Esempio n. 1
0
def main(args):
    ts = time.strftime('%Y-%b-%d-%H:%M:%S', time.gmtime())
    seed = 1111
    set_seed(seed)

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    print('device', device, torch.cuda.current_device())

    # exit()

    data_obj = _DATA()
    if "yelp" in args.data_name:
        train_data, valid_data, vocab_obj = data_obj.f_load_data_yelp_restaurant(
            args)

    if "movie" in args.data_name:
        train_data, valid_data, vocab_obj = data_obj.f_load_data_movie(args)

    if "beer" in args.data_name:
        train_data, valid_data, vocab_obj = data_obj.f_load_data_beer(args)

    if "wine" in args.data_name:
        train_data, valid_data, vocab_obj = data_obj.f_load_data_wine(args)

    if "lthing" in args.data_name:
        train_data, valid_data, vocab_obj = data_obj.f_load_data_movie(args)

    if args.train:
        now_time = datetime.now()
        time_name = str(now_time.month) + "_" + str(now_time.day) + "_" + str(
            now_time.hour) + "_" + str(now_time.minute)
        model_file = os.path.join(args.model_path,
                                  args.data_name + "_" + args.model_name)

        if not os.path.isdir(model_file):
            print("create a directory", model_file)
            os.mkdir(model_file)

        args.model_file = model_file + "/model_best_" + time_name + ".pt"
        print("model_file", model_file)

    print("vocab_size", vocab_obj.vocab_size)
    print("user num", vocab_obj.user_num)
    print("item num", vocab_obj.item_num)

    pretrain_model_file = args.pretrain_model_file
    pretrain_network = None
    if pretrain_model_file != "":
        pretrain_network = BPR(vocab_obj, args, device)
        pretrain_model_abs_file = os.path.join(args.model_path,
                                               pretrain_model_file)
        print("pretrain_model_abs_file", pretrain_model_abs_file)
        checkpoint = torch.load(pretrain_model_abs_file)
        pretrain_network.load_state_dict(checkpoint['model'])

    network = _ATTR_NETWORK(vocab_obj, args, device)

    total_param_num = 0
    for name, param in network.named_parameters():
        if param.requires_grad:
            param_num = param.numel()
            total_param_num += param_num
            print(name, "\t", param_num)

    print("total parameters num", total_param_num)

    if args.train:
        logger_obj = _LOGGER()
        logger_obj.f_add_writer(args)

        optimizer = _OPTIM(network.parameters(), args)
        trainer = _TRAINER(vocab_obj, args, device)
        trainer.f_train(pretrain_network, train_data, valid_data, network,
                        optimizer, logger_obj)

        logger_obj.f_close_writer()

    if args.eval:
        print("=" * 10, "eval", "=" * 10)

        eval_obj = _EVAL(vocab_obj, args, device)

        network = network.to(device)

        eval_obj.f_init_eval(network, args.model_file, reload_model=True)

        # eval_obj.f_eval_new_user(train_data, valid_data)
        eval_obj.f_eval(train_data, valid_data)

    if args.test:
        print("=" * 10, "eval", "=" * 10)

        infer_obj = _INFER(vocab_obj, args, device)

        network = network.to(device)

        infer_obj.f_init_infer(network, args.model_file, reload_model=True)

        infer_obj.f_infer(train_data, valid_data)
Esempio n. 2
0
def main(args):
    ts = time.strftime('%Y-%b-%d-%H:%M:%S', time.gmtime())
    seed = 1111
    set_seed(seed)

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    print('device', device)

    local_rank = None
    if args.parallel:
        local_rank = args.local_rank
        torch.distributed.init_process_group(backend="nccl")
        device = torch.device('cuda:{}'.format(local_rank))

    data_obj = _DATA()

    if "beer" in args.data_name:
        train_data, valid_data, vocab_obj = data_obj.f_load_data_movie(args)

    if "wine" in args.data_name:
        train_data, valid_data, vocab_obj = data_obj.f_load_data_movie(args)

    if "yelp" in args.data_name:
        train_data, valid_data, vocab_obj = data_obj.f_load_data_yelp(args)
    
    if "movie" in args.data_name:
        train_data, valid_data, vocab_obj = data_obj.f_load_data_movie(args)

    if "lthing" in args.data_name:
        train_data, valid_data, vocab_obj = data_obj.f_load_data_movie(args)

    if args.train:
        now_time = datetime.now()
        time_name = str(now_time.month)+"_"+str(now_time.day)+"_"+str(now_time.hour)+"_"+str(now_time.minute)
        model_file = os.path.join(args.model_path, args.data_name+"_"+args.model_name)

        if not os.path.isdir(model_file):
            print("create a directory", model_file)
            os.mkdir(model_file)

        args.model_file = model_file+"/model_best_"+time_name+".pt"
        print("model_file", model_file)
    
    print("vocab_size", vocab_obj.vocab_size)
    print("user num", vocab_obj.user_num)
    print("item num", vocab_obj.item_num)
    
    network = _ATTR_NETWORK(vocab_obj, args, device)

    total_param_num = 0
    for name, param in network.named_parameters():
        if param.requires_grad:
            param_num = param.numel()
            total_param_num += param_num
            print(name, "\t", param_num)

    print("total parameters num", total_param_num)

    if args.train:
        logger_obj = _LOGGER()
        logger_obj.f_add_writer(args)

        if args.parallel:
            network = torch.nn.parallel.DistributedDataParallel(network, device_ids=[local_rank], output_device=local_rank, find_unused_parameters=True)

        optimizer = _OPTIM(network.parameters(), args)
        trainer = _TRAINER(args, device)
        trainer.f_train(train_data, valid_data, network, optimizer, logger_obj, local_rank)

        logger_obj.f_close_writer()

    if args.eval:
        print("="*10, "eval", "="*10)
        
        eval_obj = _EVAL(vocab_obj, args, device)

        network = network.to(device)

        eval_obj.f_init_eval(network, args.model_file, reload_model=True)

        # eval_obj.f_eval_new_user(train_data, valid_data)
        eval_obj.f_eval(train_data, valid_data)