'])) f1 = f1 * (1.0 * opt['warmup']['cross_reconstruction']['factor']) cross_reconstruction_factor = torch.cuda.FloatTensor([ min(max(f1, 0), opt['warmup']['cross_reconstruction']['factor']) ]) # (epoch-0)/(93-0)*0.25 f2 = 1.0 * (ae_epoch - opt['warmup']['beta']['start_epoch']) /\ (1.0 * (opt['warmup']['beta']['end_epoch'] - opt['warmup']['beta']['start_epoch'])) f2 = f2 * (1.0 * opt['warmup']['beta']['factor']) beta = torch.cuda.FloatTensor( [min(max(f2, 0), opt['warmup']['beta']['factor'])]) # (epoch-6)/(22-6)*8.13 f3 = 1.0 * (ae_epoch - opt['warmup']['distance']['start_epoch']) /\ (1.0 * (opt['warmup']['distance']['end_epoch'] - opt['warmup']['distance']['start_epoch'])) f3 = f3 * (1.0 * opt['warmup']['distance']['factor']) distance_factor = torch.cuda.FloatTensor( [min(max(f3, 0), opt['warmup']['distance']['factor'])]) f4 = 1.0 * (ae_epoch - opt['warmup']['cycle']['start_epoch']) / \ (1.0 * (opt['warmup']['cycle']['end_epoch'] - opt['warmup']['cycle']['start_epoch'])) f4 = f4 * (1.0 * opt['warmup']['cycle']['factor']) cycle_factor = torch.cuda.FloatTensor( [min(max(f4, 0), opt['warmup']['cycle']['factor'])]) for i in range(0, data.ntrain, opt['batch_size']): optimizerAD.zero_grad() optimizerAE.zero_grad() optimizerE.zero_grad() optimizerG.zero_grad() sample() att_mu, att_logvar = attE(input_att) latent_att = reparameterize(att_mu, att_logvar) recon_att = attD(latent_att) att_reconstruct_to_feature = netG(latent_att, input_att) att_self_recon_loss = binary_cross_entropy_crition( recon_att, input_att) att_cross_recon_loss = binary_cross_entropy_crition( att_reconstruct_to_feature, input_res) att_KL_loss = KL_distance(att_mu, att_logvar) loss_att = att_self_recon_loss + beta * att_KL_loss + cross_reconstruction_factor * att_cross_recon_loss real_mu, real_logvar = netE(input_res) latent_feature = reparameterize(real_mu, real_logvar) reconstruct_feature = netG(latent_feature, input_att) # KLD = KL_distance(real_mu, real_logvar) # distribution = torch.FloatTensor(opt['batch_size'], opt['nz']).requires_grad(False) # distribution = distribution.copy_(noise).requires_grad(False) feature_KL_dis = KL_distance(real_mu, real_logvar) reconstruct_loss = binary_cross_entropy_crition( reconstruct_feature, input_res) feature_reconstruct_to_att = attD(latent_feature) feature_cross_recon_loss = binary_cross_entropy_crition( feature_reconstruct_to_att, input_att) loss_feature = reconstruct_loss + beta * feature_KL_dis + cross_reconstruction_factor * feature_cross_recon_loss align_loss = Align_distance(real_mu, real_logvar, att_mu, att_logvar) re_reconstruct_att_mu, re_reconstruct_att_logvar = attE( recon_att) re_reconstruct_latent_att = reparameterize( re_reconstruct_att_mu, re_reconstruct_att_logvar) re_reconstruct_att = attD(re_reconstruct_latent_att) cycle_att_loss = binary_cross_entropy_crition( re_reconstruct_att, input_att ) # + reg_criterion(re_reconstruct_att, recon_att.data) re_reconstruct_latent_feature_mu, re_reconstruct_latent_feature_logvar = netE( reconstruct_feature) re_reconstruct_latent_feature = reparameterize( re_reconstruct_latent_feature_mu, re_reconstruct_latent_feature_logvar) re_reconstruct_feature = netG(re_reconstruct_latent_feature, input_att) cycle_loss = binary_cross_entropy_crition( re_reconstruct_feature, input_res ) # + reg_criterion(re_reconstruct_feature, reconstruct_feature.data) VAE_loss = loss_feature + loss_att + distance_factor * align_loss + cycle_factor * ( cycle_att_loss + cycle_loss) VAE_loss.backward() optimizerG.step() optimizerE.step() optimizerAE.step() optimizerAD.step() torch.save( { 'G_state_dict': netG.state_dict(), 'E_state_dict': netE.state_dict(), 'AE_state_dict': attE.state_dict(), 'AD_state_dict': attD.state_dict(), # 'netS_state_dict': netS.state_dict(), }, './checkpoint/' + 'pretrained_cadavae_' + opt['dataset'] + '-' + str(opt['pretrained_num']) + '.pth') else: pretrained_path = torch.load('./checkpoint/' + 'pretrained_cadavae_' + opt['dataset'] + '-' + str(opt['pretrained_num']) + '.pth') netG.load_state_dict(pretrained_path['G_state_dict']) netE.load_state_dict(pretrained_path['E_state_dict']) attD.load_state_dict(pretrained_path['AD_state_dict']) attE.load_state_dict(pretrained_path['AE_state_dict']) # for epoch in range(80): # pretrain VAE # # for i in range(0, data.ntrain, opt['batch_size']): # sample() # optimizerE.zero_grad() # optimizerG.zero_grad() # latent_mu, latent_logvar = netE(input_res) # latent = reparameterize(latent_mu, latent_logvar) # re = netG(latent, input_att) # kl_loss = KL_distance(latent_mu, latent_logvar) # re_loss = reg_criterion(input_res, re) # loss = kl_loss+ re_loss # loss.backward() # optimizerG.step() # optimizerE.step() for epoch in range( opt['nepoch'] ): # after 5 times update of discriminator will update generator once for i in range(0, data.ntrain, opt['batch_size']): # update the parameters of discriminator. for p in netD.parameters(): p.requires_grad = True for p in netD2.parameters(): p.requires_grad = True for iter_d in range(5): # 5 sample() # get samples optimizerD.zero_grad() optimizerD2.zero_grad() criticD_real = netD(input_res, input_att) # real samples for D # criticD_real = binary_cross_entropy_crition(criticD_real, ones) criticD_real = criticD_real.mean() noise.normal_(0, 1) # get seen class noise fake = netG( noise, input_att) # generate seen classes fake features for D criticD_fake = netD( fake.detach(), input_att) # discriminate the fake feature and get loss # criticD_fake = binary_cross_entropy_crition(criticD_fake, zeros) criticD_fake = criticD_fake.mean() # feature_reconstruct_mu, feature_reconstruct_logvar = netE(input_res) # reconstruct_latent_feature = reparameterize(feature_reconstruct_mu, feature_reconstruct_logvar) # criticD_real_reconstruct = netG(reconstruct_latent_feature, input_att) # criticD_real_reconstruct = netD(criticD_real_reconstruct, input_att) # criticD_real_reconstruct = criticD_real_reconstruct.mean() criticD2_real = netD2(input_att, input_att) criticD2_real = criticD2_real.mean() criticD2_real_mu, critiD2_real_logvar = attE(input_att) criticD2_real_latent_feature = reparameterize( criticD2_real_mu, critiD2_real_logvar) real_construct = attD(criticD2_real_latent_feature) criticD2_real_reconstruct = netD2(real_construct, input_att) criticD2_real_reconstruct = criticD2_real_reconstruct.mean() fake_att = attD(noise) criticD2_fake = netD2(fake_att.detach(), input_att) criticD2_fake = criticD2_fake.mean() gradient_penalty = calc_gradient_penalty( netD, input_res, fake.data, input_att) # weight penalty? gradient_penalty_D2 = calc_gradient_penalty_without_att( netD2, input_att, fake_att.data, input_att) D_cost = criticD_fake - criticD_real + gradient_penalty # total loss D2_cost = criticD2_fake + gradient_penalty_D2 - criticD2_real # + criticD2_real_reconstruct D_loss = D_cost + D2_cost D_loss.backward() optimizerD.step() optimizerD2.step() # update the parameters of generator. for p in netD.parameters(): # reset requires_grad p.requires_grad = False # avoid computation for p in netD2.parameters(): # reset requires_grad p.requires_grad = False # avoid computation optimizerG.zero_grad() optimizerE.zero_grad() optimizerAE.zero_grad() optimizerAD.zero_grad() optimizerAlign.zero_grad() sample() noise.normal_(0, 1) att_mu, att_logvar = attE(input_att) latent_att = reparameterize(att_mu, att_logvar) recon_att = attD(latent_att) self_recon_loss = binary_cross_entropy_crition( recon_att, input_att) att_reconstruct_to_feature = netG(latent_att, input_att) att_cross_recon_loss = binary_cross_entropy_crition( att_reconstruct_to_feature, input_res) att_KL_loss = -KL_distance(att_mu, att_logvar) # loss_att = self_recon_loss + beta * att_KL_loss + att_cross_recon_loss * opt['warmup']['cross_reconstruction']['factor'] loss_att = self_recon_loss + opt['warmup']['beta'][ 'factor'] * att_KL_loss + att_cross_recon_loss * opt['warmup'][ 'cross_reconstruction']['factor'] re_reconstruct_att_mu, re_reconstruct_att_logvar = attE(recon_att) re_reconstruct_latent_att = reparameterize( re_reconstruct_att_mu, re_reconstruct_att_logvar) re_reconstruct_att = attD(re_reconstruct_latent_att) cycle_att_loss = binary_cross_entropy_crition( re_reconstruct_att, input_att ) # + binary_cross_entropy_crition(re_reconstruct_att, recon_att.data) # cycle_latent_att_loss = reg_criterion(latent_att, re_reconstruct_latent_att) real_mu, real_logvar = netE(input_res) latent_feature = reparameterize(real_mu, real_logvar) reconstruct_feature = netG(latent_feature, input_att) feature_KL_dis = KL_distance(real_mu, real_logvar) reconstruct_loss = binary_cross_entropy_crition( reconstruct_feature, input_res) feature_reconstruct_to_att = attD(latent_feature) feature_cross_recon_loss = binary_cross_entropy_crition( feature_reconstruct_to_att, input_att) # loss_feature = reconstruct_loss + beta * feature_KL_dis + feature_cross_recon_loss * opt['warmup']['cross_reconstruction']['factor'] loss_feature = reconstruct_loss + opt['warmup']['beta'][ 'factor'] * feature_KL_dis + feature_cross_recon_loss * opt[ 'warmup']['cross_reconstruction']['factor'] re_reconstruct_latent_feature_mu, re_reconstruct_latent_feature_logvar = netE( reconstruct_feature) re_reconstruct_latent_feature = reparameterize( re_reconstruct_latent_feature_mu, re_reconstruct_latent_feature_logvar) re_reconstruct_feature = netG(re_reconstruct_latent_feature, input_att) cycle_loss = binary_cross_entropy_crition( re_reconstruct_feature, input_res ) # + binary_cross_entropy_crition(re_reconstruct_feature, reconstruct_feature.data) # cycle_latent_feature_loss = reg_criterion(re_reconstruct_latent_feature, latent_feature) align_loss = Align_distance(real_mu, real_logvar, att_mu, att_logvar) # vae_loss = loss_feature + loss_att + align_loss * distance + cycle_loss * cycle + cycle_att_loss * cycle # + cycle_latent_att_loss * 2 + cycle_latent_feature_loss * 2 vae_loss = 2 * ( loss_feature + loss_att + align_loss * opt['warmup']['distance']['factor'] ) + cycle_loss * 10000 + cycle_att_loss * 10000 # + cycle_latent_att_loss * 2 + cycle_latent_feature_loss * 2 # vae_loss.backward(retain_graph=True) # noise.normal_(0, 1) fake = netG(noise, input_att) # criticD_real = netD(input_res, input_att) # of no use criticG_fake = netD(fake, input_att) criticG_fake = criticG_fake.mean() # criticG_fake2 = netD(reconstruct_feature, input_att) # criticG_fake2 = criticG_fake2.mean() G_cost = -criticG_fake * opt[ 'wgan_weight'] # - change minimize target to maximize the target- criticG_fake2 fake_att = attD(noise) criticDe_fake = netD2(fake_att, input_att) criticDe_fake = criticDe_fake.mean() # criticDe_fake2 = netD2(recon_att, input_att) # criticDe_fake2 = criticDe_fake2.mean() D2_cost = -criticDe_fake * opt[ 'wgan_weight'] # - criticDe_fake2 * 1 # # origin_feature_latent_feature = netAlign(input_res, latent_feature) # fake_latent_feature_rebuild_feature = netAlign(fake, noise) # BiGAN_loss = binary_cross_entropy_crition(origin_feature_latent_feature, ones) - binary_cross_entropy_crition(fake_latent_feature_rebuild_feature, zeros) # classification loss # c_errG = cls_criterion(pretrain_cls.model(fake), input_label) loss = G_cost + vae_loss + D2_cost # + 0.7 * BiGAN_loss # + loss_feature + loss_att + 8.13 * align_loss loss.backward() optimizerAE.step() optimizerAD.step() optimizerG.step() optimizerE.step() optimizerAlign.step() print( 'EP[%d/%d]*******************************************************************' % (epoch, opt['nepoch'])) print('G_cost: %.4f, D2_loss: %.4f, vae_loss: %.4f, loss: %.4f' % (G_cost.item(), D2_cost, vae_loss.item(), loss.item())) # print('tmp_seen:%d, tmp_unseen:%d' % (tmp_seen, tmp_unseen))5867 # evaluate the model, set G to evaluation mode if epoch >= 0: netG.eval() netE.eval() attE.eval() attD.eval() # Generalized zero-shot learning syn_unseen_feature, syn_unseen_label = generate_syn_feature( netG, data.unseenclasses, data.attribute, opt['cls_syn_num'] ) # 1500x2048 generate unseen classed feature syn_seen_feature, syn_seen_label = generate_syn_feature( netG, data.seenclasses, data.attribute, int(opt['cls_syn_num'] / 30)) if opt['generalized']: # train_latent_feature_mu, train_latent_feature_logvar = netE(data.train_feature.cuda(device)) # train_latent_feature = reparameterize(train_latent_feature_mu, train_latent_feature_logvar).data.cpu() train_X = torch.cat( (data.train_feature, syn_unseen_feature, syn_seen_feature), 0) # combine seen and unseen classes features train_Y = torch.cat( (data.train_label, syn_unseen_label, syn_seen_label), 0) # train_X = torch.cat((data.train_feature, syn_unseen_feature),0) # train_Y = torch.cat((data.train_label, syn_unseen_label), 0) # if data.test_seen_feature.size()[-1] != opt['nz']: # test_unseen_feature, _ = netE(data.test_unseen_feature.cuda(device)) # test_seen_feature, _ = netE(data.test_seen_feature.cuda(device)) # data.test_unseen_feature = test_unseen_feature # data.test_seen_feature = test_seen_feature nclass = data.ntrain_class + data.ntest_class # classes numbers v2s = s2l.Visual_to_semantic(opt, netS(train_X.cuda()).data.cpu(), train_Y, data, nclass, generalized=True) opt['gzsl_unseen_output'] = v2s.unseen_out opt['gzsl_seen_output'] = v2s.seen_out cls = classifier2.CLASSIFIER(opt, train_X, train_Y, data, nclass, _beta1=0.5, _nepoch=30, generalized=True) print( 'GZSL Classifier Seen Acc: {:.2f}%, Unseen Acc: {:.2f}%, H Acc: {:.2f}%' .format(cls.seen_cls * 100, cls.unseen_cls * 100, cls.H_cls * 100)) print( 'GZSL Ensemble Seen Acc: {:.2f}%, Unseen Acc: {:.2f}%, H Acc: {:.2f}%' .format(cls.seen_ensemble * 100, cls.unseen_ensemble * 100, cls.H_ensemble * 100)) if cls.H_cls > best_H_cls: best_H_cls = cls.H_cls torch.save( { 'G_state_dict': netG.state_dict(), 'D_state_dict': netD.state_dict(), 'netS_state_dict': netS.state_dict(), 'H': cls.H_cls, 'gzsl_seen_accuracy': cls.seen_cls, 'gzsl_unseen_accuracy': cls.unseen_cls, 'cls': cls, }, './checkpoint/' + 'gzsl_' + opt['dataset'] + '-' + str(epoch) + '.pth') tmp_H.append([cls.seen_cls, cls.unseen_cls, cls.H_cls]) sio.savemat( './data/' + opt['dataset'] + '/fakeTestFeat.mat', { 'train_X': train_X.numpy(), 'train_Y': train_Y.numpy(), 'test_seen_X': data.test_seen_feature.numpy(), 'test_seen_Y': data.test_seen_label.numpy(), 'test_unseen_X': data.test_unseen_feature.numpy(), 'test_unseen_Y': data.test_unseen_label.numpy() }) else: fake_syn_unseen_attr = netS( Variable(syn_unseen_feature.cuda(), volatile=True))[0] v2s = s2l.Visual_to_semantic(opt, fake_syn_unseen_attr.data.cpu(), syn_unseen_label, data, data.unseenclasses.size(0), generalized=False) opt.zsl_unseen_output = v2s.output cls = classifier2.CLASSIFIER(opt, syn_unseen_feature, util.map_label( syn_unseen_label, data.unseenclasses), data, data.unseenclasses.size(0), _beta1=0.5, _nepoch=25, generalized=False) print('ZSL Classifier: {:.2f}%'.format(cls.cls_acc * 100)) print('ZSL Ensemble: {:.2f}%'.format(cls.ensemble_acc * 100)) sys.stdout.flush() netG.train() netE.train() attE.train() attD.train()
def __init__(self, opt, attributes, unseenAtt, unseenLabels, seen_feats_mean, gen_type='FG'): ''' CLSWGAN trainer Inputs: opt -- arguments unseenAtt -- embeddings vector of unseen classes unseenLabels -- labels of unseen classes attributes -- embeddings vector of all classes ''' self.opt = opt self.con_real = ConLossReal(seen_feats_mean) self.gen_type = gen_type # self.Wu_Labels = np.array([i for i, l in enumerate(unseenLabels)]) self.Wu_Labels = unseenLabels #np.array([i for i, l in enumerate(unseenLabels)]) print(f"Wu_Labels {self.Wu_Labels}") self.Wu = unseenAtt self.unseen_classifier = ClsUnseen(unseenAtt) self.unseen_classifier.cuda() self.con_loss = SupConLoss() self.con_att_feats = AttFeatsCon() # self.unseen_classifier = loadUnseenWeights(opt.pretrain_classifier_unseen, self.unseen_classifier) self.classifier = ClsModel(num_classes=opt.nclass_all) self.classifier.cuda() self.classifier = loadFasterRcnnCLSHead(opt.pretrain_classifier, self.classifier) for p in self.classifier.parameters(): p.requires_grad = False for p in self.unseen_classifier.parameters(): p.requires_grad = False self.ntrain = opt.gan_epoch_budget self.attributes = attributes.data.numpy() print(f"# of training samples: {self.ntrain}") # initialize generator and discriminator self.netG = model.MLP_G(self.opt) self.netD = model.MLP_CRITIC(self.opt) if self.opt.cuda and torch.cuda.is_available(): self.netG = self.netG.cuda() self.netD = self.netD.cuda() print( '\n\n#############################################################\n' ) print(self.netG, '\n') print(self.netD) print( '\n#############################################################\n\n' ) # classification loss, Equation (4) of the paper self.cls_criterion = nn.NLLLoss() self.one = torch.FloatTensor([1]) self.mone = self.one * -1 if self.opt.cuda: self.one = self.one.cuda() self.mone = self.mone.cuda() self.cls_criterion.cuda() self.optimizerD = optim.Adam(self.netD.parameters(), lr=self.opt.lr, betas=(self.opt.beta1, 0.999)) self.optimizerG = optim.Adam(self.netG.parameters(), lr=self.opt.lr, betas=(self.opt.beta1, 0.999))