def read(self): o = {} # reasonable defaults o['layout'] = 'fixed' o['jQueryUiTheme'] = 'smoothness' i = SessionHelper().peek('user.account_id') if not i is None: with grab_connection('main') as conn: data = get_row(conn, ''' select ui_layout, ui_theme from user_account_ui_settings where ref_user_account_id = %(i)s ''', { 'i': i }) if not data is None: o['layout'] = data['ui_layout'] o['jQueryUiTheme'] = data['ui_theme'] return o
def read(self): o = {} userAccountId = SessionHelper().peek('user.account_id') if not userAccountId is None: with grab_connection('main') as conn: data = get_row( conn, """ select user_name, first_name, last_name, email from user_accounts where user_account_id = %(i)s """, { 'i': userAccountId }) if data: o['userAccountId'] = userAccountId o['userName'] = data['user_name'] o['firstName'] = data['first_name'] o['lastName'] = data['last_name'] o['email'] = data['email'] return o
def graphic(table_clicks, add_clicks, clients_number, rel_min1, rel_max1, rel_min2, rel_max2, norm_min1, norm_max1, norm_d_min1, norm_d_max1, norm_min2, norm_max2, norm_d_min2, norm_d_max2, x1_new, x2_new, x3_new, x4_new, x5_new, x6_new): global df, n_add, experim for i in range(experim): array_x[i] = array_x[i][1:] if (add_clicks > n_add): n_add = add_clicks x1_new = float(x1_new) x2_new = float(x2_new) x3_new = float(x3_new) x4_new = float(x4_new) x5_new = float(x4_new) x6_new = float(x4_new) experim += 1 array_x.append(get_row([x1_new, x2_new, x3_new, x4_new, x5_new, x6_new], 6)) f1_b = float(rel_min1) f1_e = float(rel_max1) f2_b = float(rel_min2) f2_e = float(rel_max2) f3_b = float(norm_min1) f3_e = float(norm_max1) f4_b = float(norm_d_min1) f4_e = float(norm_d_max1) f5_b = float(norm_min2) f5_e = float(norm_max2) f6_b = float(norm_d_min2) f6_e = float(norm_d_max2) r = True if 2 * (f1_b + f1_e + f2_b + f2_e) / (f3_b + f3_e + f5_b + f5_e) > 0.8 else False i = 0 for row in array_x: rel1 = convert_factor_to_value(float(rel_min1), float(rel_max1), row[1]) rel2 = convert_factor_to_value(float(rel_min2), float(rel_max2), row[2]) norm1 = convert_factor_to_value(float(norm_min1), float(norm_max1), row[3]) norm_d1 = convert_factor_to_value(float(norm_d_min1), float(norm_d_max1), row[4]) norm2 = convert_factor_to_value(float(norm_min2), float(norm_max2), row[5]) norm_d2 = convert_factor_to_value(float(norm_d_min2), float(norm_d_max2), row[6]) c_rel1 = calculate_reley_param(rel1) c_rel2 = calculate_reley_param(rel2) c_norm1, c_norm_d1 = calculate_gauss_params(norm1, norm_d1) c_norm2, c_norm_d2 = calculate_gauss_params(norm2, norm_d2) model = modeller.Model([c_rel1, c_rel2], [c_norm1, c_norm2], [c_norm_d1, c_norm_d2], 2, 1, 0) avg_queue_size, avg_queue_time, processed_requests = model.time_based_modellingg(tmax, 0.001) print(i) array_x[i][70] = round(avg_queue_time, 5) i += 1 b0 = calculate_b_ockp(0, 1, [array_x[i][0] for i in range(count)], [array_x[i][70] for i in range(count)], count) b1 = calculate_b_ockp(f1_b, f1_e, [array_x[i][1] for i in range(count)], [array_x[i][70] for i in range(count)], count) b2 = calculate_b_ockp(f2_b, f2_e, [array_x[i][2] for i in range(count)], [array_x[i][70] for i in range(count)], count) b3 = calculate_b_ockp(f3_b, f3_e, [array_x[i][3] for i in range(count)], [array_x[i][70] for i in range(count)], count) b4 = calculate_b_ockp(f4_b, f4_e, [array_x[i][4] for i in range(count)], [array_x[i][70] for i in range(count)], count) b5 = calculate_b_ockp(f5_b, f5_e, [array_x[i][5] for i in range(count)], [array_x[i][70] for i in range(count)], count) b6 = calculate_b_ockp(f6_b, f6_e, [array_x[i][6] for i in range(count)], [array_x[i][70] for i in range(count)], count) b12 = calculate_b_ockp(f1_b * f2_b, f1_e * f2_e, [array_x[i][7] for i in range(count)], [array_x[i][70] for i in range(count)], count) b13 = calculate_b_ockp(f1_b * f3_b, f1_e * f3_e, [array_x[i][8] for i in range(count)], [array_x[i][70] for i in range(count)], count) b14 = calculate_b_ockp(f1_b * f4_b, f1_e * f4_e, [array_x[i][9] for i in range(count)], [array_x[i][70] for i in range(count)], count) b15 = calculate_b_ockp(f1_b * f5_b, f1_e * f5_e, [array_x[i][10] for i in range(count)], [array_x[i][70] for i in range(count)], count) b16 = calculate_b_ockp(f1_b * f6_b, f1_e * f6_e, [array_x[i][11] for i in range(count)], [array_x[i][70] for i in range(count)], count) b23 = calculate_b(f2_b * f3_b, f2_e * f3_e, [array_x[i][12] for i in range(count)], [array_x[i][70] for i in range(count)], count) b24 = calculate_b_ockp(f2_b * f4_b, f2_e * f4_e, [array_x[i][13] for i in range(count)], [array_x[i][70] for i in range(count)], count) b25 = calculate_b_ockp(f2_b * f5_b, f2_e * f5_e, [array_x[i][14] for i in range(count)], [array_x[i][70] for i in range(count)], count) b26 = calculate_b_ockp(f2_b * f6_b, f2_e * f6_e, [array_x[i][15] for i in range(count)], [array_x[i][70] for i in range(count)], count) b34 = calculate_b_ockp(f3_b * f4_b, f3_e * f4_e, [array_x[i][16] for i in range(count)], [array_x[i][70] for i in range(count)], count) b35 = calculate_b_ockp(f3_b * f5_b, f3_e * f5_e, [array_x[i][17] for i in range(count)], [array_x[i][70] for i in range(count)], count) b36 = calculate_b_ockp(f3_b * f6_b, f3_e * f6_e, [array_x[i][18] for i in range(count)], [array_x[i][70] for i in range(count)], count) b45 = calculate_b_ockp(f4_b * f5_b, f4_e * f5_e, [array_x[i][19] for i in range(count)], [array_x[i][70] for i in range(count)], count) b46 = calculate_b_ockp(f4_b * f6_b, f4_e * f6_e, [array_x[i][20] for i in range(count)], [array_x[i][70] for i in range(count)], count) b56 = calculate_b_ockp(f5_b * f6_b, f5_e * f6_e, [array_x[i][21] for i in range(count)], [array_x[i][70] for i in range(count)], count) b123 = calculate_b_ockp(f1_b * f2_b * f3_b, f1_e * f2_e * f3_e, [array_x[i][22] for i in range(count)], [array_x[i][70] for i in range(count)], count) b124 = calculate_b_ockp(f1_b * f2_b * f4_b, f1_e * f2_e * f4_e, [array_x[i][23] for i in range(count)], [array_x[i][70] for i in range(count)], count) b125 = calculate_b_ockp(f1_b * f2_b * f5_b, f1_e * f2_e * f5_e, [array_x[i][24] for i in range(count)], [array_x[i][70] for i in range(count)], count) b126 = calculate_b_ockp(f1_b * f2_b * f6_b, f1_e * f2_e * f6_e, [array_x[i][25] for i in range(count)], [array_x[i][70] for i in range(count)], count) b134 = calculate_b_ockp(f1_b * f3_b * f4_b, f1_e * f3_e * f4_e, [array_x[i][26] for i in range(count)], [array_x[i][70] for i in range(count)], count) b135 = calculate_b_ockp(f1_b * f3_b * f5_b, f1_e * f3_e * f5_e, [array_x[i][27] for i in range(count)], [array_x[i][70] for i in range(count)], count) b136 = calculate_b_ockp(f1_b * f3_b * f6_b, f1_e * f3_e * f6_e, [array_x[i][28] for i in range(count)], [array_x[i][70] for i in range(count)], count) b145 = calculate_b_ockp(f1_b * f4_b * f5_b, f1_e * f4_e * f5_e, [array_x[i][29] for i in range(count)], [array_x[i][70] for i in range(count)], count) b146 = calculate_b_ockp(f1_b * f4_b * f6_b, f1_e * f4_e * f6_e, [array_x[i][30] for i in range(count)], [array_x[i][70] for i in range(count)], count) b156 = calculate_b_ockp(f1_b * f5_b * f6_b, f1_e * f5_e * f6_e, [array_x[i][31] for i in range(count)], [array_x[i][70] for i in range(count)], count) b234 = calculate_b_ockp(f2_b * f3_b * f4_b, f2_e * f3_e * f4_e, [array_x[i][32] for i in range(count)], [array_x[i][70] for i in range(count)], count) b235 = calculate_b_ockp(f2_b * f3_b * f5_b, f2_e * f3_e * f5_e, [array_x[i][33] for i in range(count)], [array_x[i][70] for i in range(count)], count) b236 = calculate_b_ockp(f2_b * f3_b * f6_b, f2_e * f3_e * f6_e, [array_x[i][34] for i in range(count)], [array_x[i][70] for i in range(count)], count) b245 = calculate_b_ockp(f2_b * f4_b * f5_b, f2_e * f4_e * f5_e, [array_x[i][35] for i in range(count)], [array_x[i][70] for i in range(count)], count) b246 = calculate_b_ockp(f2_b * f4_b * f6_b, f2_e * f4_e * f6_e, [array_x[i][36] for i in range(count)], [array_x[i][70] for i in range(count)], count) b256 = calculate_b_ockp(f2_b * f5_b * f6_b, f2_e * f5_e * f6_e, [array_x[i][37] for i in range(count)], [array_x[i][70] for i in range(count)], count) b345 = calculate_b_ockp(f3_b * f4_b * f5_b, f3_e * f4_e * f5_e, [array_x[i][38] for i in range(count)], [array_x[i][70] for i in range(count)], count) b346 = calculate_b_ockp(f3_b * f4_b * f6_b, f3_e * f4_e * f6_e, [array_x[i][39] for i in range(count)], [array_x[i][70] for i in range(count)], count) b356 = calculate_b_ockp(f3_b * f5_b * f6_b, f3_e * f5_e * f6_e, [array_x[i][40] for i in range(count)], [array_x[i][70] for i in range(count)], count) b456 = calculate_b_ockp(f4_b * f5_b * f6_b, f4_e * f5_e * f6_e, [array_x[i][41] for i in range(count)], [array_x[i][70] for i in range(count)], count) b1234 = calculate_b_ockp(f1_b * f2_b * f3_b * f4_b, f1_e * f2_e * f3_e * f4_e, [array_x[i][42] for i in range(count)], [array_x[i][70] for i in range(count)], count) b1235 = calculate_b_ockp(f1_b * f2_b * f3_b * f5_b, f1_e * f2_e * f3_e * f5_e, [array_x[i][43] for i in range(count)], [array_x[i][70] for i in range(count)], count) b1236 = calculate_b_ockp(f1_b * f2_b * f3_b * f6_b, f1_e * f2_e * f3_e * f6_e, [array_x[i][44] for i in range(count)], [array_x[i][70] for i in range(count)], count) b1245 = calculate_b_ockp(f1_b * f2_b * f4_b * f5_b, f1_e * f2_e * f4_e * f5_e, [array_x[i][45] for i in range(count)], [array_x[i][70] for i in range(count)], count) b1246 = calculate_b_ockp(f1_b * f2_b * f4_b * f6_b, f1_e * f2_e * f4_e * f6_e, [array_x[i][46] for i in range(count)], [array_x[i][70] for i in range(count)], count) b1256 = calculate_b_ockp(f1_b * f2_b * f5_b * f6_b, f1_e * f2_e * f5_e * f6_e, [array_x[i][47] for i in range(count)], [array_x[i][70] for i in range(count)], count) b1345 = calculate_b_ockp(f1_b * f3_b * f4_b * f5_b, f1_e * f3_e * f4_e * f5_e, [array_x[i][48] for i in range(count)], [array_x[i][70] for i in range(count)], count) b1346 = calculate_b_ockp(f1_b * f3_b * f4_b * f6_b, f1_e * f3_e * f4_e * f6_e, [array_x[i][49] for i in range(count)], [array_x[i][70] for i in range(count)], count) b1356 = calculate_b_ockp(f1_b * f3_b * f5_b * f6_b, f1_e * f3_e * f5_e * f6_e, [array_x[i][50] for i in range(count)], [array_x[i][70] for i in range(count)], count) b1456 = calculate_b_ockp(f1_b * f4_b * f5_b * f6_b, f1_e * f4_e * f5_e * f6_e, [array_x[i][51] for i in range(count)], [array_x[i][70] for i in range(count)], count) b2345 = calculate_b_ockp(f2_b * f3_b * f4_b * f5_b, f2_e * f3_e * f4_e * f5_e, [array_x[i][52] for i in range(count)], [array_x[i][70] for i in range(count)], count) b2346 = calculate_b_ockp(f2_b * f3_b * f4_b * f6_b, f2_e * f3_e * f4_e * f6_e, [array_x[i][53] for i in range(count)], [array_x[i][70] for i in range(count)], count) b2356 = calculate_b_ockp(f2_b * f3_b * f5_b * f6_b, f2_e * f3_e * f5_e * f6_e, [array_x[i][54] for i in range(count)], [array_x[i][70] for i in range(count)], count) b2456 = calculate_b_ockp(f2_b * f4_b * f5_b * f6_b, f2_e * f4_e * f5_e * f6_e, [array_x[i][55] for i in range(count)], [array_x[i][70] for i in range(count)], count) b3456 = calculate_b_ockp(f3_b * f4_b * f5_b * f6_b, f3_e * f4_e * f5_e * f6_e, [array_x[i][56] for i in range(count)], [array_x[i][70] for i in range(count)], count) b12345 = calculate_b_ockp(f1_b * f2_b * f3_b * f4_b * f5_b, f1_e * f2_e * f3_e * f4_e * f5_e, [array_x[i][57] for i in range(count)], [array_x[i][70] for i in range(count)], count) b12346 = calculate_b_ockp(f1_b * f2_b * f3_b * f4_b * f6_b, f1_e * f2_e * f3_e * f4_e * f6_e, [array_x[i][58] for i in range(count)], [array_x[i][70] for i in range(count)], count) b12356 = calculate_b_ockp(f1_b * f2_b * f3_b * f5_b * f6_b, f1_e * f2_e * f3_e * f5_e * f6_e, [array_x[i][59] for i in range(count)], [array_x[i][70] for i in range(count)], count) b12456 = calculate_b_ockp(f1_b * f2_b * f4_b * f5_b * f6_b, f1_e * f2_e * f4_e * f5_e * f6_e, [array_x[i][60] for i in range(count)], [array_x[i][70] for i in range(count)], count) b13456 = calculate_b_ockp(f1_b * f3_b * f4_b * f5_b * f6_b, f1_e * f3_e * f4_e * f5_e * f6_e, [array_x[i][61] for i in range(count)], [array_x[i][70] for i in range(count)], count) b23456 = calculate_b_ockp(f2_b * f3_b * f4_b * f5_b * f6_b, f2_e * f3_e * f4_e * f5_e * f6_e, [array_x[i][62] for i in range(count)], [array_x[i][70] for i in range(count)], count) b123456 = calculate_b_ockp(f1_b * f2_b * f3_b * f4_b * f5_b * f6_b, f1_e * f2_e * f3_e * f4_e * f5_e * f6_e, [array_x[i][63] for i in range(count)], [array_x[i][70] for i in range(count)], count) b11 = calculate_b_ockp(0, 1, [array_x[i][64] for i in range(count)], [array_x[i][70] for i in range(count)], count) b22 = calculate_b_ockp(0, 1, [array_x[i][65] for i in range(count)], [array_x[i][70] for i in range(count)], count) b33 = calculate_b_ockp(0, 1, [array_x[i][66] for i in range(count)], [array_x[i][70] for i in range(count)], count) b44 = calculate_b_ockp(0, 1, [array_x[i][67] for i in range(count)], [array_x[i][70] for i in range(count)], count) b55 = calculate_b_ockp(0, 1, [array_x[i][68] for i in range(count)], [array_x[i][70] for i in range(count)], count) b66 = calculate_b_ockp(0, 1, [array_x[i][69] for i in range(count)], [array_x[i][70] for i in range(count)], count) b0 = b0 - (b11+b22+b33+b44+b55+b66) * s no_line = f"y={round(b0, 5)}+({round(b1, 5)})*x1+({round(b2, 5)})*x2+({round(b3, 5)})*x3+({round(b4, 5)})*x4+({round(b5, 5)})*x5+({round(b6, 5)})*x6+\ ({round(b12, 5)})*x1*x2+({round(b13, 5)})*x1*x3+({round(b14, 5)})*x1*x4+({round(b15, 5)})*x1*x5+({round(b16, 5)})*x1*x6+\ ({round(b23, 5)})*x2*x3+({round(b24, 5)})*x2*x4+({round(b25, 5)})*x2*x5+({round(b26, 5)})*x2*x6+\ ({round(b34, 5)})*x3*x4+({round(b35, 5)})*x3*x5+({round(b36, 5)})*x3*x6+\ ({round(b45, 5)})*x4*x5+({round(b46, 5)})*x4*x6+\ ({round(b56, 5)})*x5*x6+\ ({round(b123, 5)})*x1*x2*x3+({round(b124, 5)})*x1*x2*x4+({round(b125, 5)})*x1*x2*x5+({round(b126, 5)})*x1*x2*x6+\ ({round(b134, 5)})*x1*x3*x4+({round(b135, 5)})*x1*x3*x5+({round(b136, 5)})*x1*x3*x6+\ ({round(b145, 5)})*x1*x4*x5+({round(b146, 5)})*x1*x4*x6+\ ({round(b156, 5)})*x1*x5*x6+\ ({round(b234, 5)})*x2*x3*x4+({round(b235, 5)})*x2*x3*x5+({round(b236, 5)})*x2*x3*x6+\ ({round(b245, 5)})*x2*x4*x5+({round(b246, 5)})*x2*x4*x6+\ ({round(b256, 5)})*x2*x5*x6+\ ({round(b345, 5)})*x3*x4*x5+({round(b346, 5)})*x3*x4*x6+\ ({round(b356, 5)})*x3*x5*x6+\ ({round(b456, 5)})*x4*x5*x6+\ ({round(b1234, 5)})*x1*x2*x3*x4+({round(b1235, 5)})*x1*x2*x3*x5+({round(b1236, 5)})*x1*x2*x3*x6+\ ({round(b1245, 5)})*x1*x2*x4*x5+({round(b1246, 5)})*x1*x2*x4*x6+\ ({round(b1256, 5)})*x1*x2*x5*x6+\ ({round(b1345, 5)})*x1*x3*x4*x5+({round(b1346, 5)})*x1*x3*x4*x6+\ ({round(b1356, 5)})*x1*x3*x5*x6+\ ({round(b1456, 5)})*x1*x4*x5*x6+\ ({round(b2345, 5)})*x2*x3*x4*x5+({round(b2346, 5)})*x2*x3*x4*x6+\ ({round(b2356, 5)})*x2*x3*x5*x6+\ ({round(b2456, 5)})*x2*x4*x5*x6+\ ({round(b3456, 5)})*x3*x4*x5*x6+\ ({round(b12345, 5)})*x1*x2*x3*x4*x5+({round(b12346, 5)})*x1*x2*x3*x4*x6+\ ({round(b12356, 5)})*x1*x2*x3*x5*x6+\ ({round(b12456, 5)})*x1*x2*x4*x5*x6+\ ({round(b13456, 5)})*x1*x3*x4*x5*x6+\ ({round(b23456, 5)})*x2*x3*x4*x5*x6+\ ({round(b123456, 5)})*x1*x2*x3*x4*x5*x6+\ ({round(b11 if b11 > 0 else -b11, 5)})*(x1^2-s)+\ ({round(b22 if b22 > 0 else -b22, 5)})*(x2^2-s)+\ ({round(b33 if not r else (-b33 if b33 > 0 else b33), 5)})*(x3^2-s)+\ ({round(b44, 5)})*(x4^2-s)+\ ({round(b55 if not r else (-b55 if b55 > 0 else b55), 5)})*(x5^2-s)+\ ({round(b66, 5)})*(x6^2-s)" i = 0 for row in array_x: x1 = array_x[i][1] x2 = array_x[i][2] x3 = array_x[i][3] x4 = array_x[i][4] x5 = array_x[i][5] x6 = array_x[i][6] array_x[i][71] = round(fabs(b0 + b1 * x1 + b2 * x2 + b3 * x3 + b4 * x4 + b5 * x5 + b6 * x6 + \ b12 * x1 * x2 + b13 * x1 * x3 + b14 * x1 * x4 + b15 * x1 * x5 + b16 * x1 * x6 + \ b23 * x2 * x3 + b24 * x2 * x4 + b25 * x2 * x5 + b26 * x2 * x6+\ b34 * x3 * x4 + b35 * x3 * x5 + b36 * x3 * x6 + \ b45 * x4 * x5 + b46 * x4 * x6 + \ b56 * x5 * x6 + \ b123 * x1 * x2 * x3 + b124 * x1 * x2 * x4 + b125 * x1 * x2 * x5+ b126 * x1 * x2 * x6 + \ b134 * x1 * x3 * x4 + b135 * x1 * x3 * x5 + b136 * x1 * x3 * x6 + \ b145 * x1 * x4 * x5 + b146 * x1 * x4 * x6 + \ b156 * x1 * x5 * x6 + \ b234 * x2 * x3 * x4 + b235 * x2 * x3 * x5 + b236 * x2 * x3 * x6 + \ b245 * x2 * x4 * x5 + b246 * x2 * x4 * x6 + \ b256 * x2 * x5 * x6 + \ b345 * x3 * x4 * x5 + b346 * x3 * x4 * x6 + \ b356 * x3 * x5 * x6 + \ b456 * x4 * x5 * x6 + \ b1234 * x1 * x2 * x3 * x4 + b1235 * x1 * x2 * x3 * x5 + b1236 * x1 * x2 * x3 * x6+\ b1245 * x1 * x2 * x4 * x5 + b1246 * x1 * x2 * x4 * x6 + \ b1256 * x1 * x2 * x5 * x6 + \ b1345 * x1 * x3 * x4 * x5 + b1346 * x1 * x3 * x4 * x6 + \ b1356 * x1 * x3 * x5 * x6 + \ b1456 * x1 * x4 * x5 * x6 + \ b2345 * x2 * x3 * x4 * x5 + b2346 * x2 * x3 * x4 * x6 + \ b2356 * x2 * x3 * x5 * x6 + \ b2456 * x2 * x4 * x5 * x6 + \ b3456 * x3 * x4 * x5 * x6 + \ b12345 * x1 * x2 * x3 * x4 * x5 + b12346 * x1 * x2 * x3 * x4 * x6 + \ b12356 * x1 * x2 * x3 * x5 * x6 + \ b12456 * x1 * x2 * x4 * x5 * x6 + \ b13456 * x1 * x3 * x4 * x5 * x6 + \ b23456 * x2 * x3 * x4 * x5 * x6 + \ b123456 * x1 * x2 * x3 * x4 * x5 * x6 + \ b11 * (x1*x1 - s) + \ b22 * (x2*x2 - s) + \ b33 * (x3*x3 - s) + \ b44 * (x4*x4 - s) + \ b55 * (x5*x5 - s) + \ b66 * (x6*x6 - s)), 5) array_x[i][72] = round(fabs(array_x[i][70] - array_x[i][71]), 5) i += 1 for i in range(experim): array_x[i] = [i+1] + array_x[i] df = pd.DataFrame(array_x, columns=columns_table) return [[{"name": i, "id": i} for i in df.columns], df.to_dict('records'), no_line]
def graphic(table_clicks, add_clicks, clients_number, rel_min, rel_max, norm_min, norm_max, norm_d_min, norm_d_max, x1_new, x2_new, x3_new): global df, n_add if (add_clicks > n_add): n_add = add_clicks x1_new = float(x1_new) x2_new = float(x2_new) x3_new = float(x3_new) array_x.append(get_row([x1_new, x2_new, x3_new], 3)) rel_min = float(rel_min) rel_max = float(rel_max) norm_min = float(norm_min) norm_max = float(norm_max) norm_d_min = float(norm_d_min) norm_d_max = float(norm_d_max) i = 0 for row in array_x: rel = convert_factor_to_value(float(rel_min), float(rel_max), row[1]) norm = convert_factor_to_value(float(norm_min), float(norm_max), row[2]) norm_d = convert_factor_to_value(float(norm_d_min), float(norm_d_max), row[3]) c_rel = calculate_reley_param(rel) c_norm, c_norm_d = calculate_gauss_params(norm, norm_d) generator = GenerateRequest(ReleyGenerator(c_rel), clients_number) processor = ProcessRequest(GaussGenerator(c_norm, c_norm_d)) model = Model([generator], [processor]) result = model.event_mode() array_x[i][8] = round(result, 5) i += 1 b0 = calculate_b(0, 1, [array_x[i][0] for i in range(count_experiments)], [array_x[i][8] for i in range(count_experiments)], count_experiments) b1 = calculate_b(rel_min, rel_max, [array_x[i][1] for i in range(count_experiments)], [array_x[i][8] for i in range(count_experiments)], count_experiments) b2 = calculate_b(norm_min, norm_max, [array_x[i][2] for i in range(count_experiments)], [array_x[i][8] for i in range(count_experiments)], count_experiments) b3 = calculate_b(norm_d_min, norm_d_max, [array_x[i][3] for i in range(count_experiments)], [array_x[i][8] for i in range(count_experiments)], count_experiments) b12 = calculate_b(rel_min * norm_min, rel_max * norm_max, [array_x[i][4] for i in range(count_experiments)], [array_x[i][8] for i in range(count_experiments)], count_experiments) b13 = calculate_b(rel_min * norm_d_min, rel_max * norm_d_max, [array_x[i][5] for i in range(count_experiments)], [array_x[i][8] for i in range(count_experiments)], count_experiments) b23 = calculate_b(norm_d_min * norm_min, norm_d_max * norm_max, [array_x[i][6] for i in range(count_experiments)], [array_x[i][8] for i in range(count_experiments)], count_experiments) b123 = calculate_b(rel_min * norm_d_min * norm_min, rel_max * norm_d_max * norm_max, [array_x[i][7] for i in range(count_experiments)], [array_x[i][8] for i in range(count_experiments)], count_experiments) line = f"y={round(b0, 5)}+({round(b1, 5)})*x1+({round(b2, 5)})*x2+({round(b3, 5)})*x3" no_line = f"y={round(b0, 5)}+({round(b1, 5)})*x1+({round(b2, 5)})*x2+({round(b3, 5)})*x3+ \ ({round(b12, 5)})*x1*x2+({round(b13, 5)})*x1*x3+({round(b23, 5)})*x2*x3+({round(b123, 5)})*x1*x2*x3" i = 0 for row in array_x: x1 = array_x[i][1] x2 = array_x[i][2] x3 = array_x[i][3] array_x[i][9] = round(fabs(b0 + b1 * x1 + b2 * x2 + b3 * x3), 5) array_x[i][11] = round(fabs(array_x[i][9] - array_x[i][8]), 5) array_x[i][10] = round( fabs(b0 + b1 * x1 + b2 * x2 + b3 * x3 + b12 * x1 * x2 + b23 * x2 * x3 + b13 * x1 * x3 + b123 * x1 * x2 * x3), 5) array_x[i][12] = round(fabs(array_x[i][10] - array_x[i][8]), 5) i += 1 df = pd.DataFrame(array_x, columns=columns_table) return [[{ "name": i, "id": i } for i in df.columns], df.to_dict('records'), line, no_line]
import pandas as pd import dash_table from math import fabs external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP]) columns_table = [ 'x0', 'x1', 'x2', 'x3', 'x1*x2', 'x1*x3', 'x2*x3', 'x1*x2*x3', 'Y', 'Yл', 'Yчн', '|Y-Yл|', '|Y-Yчн|' ] array_x = [] for i in [1, -1]: for j in [1, -1]: for k in [1, -1]: array_x.append(get_row([i, j, k], 3)) df = pd.DataFrame(array_x, columns=columns_table) df.reset_index() count_experiments = 8 n_add = 0 app.layout = html.Div( id='main', children=[ dbc.Row([ dbc.Col(children=html.H6("Интенсивность поступления"), width={ "size": 2, "offset": 1
import os from model import setup_db, DB_ROWS, get_row import linear_regression import graphing CSV_FILE = os.environ.get('CSV_FILE', './data/housing.csv') TARGET = os.environ.get('TARGET', 'median_home_value') LEARNING_RATE = float(os.environ.get('LEARNING_RATE', '0.001')) ITERATIONS = int(os.environ.get('ITERATIONS', '10000')) if __name__ == '__main__': setup_db(CSV_FILE) feature = os.getenv('FEATURE') if feature: graphing.draw_scatter(feature, get_row(TARGET), get_row(feature), None, None, 'start', showLine=False) linear_regression.run(get_row(feature), feature) else: for name in DB_ROWS: graphing.draw_scatter(name, get_row(TARGET), get_row(name), None, None, 'start', showLine=False)