Esempio n. 1
0
    def __init__(self, arguments):
        self.arguments = arguments
        input_dims = 28, 28, 1

        self.ae = AutoEncoder(
            input_dims=input_dims,
            encoder_filters=arguments.encoder_filters,
            encoder_conv_kernels=arguments.encoder_conv_kernels,
            encoder_conv_strides=arguments.encoder_conv_strides,
            decoder_filters=arguments.decoder_filters,
            decoder_conv_kernels=arguments.decoder_conv_kernels,
            decoder_conv_strides=arguments.decoder_conv_strides,
            latent_dim=arguments.latent_dim,
            use_batch_norm=arguments.use_batch_norm,
            use_dropout=arguments.use_dropout).to(device)
        self.ae.train()

        self.criterion = nn.MSELoss()
        self.encoder_optimizer = opt.Adam(params=self.ae.encoder.parameters(),
                                          lr=arguments.learning_rate)
        self.decoder_optimizer = opt.Adam(params=self.ae.decoder.parameters(),
                                          lr=arguments.learning_rate)
        self.writer = SummaryWriter(
            logdir=os.path.join(self.arguments.log_dir, self.arguments.data),
            comment='epoch_{0:03d}_batch_size_{1:03d}_lr_{2:.03f}'.format(
                self.arguments.epochs - 1, self.arguments.batch_size,
                self.arguments.learning_rate))
Esempio n. 2
0
def run(data_obj, training_size):

    data_obj.split_dataset(training_size)
    data_obj.preprocess()

    #-------------------------------- Autoencoder model
    ae_model = AutoEncoder(data_obj.x_train_scaled.shape[1],
                           training_size, data_obj.name)
    ae_model.train(data_obj.x_train_scaled, data_obj.x_val_scaled)

    #-------------------------------- Encoded representation
    x_train_encoded, x_val_encoded, x_test_encoded = ae_model.encoded_data(
        data_obj.x_train_scaled, data_obj.x_val_scaled, data_obj.x_test_scaled)

    #-------------------------------- Neural Network model
    nn_model = NeuralNetwork(
        data_obj.x_train_scaled.shape[1], data_obj.y_train.shape[1],
        training_size, data_obj.name)
    nn_model.train(
        x_train_encoded, data_obj.y_train, x_val_encoded, data_obj.y_val)
    nn_model.evaluate(x_test_encoded, data_obj.y_test)

    #-------------------------------- reset data from memory
    data_obj.reset_scalar()

    return nn_model.result()
class trainAE(object):

    def __init__(self, path, k, lr= 0.1, batch_size=1, loss='bce', n_epochs=100):
        '''
        Arguments:
            path : path to training data
            k : hidde unit's dimension
            lr : learning rate
            batch_size : batch_size for training, currently set to 1
            loss : loss function (bce, rmse) to train AutoEncoder
            n_epochs : number of epochs for training
        '''
        self.AE = AutoEncoder(path, k)
        # Definne the autoencoder model
        #self.AE.model()
        self.AE.model_batch()
        self.epochs = n_epochs


    def train(self):
        T = self.AE.T
        # COnverting to csr format for indexing
        T = T.tocsr()
        #pdb.set_trace()
        nonzero_indices = T.nonzero()
        for epoch in xrange(self.epochs):
            print("Running epoch %d"%(epoch))
            for i in np.unique(nonzero_indices[0]):
                # get indices of observed values from the user 'i' 's vector
                indices = T[i, :].nonzero()[1]
                #print indices
                #indices = indices.reshape(indices.shape[0],)
                # Get correspoding ratings
                ratings = T[i, indices].toarray()
                #print ratings
                ratings = ratings.reshape(ratings.shape[1],)
                # Convert inputs to theano datatype
                indices = indices.astype(np.int32)
                ratings = ratings.astype(np.int32)
                #pdb.set_trace()
                loss = self.AE.ae(indices, ratings)
                print("Loss at epoch %d is %f"%(epoch, loss))

    # Batch training method
    def train_batch(self, batch_size):
        T = self.AE.T
        T = T.tocsr()
        nonzero_indices = T.nonzero()
        #pdb.set_trace()
        n_users = len(np.unique(nonzero_indices[0]))
        indices = np.unique(nonzero_indices[0])
        for epoch in xrange(self.epochs):
            for ind, i in enumerate(xrange(0, n_users, batch_size)):
                ratings = T[indices[i:(i + batch_size)], :].toarray().astype(np.float32)
                #print ratings
                #pdb.set_trace()
                loss = self.AE.ae_batch(ratings)
                #loss = self.AE.debug(ratings)
                print loss
Esempio n. 4
0
def main(opt):

    device = 'cuda' if torch.cuda.is_available() else 'cpu'

    # Dataset
    print('Dataset....')
    transform = transforms.Compose([
        transforms.Resize((600, 600)),
        transforms.Grayscale(3),
        transforms.ToTensor()
    ])

    train_set = myDataset(image_path=opt.train_path, transform=transform)
    val_set = myDataset(image_path=opt.val_path, transform=transform)

    train_loader = DataLoader(train_set, batch_size=opt.train_batch_size)
    val_loader = DataLoader(val_set, batch_size=opt.val_batch_size)

    # Model
    print('Model....')
    model = AutoEncoder()
    model.to(device)

    # Optimizer
    optimizer = optim.Adam(model.parameters(), lr=opt.lr)
    loss_func = nn.MSELoss()

    # Train
    print('Training....')

    train_epoch_loss = []
    val_epoch_loss = []
    train_iter_losses = []
    val_iter_losses = []
    for e in range(opt.epoch):
        train_iter_loss = train(opt, model, train_loader, optimizer, loss_func,
                                device, e)
        train_iter_losses += train_iter_loss
        train_epoch_loss.append(sum(train_iter_loss))

        val_iter_loss = val(opt, model, val_loader, loss_func, device, e)
        val_iter_losses += val_iter_loss
        val_epoch_loss.append(sum(val_iter_loss))

        # save model
        best = 10000
        if val_epoch_loss[-1] < best:
            print('Saving Model....')
            torch.save(model, 'weights/AutoEncoder_try1.pth')
            best = val_epoch_loss[-1]

    print('Saving Result')
    plt.figure(figsize=(10, 10))
    plt.plot(train_iter_losses)
    plt.plot(val_iter_losses)
    plt.legend(['Train_loss', 'Val_loss'])

    plt.savefig('Result.jpg')
Esempio n. 5
0
def main():
    use_cuda = args.use_cuda

    train_data = UnlabeledContact(data=args.data_dir)
    print('Number of samples: {}'.format(len(train_data)))
    trainloader = DataLoader(train_data, batch_size=args.batch_size)

    # Contact matrices are 21x21
    input_size = 441
    img_height = 21
    img_width = 21

    vae = AutoEncoder(code_size=20,
                      imgsize=input_size,
                      height=img_height,
                      width=img_width)
    criterion = nn.BCEWithLogitsLoss()

    if use_cuda:
        #vae = nn.DataParallel(vae)
        vae = vae.cuda()  #.half()
        criterion = criterion.cuda()

    optimizer = optim.SGD(vae.parameters(), lr=0.01)

    clock = AverageMeter(name='clock32single', rank=0)
    epoch_loss = 0
    total_loss = 0
    end = time.time()
    for epoch in range(15):
        for batch_idx, data in enumerate(trainloader):
            inputs = data['cont_matrix']
            inputs = inputs.resize_(args.batch_size, 1, 21, 21)
            inputs = inputs.float()
            if use_cuda:
                inputs = inputs.cuda()  #.half()
            inputs = Variable(inputs)
            optimizer.zero_grad()
            output, code = vae(inputs)
            loss = criterion(output, inputs)
            loss.backward()
            optimizer.step()
            epoch_loss += loss.data[0]

            clock.update(time.time() - end)
            end = time.time()

            if batch_idx % args.log_interval == 0:
                print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                    epoch, batch_idx * len(data), len(trainloader.dataset),
                    100. * batch_idx / len(trainloader), loss.data[0]))

    clock.save(
        path=
        '/home/ygx/libraries/mds/molecules/molecules/conv_autoencoder/runtimes'
    )
Esempio n. 6
0
def train(output_filename, model_type, hidden_size, loss_type, norm_type,
          sigma_noise):
    train_data = torchvision.datasets.MNIST(
        root='datasets/mnist/',
        train=True,
        transform=torchvision.transforms.ToTensor(),
        download=False,
    )

    train_loader = Data.DataLoader(dataset=train_data,
                                   batch_size=BATCH_SIZE,
                                   shuffle=True)

    if loss_type == 'l2':
        loss_func = nn.MSELoss()
    elif loss_type == 'cross_entropy':
        loss_func = F.binary_cross_entropy

    if model_type == 'AE':
        model = AutoEncoder(hidden_size).cuda()
    elif model_type == 'LTAE':
        model = LatentAutoEncoder(hidden_size, norm_type,
                                  sigma=sigma_noise).cuda()
        model.set_device()
    elif model_type == 'VAE':
        model = VariationalAE(hidden_size).cuda()

    optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

    model.train()
    for epoch in range(EPOCH):
        for step, (x, _) in enumerate(train_loader):
            optimizer.zero_grad()

            x_batch = x.view(-1, 28 * 28).cuda()
            y_batch = x.view(-1, 28 * 28).cuda()

            if model_type == 'AE':
                _, decoded = model(x_batch)
                loss = loss_func(decoded, y_batch)
            elif model_type == 'LTAE':
                _, latent, transformed, decoded = model(x_batch)
                loss = loss_func(decoded, y_batch)
                loss += torch.nn.functional.mse_loss(transformed, latent)
            elif model_type == 'VAE':
                decoded, mu, logvar = model(x_batch)
                loss = loss_func_vae(decoded, x_batch, mu, logvar, loss_type)

            loss.backward()
            optimizer.step()

        if epoch % 10 == 0:
            print('Epoch: ', epoch, '| train loss: %.4f' % loss.detach().cpu())

    torch.save({'state_dict': model.state_dict()},
               f'./saved_models/{output_filename}')
 def __init__(self, path, k, lr= 0.1, batch_size=1, loss='bce', n_epochs=50):
     '''
     Arguments:
         path : path to training data
         k : hidde unit's dimension
         lr : learning rate
         batch_size : batch_size for training, currently set to 1
         loss : loss function (bce, rmse) to train AutoEncoder
         n_epochs : number of epochs for training
     '''
     self.AE = AutoEncoder(path, k)
     # Definne the autoencoder model
     #self.AE.model()
     self.AE.model_batch()
     self.epochs = n_epochs
Esempio n. 8
0
def run_test():

    model = AutoEncoder(n=2, dim_x=50, dim_hidden=2000)
    device_id = 0
    model_file = 'model/dae.pth'
    net = load_pretrained_model(model, model_file, device_id)

    x_test = pickle.load(open('data/manifold_test.pkl', 'rb'))
    x_true = x_test[:]

    noise_shape = x_true.shape[1:]
    n_dim = np.prod(noise_shape)
    sigma_train = 0.01
    sigma_proposal = 0.01
    sigma_noise_hat_init = 0.01

    for noise in [0.01, 0.02, 0.03, 0.04]:

        sigma_noise = [noise] * n_dim
        sigma_noise = np.array(sigma_noise[:n_dim]).reshape(noise_shape)

        rmse_mean, rmse_std, noise_mean, noise_std, variance_noise_hat_em = \
            solve_agem(net=net, x_true=x_true, sigma_noise=sigma_noise,
                       sigma_train=sigma_train, sigma_noise_hat_init=sigma_noise_hat_init,
                       sigma_proposal=sigma_proposal, type_proposal='mala',
                       candidate='mean', em_epochs=10, sample_epochs=1000)

        print('[AGEM] noise_gt: %.2f | rmse %.4f (%.4f), noise_est: %.4f (%.4f)' % (
            noise, rmse_mean, rmse_std, noise_mean, noise_std
        ))
Esempio n. 9
0
    def build_net(self):
        # define network
        self.net = AutoEncoder(self.in_channel, self.image_size,
                               self.hidden_dim, self.output_dim)

        if self.config.mode == 'test' and self.config.training_path == '':
            print("[*] Enter model path!")
            exit()

        # if training model exists
        if self.config.training_path != '':
            self.net.load_state_dict(
                torch.load(self.config.training_path,
                           map_location=lambda storage, loc: storage))
            print("[*] Load weight from {}!".format(self.config.training_path))

        self.net.to(self.device)
Esempio n. 10
0
def generate(model_path,model_name, generate_path, generate_name, piece):
    
    """Synthesize audio from an array of embeddings.
    
    Args:
    encodings: Numpy array with shape [batch_size, time, dim].
    save_paths: Iterable of output file names.
    checkpoint_path: Location of the pretrained model. [model.ckpt-200000]
    samples_per_save: Save files after every amount of generated samples.

    """
    
    # Create directory for encoding
    if os.path.exists(generate_path) is False:
        os.makedirs(generate_path)

    net = AutoEncoder()
    net = load_model(net,model_path,model_name)
    cuda_available = torch.cuda.is_available()
    if cuda_available is True:
        net = net.cuda()

    net.eval()

    # Load audio for encoding
    piece = audio.load_wav(piece)
    spec = audio.spectrogram(piece).astype(np.float32)
    spec = torch.from_numpy(spec.T)
    spec = torch.FloatTensor(spec)
    
    spec = torch.unsqueeze(spec, 0)
    spec = Variable(spec, volatile=True).contiguous()

    if cuda_available is True:
        spec = spec.cuda()

    generated_spec = net(spec)
    generated_spec = generated_spec.data.cpu().numpy()
    generated_spec = np.squeeze(generated_spec)
    
    waveform = audio.inv_spectrogram(generated_spec.T)
    wav_name = generate_path + generate_name + '.wav'

    audio.save_wav(waveform , wav_name)    
Esempio n. 11
0
def get_network(args_hiddens, logger=None):
    """
    get autoencoder

    :param args_hiddens: args.hiddens (comma separated)
    :param logger: logger
    :return: autoencoder model
    """
    hidden_dims = [int(h) for h in args_hiddens.split(',')]
    return AutoEncoder(hidden_dims, logger=logger)
Esempio n. 12
0
def run(args):
    # Create AutoEncoder
    autoencoder = AutoEncoder(args['input_shape'],
                              args['z_dim'],
                              args['c_dim'],
                              learning_rate=args['learning_rate'])

    # train
    autoencoder.train(args['train_dir'], args['val_dir'], args['epochs'],
                      args['batch_size'], args['output_dir'])

    # plot
    x = autoencoder.sample_data()
    plot_original(x, save_dir=args['output_dir'])
    plot_reconstruction(x, autoencoder, save_dir=args['output_dir'])
    plot_zvariation(x, autoencoder, save_dir=args['output_dir'])
    plot_cvariation(x, autoencoder, save_dir=args['output_dir'])
    plot_zsemireconstructed(x, autoencoder, save_dir=args['output_dir'])
    plot_csemireconstructed(x, autoencoder, save_dir=args['output_dir'])
Esempio n. 13
0
def gen_pic(ckpt, epoch):
    device = torch.device('cuda')
    model = AutoEncoder().to(device)
    model.load_state_dict(torch.load(ckpt))
    model.eval()
    sample = torch.randn(64, 20).to(device)
    sample = model.decoder(sample).cpu()
    save_image(sample.view(64, 1, 28, 28),
               'results/sample_e{:02}.png'.format(epoch))
Esempio n. 14
0
def main(_):
    create_dirs([FLAGS.summary_dir, FLAGS.checkpoint_dir])

    config = auto_encoder_config()
    model = AutoEncoder(config)

    sess = tf.Session()

    trainer = AutoEncoderTrainer(sess, model, FLAGS)

    trainer.train()
Esempio n. 15
0
 def __init__(self, args):
     self.device = torch.device(
         'cuda' if torch.cuda.is_available() else 'cpu')
     self.id = args.id
     self.dataset_path = args.dataset
     model = AutoEncoder(args.E, args.D)
     if args.load:
         model.load_state_dict(torch.load(args.load))
     self.model = model.to(self.device)
     self.optimizer = optim.Adam(self.model.parameters(), lr=args.lr)
     self.metric = nn.MSELoss()
     self.epoch_num = args.epoch
     self.batch_size = args.bs
     self.cluster_num = args.cluster_num
     self.save = args.save
     self.testcase = args.testcase
     self.csv = args.csv
     self.record_file = None
     self.best = {'epoch': 0, 'loss': 999}
     self.test_images = get_test_image(args.dataset)
Esempio n. 16
0
def main():
    torch.manual_seed(1618)
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    print('Using PyTorch Device : {}'.format(device.upper()))

    n_epochs = 800
    LOGDIR = './runs/' + datetime.now().strftime('%Y%m%d_%H%M%S')
    logger = Logger(log_dir=LOGDIR)
    criterion = nn.MSELoss().to(device)
    lr = 1e-4

    model = AutoEncoder(connections=128).to(device)
    optim = torch.optim.Adam(itertools.chain(model.encoder.parameters(),
                                             model.decoder.parameters()),
                             lr=lr)
    #model = AE_3D_200().to(device)
    #optim = torch.optim.Adam(itertools.chain(model.encoder.parameters(), model.decoder.parameters()), lr=lr, weight_decay=1e-6)
    train_batch, val_batch, test_batch = get_data_batches(device=device,
                                                          frac=1.0)
    print(train_batch.size())
    print(val_batch.size())
    print(test_batch.size())
    worst_case_loss = torch.FloatTensor([float('Inf')]).to(device)
    pbar = tqdm(range(n_epochs), leave=True)
    for e in pbar:
        new_lr = lr * (0.2**((e + 1) // 100))
        for param_group in optim.param_groups:
            param_group['lr'] = new_lr

        optim.zero_grad()
        recon_batch = model(train_batch)
        loss = criterion(recon_batch, train_batch)
        loss.backward()
        optim.step()

        model.eval()
        recon_val = model(val_batch)
        val_loss = nn.MSELoss()(recon_val, val_batch)

        recon_test = model(test_batch)
        test_loss = nn.MSELoss()(recon_test, test_batch)
        model.train()

        info = {
            'train_loss': loss.item(),
            'val_loss': val_loss.item(),
            'test_loss': test_loss.item()
        }

        for tag, value in info.items():
            logger.scalar_summary(tag, value, e)

        torch.save(model.encoder.state_dict(),
                   LOGDIR + '/encoder_epoch_{}.pt'.format(e))
        torch.save(model.decoder.state_dict(),
                   LOGDIR + '/decoder_epoch_{}.pt'.format(e))

        pbar.set_description(
            'train_loss: {:.4f}, val_loss: {:.4f}, test_loss: {:.4f}'.format(
                loss.item(), val_loss.item(), test_loss.item()))
Esempio n. 17
0
def train(dataloader, parameters, device):
    model = AutoEncoder(input_dim=1900,
                        nlayers=parameters.get('nlayers', 5),
                        latent=100)
    model = model.to(device)

    model.train()
    train_loss = 0

    optimizer = torch.optim.Adam(model.parameters(),
                                 lr=parameters.get('lr', 1e-5),
                                 weight_decay=parameters.get(
                                     'weight_decay', 0.))
    loss_func = torch.nn.MSELoss()

    for epoch in range(parameters.get('epochs', 1000)):
        for index, (data, ) in enumerate(dataloader, 1):
            optimizer.zero_grad()
            output = model(data)
            loss = loss_func(output, data)
            train_loss += loss.item()
            loss.backward()
            optimizer.step()

    return model
Esempio n. 18
0
def main(dataset, net_config, _run):
    # Add all of the config into the helper class
    for key in net_config:
        setattr(a, key, net_config[key])

    setattr(a, 'EXP_OUT', EXP_OUT)
    setattr(a, 'RUN_id', _run._id)

    output_dir = create_directories(_run._id, ex)

    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.9)
    with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess:
        # load the dataset class
        data = get_dataset(dataset['name'])
        data = data(**dataset)
        model = AutoEncoder(sess,
                            image_size=a.input_image_size,
                            batch_size=a.batch_size,
                            output_size=a.input_image_size,
                            dataset_name=dataset['name'],
                            checkpoint_dir=output_dir,
                            data=data,
                            momentum=a.batch_momentum,
                            aef_dim=a.naef,
                            noise_std_dev=a.noise_std_dev)
        if a.mode == 'train':
            tmp = model.train(a)
            _run.info['predictions'] = tmp
            _run.info['mean_predictions'] = np.mean(tmp, axis=0)
        elif a.mode == 'valid':
            tmp = model.validate(a)
            _run.info['predictions'] = tmp
            _run.info['mean_predictions'] = np.mean(tmp, axis=0)
        else:
            model.test(a)
Esempio n. 19
0
def get_model(nNeuron, nLayer, in_dim, out_dim):

    nNeuron = nNeuron + in_dim
    
    mid1 = int((nNeuron + in_dim) / 2)
    mid2 = int((nNeuron + out_dim) / 2)

    mid = [nNeuron] * (nLayer - 2)

    return ae.AutoEncoder(
        encode_dim=[in_dim, mid1, *mid, mid2, out_dim],
        decode_dim=[out_dim, mid2, mid1, in_dim], 
        activation=nn.LeakyReLU)
Esempio n. 20
0
def main(args):
    device = torch.device(
        'cuda' if torch.cuda.is_available() and not args.cpu else 'cpu')
    print('Using %s device.' % device)

    world_size = int(
        os.environ[args.env_size]) if args.env_size in os.environ else 1
    local_rank = int(
        os.environ[args.env_rank]) if args.env_rank in os.environ else 0

    if local_rank == 0:
        print(vars(args))

    if world_size > 1:
        print('rank: {}/{}'.format(local_rank + 1, world_size))
        torch.distributed.init_process_group(backend='gloo',
                                             init_method='file://%s' %
                                             args.tmpname,
                                             rank=local_rank,
                                             world_size=world_size)

    train_dataloader, test_dataloader = load_dataset(args, device, world_size)

    net = AutoEncoder(input_dim=1900, nlayers=args.nlayers,
                      latent=100).to(device)

    if world_size > 1:
        net = torch.nn.parallel.DistributedDataParallel(net)

    if args.modelfile:
        net.load_state_dict(torch.load(args.modelfile))

    # define our optimizer and loss function
    optimizer = torch.optim.Adam(net.parameters(),
                                 lr=args.lr,
                                 weight_decay=args.weight_decay)
    loss_func = nn.MSELoss(reduction='mean')

    test_losses = []

    for epoch in range(args.epochs):
        epoch_start = timeit.default_timer()

        train(train_dataloader, net, optimizer, loss_func, epoch)
        test_loss = test(test_dataloader, net, loss_func)

        print(' %5.2f sec' % (timeit.default_timer() - epoch_start))

        test_losses.append(test_loss)

        if test_loss <= min(test_losses):
            torch.save(net.state_dict(), 'model/%5.3f.pth' % min(test_losses))
Esempio n. 21
0
def main():
    args = parser.parse_args()
    filenames = glob.glob(os.path.join(args.dataset, '*.tfrecord'))
    dataset = dataset_builder.build(filenames)
    model = AutoEncoder()
    optimizer = tf.keras.optimizers.Adam()
    loss_object = tf.keras.losses.Huber(
        reduction=tf.keras.losses.Reduction.NONE)
    train_loss = tf.keras.metrics.Mean(name='train_loss')
    ckpt = tf.train.Checkpoint(model=model)
    ckpt_mgr = tf.train.CheckpointManager(ckpt, args.logdir, max_to_keep=5)

    def train_step(origin, speaker_one_hot, target):
        with tf.GradientTape() as tape:
            convert = model(origin, speaker_one_hot)
            loss = tf.reduce_mean(loss_object(convert, target))
            gradients = tape.gradient(loss, model.trainable_variables)
        optimizer.apply_gradients(zip(gradients, model.trainable_variables))
        train_loss(loss)

    EPOCHS = 1000
    for epoch in range(EPOCHS):
        # Reset the metrics at the start of the next epoch
        train_loss.reset_states()

        for feature in dataset:
            speaker_id = feature['speaker_id']
            speaker_one_hot = tf.one_hot(speaker_id, 2)
            mel = feature['mel']
            mel = tf.expand_dims(mel, axis=-1)
            train_step(mel, speaker_one_hot, mel)
            break
        ckpt_mgr.save()
        template = 'Epoch {}, Loss: {}'
        print(template.format(epoch + 1, train_loss.result()))
    ckpt_mgr.save()
Esempio n. 22
0
def decode(model_name, encoding, decoder_name):
    
    """Synthesize audio from an array of embeddings.
    
    Args:
    encodings: Numpy array with shape [batch_size, time, dim].
    save_paths: Iterable of output file names.
    checkpoint_path: Location of the pretrained model. [model.ckpt-200000]
    samples_per_save: Save files after every amount of generated samples.

    """
    decoder_path = './decoding/'
    model_path = './restore/'
    
    # Create directory for encoding
    if os.path.exists(decoder_path) is False:
        os.makedirs(decoder_path)
    
    net = AutoEncoder()
    net = load_model(net,model_path,model_name)
    cuda_available = torch.cuda.is_available()
    if cuda_available is True:
        net = net.cuda()
        
    net.eval()

    # Load Encoding
    encoding_ndarray = np.load(encoding)
    encoding = torch.from_numpy(encoding_ndarray).float()
    encoding = Variable(encoding, volatile=True)
    
    generated_spec = net.decoder(encoding)
    generated_spec = generated_spec.data.cpu().numpy()
    generated_spec = np.squeeze(generated_spec)
    
    dec_name = decoder_path + decoder_name
    np.save(dec_name , generated_spec)
Esempio n. 23
0
def encode(spec):

    model_path = './restore/'
    model_name = 'Autoencoder1.model'

    net = AutoEncoder()
    net = load_model(net, model_path, model_name)
    cuda_available = torch.cuda.is_available()
    if cuda_available is True:
        net = net.cuda()

    net.eval()
    spec = torch.FloatTensor(torch.from_numpy(spec))
    spec = torch.unsqueeze(spec, 0)
    spec = Variable(spec, volatile=True).contiguous()

    if cuda_available is True:
        spec = spec.cuda()

    # Pass input audio to net forward pass
    out = net.encoder(spec)
    out = out.data.cpu().numpy()
    out = np.squeeze(out)
    return out
Esempio n. 24
0
def encode(model_name, piece, encoding_name):

    model_path = './restore/'
    encoding_path = './encoding/'
    
    # Create directory for encoding
    if os.path.exists(encoding_path) is False:
        os.makedirs(encoding_path)
    
    net = AutoEncoder()
    net = load_model(net,model_path,model_name)
    cuda_available = torch.cuda.is_available()
    if cuda_available is True:
        net = net.cuda()
        
    net.eval()
    
    # Load audio for encoding
    piece = audio.load_wav(piece)
    spec = audio.spectrogram(piece).astype(np.float32)

    spec = torch.from_numpy(spec.T)
    spec = torch.FloatTensor(spec)
    spec = torch.unsqueeze(spec, 0)
    spec = Variable(spec, volatile=True).contiguous()

    if cuda_available is True:
        spec = spec.cuda()
        
    # Pass input audio to net forward pass    
    encoding = net.encoder(spec)
    encoding = encoding.data.cpu().numpy()
    #encoding = np.squeeze(encoding)
    
    encoding_ndarray = encoding_path + encoding_name+ '.npy'
    np.save(encoding_ndarray, encoding)
Esempio n. 25
0
if __name__ == '__main__':

    opts = get_args()

    if not os.path.exists(opts.outDir):
        os.makedirs(opts.outDir)

    # mnist digits dataset
    transforms_ = torchvision.transforms.ToTensor()
    traindata = torchvision.datasets.MNIST(root=opts.root, train=True,
                 transform=transforms_, download=True)
    trainset = DataLoader(dataset=traindata, batch_size=opts.bs, shuffle=False)

    # getting the structure of your autoencoder
    autoencoder = AutoEncoder(opts.nz)

    # useful when you have a GPU (link pytorch to CUDA)
    if torch.cuda.is_available():
       autoencoder.cuda()

    print("test the data")
    test_dataset(traindata=traindata, trainset=trainset)

    print("begin training ...")
    train(autoencoder=autoencoder, outDir=opts.outDir, trainset=trainset,
          traindata=traindata)

    print("visualize latent space representation")
    visualize(autoencoder=autoencoder, outDir=opts.outDir, trainset=trainset,
              traindata=traindata)
Esempio n. 26
0
def main(eval_args):
    # ensures that weight initializations are all the same
    logging = utils.Logger(eval_args.local_rank, eval_args.save)

    # load a checkpoint
    logging.info('loading the model at:')
    logging.info(eval_args.checkpoint)
    checkpoint = torch.load(eval_args.checkpoint, map_location='cpu')
    args = checkpoint['args']

    if not hasattr(args, 'ada_groups'):
        logging.info('old model, no ada groups was found.')
        args.ada_groups = False

    if not hasattr(args, 'min_groups_per_scale'):
        logging.info('old model, no min_groups_per_scale was found.')
        args.min_groups_per_scale = 1

    if not hasattr(args, 'num_mixture_dec'):
        logging.info('old model, no num_mixture_dec was found.')
        args.num_mixture_dec = 10

    logging.info('loaded the model at epoch %d', checkpoint['epoch'])
    arch_instance = utils.get_arch_cells(args.arch_instance)
    model = AutoEncoder(args, None, arch_instance)
    # Loading is not strict because of self.weight_normalized in Conv2D class in neural_operations. This variable
    # is only used for computing the spectral normalization and it is safe not to load it. Some of our earlier models
    # did not have this variable.
    model.load_state_dict(checkpoint['state_dict'], strict=False)
    model = model.cuda()

    logging.info('args = %s', args)
    logging.info('num conv layers: %d', len(model.all_conv_layers))
    logging.info('param size = %fM ', utils.count_parameters_in_M(model))

    if eval_args.eval_mode == 'evaluate':
        # load train valid queue
        args.data = eval_args.data
        train_queue, valid_queue, num_classes = datasets.get_loaders(args)

        if eval_args.eval_on_train:
            logging.info('Using the training data for eval.')
            valid_queue = train_queue

        # get number of bits
        num_output = utils.num_output(args.dataset)
        bpd_coeff = 1. / np.log(2.) / num_output

        valid_neg_log_p, valid_nelbo = test(
            valid_queue,
            model,
            num_samples=eval_args.num_iw_samples,
            args=args,
            logging=logging)
        logging.info('final valid nelbo %f', valid_nelbo)
        logging.info('final valid neg log p %f', valid_neg_log_p)
        logging.info('final valid nelbo in bpd %f', valid_nelbo * bpd_coeff)
        logging.info('final valid neg log p in bpd %f',
                     valid_neg_log_p * bpd_coeff)

    else:
        bn_eval_mode = not eval_args.readjust_bn
        num_samples = 16
        with torch.no_grad():
            n = int(np.floor(np.sqrt(num_samples)))
            set_bn(model,
                   bn_eval_mode,
                   num_samples=36,
                   t=eval_args.temp,
                   iter=500)
            for ind in range(10):  # sampling is repeated.
                torch.cuda.synchronize()
                start = time()
                with autocast():
                    logits = model.sample(num_samples, eval_args.temp)
                output = model.decoder_output(logits)
                output_img = output.mean if isinstance(output, torch.distributions.bernoulli.Bernoulli) \
                    else output.sample()
                torch.cuda.synchronize()
                end = time()

                output_tiled = utils.tile_image(output_img,
                                                n).cpu().numpy().transpose(
                                                    1, 2, 0)
                logging.info('sampling time per batch: %0.3f sec',
                             (end - start))
                output_tiled = np.asarray(output_tiled * 255, dtype=np.uint8)
                output_tiled = np.squeeze(output_tiled)

                plt.imshow(output_tiled)
                plt.show()
Esempio n. 27
0
    torch.backends.cudnn.deterministic = DEBUG
    torch.backends.cudnn.benchmark = not DEBUG

    print(f'Using device {DEVICE}')

    # Data loaders
    train_ds = PPFDataset(**TRAIN_DS_ARGS)
    train_dl = DataLoader(train_ds, **TRAIN_DL_ARGS)

    val_ds = PPFDataset(**VAL_DS_ARGS)
    val_dl = DataLoader(val_ds, **VAL_DL_ARGS)

    print('Training set: {} Validation set: {}\n'.format(
        train_ds.__len__(), val_ds.__len__()
    ))

    # Model
    model = AutoEncoder(NUM_PTS_PER_PATCH)
    model.apply(init_weights).to(DEVICE)

    loss_func = ChamferLoss()
    optimizer = Adam(model.parameters(), LR)
    scheduler = OneCycleLR(
        optimizer, MAX_LR, total_steps=len(train_dl)*TRAINER_ARGS.num_epochs
    )

    Path(TRAINER_ARGS.checkpoint_path).parent.mkdir(parents=True, exist_ok=True)

    # Training
    train(model, loss_func, optimizer, scheduler, (train_dl, val_dl), TRAINER_ARGS)
Esempio n. 28
0
class trainAE(object):
    def __init__(self,
                 path,
                 k,
                 lr=0.01,
                 batch_size=1,
                 loss='bce',
                 n_epochs=500):
        '''
        Arguments:
            path : path to training data
            k : hidde unit's dimension
            lr : learning rate
            batch_size : batch_size for training, currently set to 1
            loss : loss function (bce, rmse) to train AutoEncoder
            n_epochs : number of epochs for training
        '''
        self.AE = AutoEncoder(path, k)
        # Definne the autoencoder model
        #self.AE.model()
        self.AE.model_batch()
        self.epochs = n_epochs

    def sigmoid(self, x):
        return 1.0 / (1.0 + np.exp(-x))

    def train(self):
        T = self.AE.T
        # COnverting to csr format for indexing
        T = T.tocsr()
        #pdb.set_trace()
        nonzero_indices = T.nonzero()
        for epoch in xrange(self.epochs):
            print("Running epoch %d" % (epoch))
            for i in np.unique(nonzero_indices[0]):
                # get indices of observed values from the user 'i' 's vector
                indices = T[i, :].nonzero()[1]
                #print indices
                #indices = indices.reshape(indices.shape[0],)
                # Get correspoding ratings
                ratings = T[i, indices].toarray()
                #print ratings
                ratings = ratings.reshape(ratings.shape[1], )
                # Convert inputs to theano datatype
                indices = indices.astype(np.int32)
                ratings = ratings.astype(np.int32)
                #pdb.set_trace()
                loss = self.AE.ae(indices, ratings)
                print("Loss at epoch %d is %f" % (epoch, loss))
            print("RMSE after one epoch is %f" % (self.RMSE()))

    # Batch training method
    def train_batch(self, batch_size):
        T = self.AE.T
        T = T.tocsr()
        nonzero_indices = T.nonzero()
        #pdb.set_trace()
        n_users = len(np.unique(nonzero_indices[0]))
        indices = np.unique(nonzero_indices[0])
        for epoch in xrange(self.epochs):
            l = []
            for ind, i in enumerate(xrange(0, n_users, batch_size)):
                # CHECK : SEEMS BUGGY.
                #------------------------
                #ratings = T[indices[i:(i + batch_size)], :].toarray().astype(np.float32)
                ratings = T[indices[i:(i + batch_size)], :].toarray().astype(
                    np.float32)

                #------------------------
                #print ratings
                #pdb.set_trace()
                loss = self.AE.ae_batch(ratings)
                #loss = self.AE.debug(ratings)
                #print loss
                #pdb.set_trace()
                l.append(loss)
            m = np.mean(np.array(l))
            print("mean Loss for epoch %d  batch %d is %f" % (epoch, ind, m))
            #rmse = self.RMSE_sparse()
            rmse = self.RMSE()
            print("RMSE after one epoch is %f" % (rmse))
            f.write(str(rmse) + '\n')

    def RMSE(self):
        W, V, b, mu = self.AE.get_params()
        print("testing process starts")
        test = self.AE.test_ind[:5000]
        rat = []
        pred = []
        rmse = 0
        #try:
        #    Rt = self.AE.T[test[:,0]].todense()
        #    p = expit(np.dot(W, expit(np.dot(V, Rt) + mu)) + b)
        #    P = p[:, test[:,1]]
        #    pdb.set_trace()
        #except:
        #    print "Exceptoin in batch test"
        #    pdb.set_trace()
        for i, j in test:
            Rt = self.AE.T[i, :].todense()
            Rt1 = np.zeros(Rt.shape[1])
            Rt1[:] = Rt[:]
            #pdb.set_trace()
            p = (np.dot(W, expit(np.dot(V, Rt1) + mu)) + b)
            #p = np.tanh(np.dot(W, np.tanh(np.dot(V, Rt1) + mu)) + b)
            p = p[j]
            pred.append(p)
            rat.append(self.AE.t[i, j])
        try:
            rat = np.array(rat)
            pred = np.array(pred)
            rmse = np.sqrt(np.mean((pred - rat)**2))
        except:
            print "exception"
            pdb.set_trace()
        np.save('test', test)
        np.save('W', W)
        np.save('V', V)
        np.save('mu', mu)
        np.save('b', b)
        return rmse
        #pdb.set_trace()

    def RMSE_sparse(self):
        W, V, b, mu = self.AE.get_params()
        #pdb.set_trace()
        mu = mu.reshape(100, 1)
        print("testing process starts")
        test = self.AE.test_ind
        rat = []
        pred = []
        rmse = 0
        for i, j in test:
            #pdb.set_trace()
            Rt = np.array(self.AE.T[i, :].todense().tolist()).astype(
                np.float16)
            #pdb.set_trace()
            ind = np.where(Rt > 0)[1]
            #pdb.set_trace()
            Rt = Rt.T
            #pdb.set_trace()
            temp1 = V[:, ind]
            temp2 = Rt[ind]
            temp = expit(np.dot(temp1, temp2) + mu)
            #del temp1
            #del temp2
            p = expit(np.dot(W, temp) + b)
            #pdb.set_trace()
            p = p[0, j]
            pred.append(p)
            rat.append(self.AE.t[i, j])
            #gc.collect()
        try:
            rat = np.array(rat)
            pred = np.array(pred)
            rmse = np.sqrt(np.mean((pred - rat)**2))
        except:
            print "exception"
            pdb.set_trace()
        np.save('test', test)
        np.save('W', W)
        np.save('V', V)
        np.save('mu', mu)
        np.save('b', b)
        return rmse
Esempio n. 29
0
from torch.utils.data import TensorDataset, DataLoader

from model import AutoEncoder
import torch.nn as nn
import torch
import numpy as np
from tqdm import tqdm

model = AutoEncoder().cuda()
checkpoint = torch.load("autoencoder.pth")
criterion = nn.L1Loss()
model.load_state_dict(checkpoint)
model.eval()

with open("../agent_code/rule_based_agent_auto_encode/states.npy", "rb") as f:
    data = np.load(f, allow_pickle=False)

data = data[:2_500_000]
data_t = torch.Tensor(data)
data_t = data_t.cuda()
dataset = TensorDataset(data_t)

train_len = int(0.7 * len(dataset))
valid_len = (len(dataset) - train_len) // 2
test_len = len(dataset) - train_len - valid_len

train_dataset, valid_dataset, test_dataset = torch.utils.data.random_split(
    dataset, [train_len, valid_len, test_len],
    generator=torch.Generator().manual_seed(42))

batch_size = 32
Esempio n. 30
0
                    help='Field of view angle in radians')
parser.add_argument('-l', '--light', nargs='+', type=float,
                    default=[.5, 30],
                    help='Light intensity from poseur')
parser.add_argument('-oc', '--num_occlusions', default=2, type=int,
                    help='Number of occlusions')
parser.add_argument('-sa', '--save_path',
                    default=os.path.join(
                        os.path.expanduser('~'), '.keras/paz/models'),
                    type=str, help='Path for writing model weights and logs')
args = parser.parse_args()


# setting optimizer and compiling model
latent_dimension = args.latent_dimension
model = AutoEncoder((args.image_size, args.image_size, 3), latent_dimension)
optimizer = Adam(args.learning_rate, amsgrad=True)
model.compile(optimizer, args.loss, metrics=['mse'])
model.summary()

# setting scene
renderer = SingleView(
    args.obj_path, (args.image_size, args.image_size),
    args.y_fov, args.depth, args.sphere, args.roll,
    args.translation, args.shift, args.light)

# creating sequencer
image_paths = glob.glob(os.path.join(args.images_directory, '*.png'))
processor = DomainRandomization(
    renderer, args.image_size, image_paths, args.num_occlusions)
sequence = GeneratingSequence(processor, args.batch_size, args.steps_per_epoch)
Esempio n. 31
0
def main(args):
    # ensures that weight initializations are all the same
    torch.manual_seed(args.seed)
    np.random.seed(args.seed)
    torch.cuda.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)

    logging = utils.Logger(args.global_rank, args.save)
    writer = utils.Writer(args.global_rank, args.save)

    # Get data loaders.
    train_queue, valid_queue, num_classes, _ = datasets.get_loaders(args)
    args.num_total_iter = len(train_queue) * args.epochs
    warmup_iters = len(train_queue) * args.warmup_epochs
    swa_start = len(train_queue) * (args.epochs - 1)

    arch_instance = utils.get_arch_cells(args.arch_instance)

    model = AutoEncoder(args, writer, arch_instance)
    model = model.cuda()

    logging.info('args = %s', args)
    logging.info('param size = %fM ', utils.count_parameters_in_M(model))
    logging.info('groups per scale: %s, total_groups: %d',
                 model.groups_per_scale, sum(model.groups_per_scale))

    if args.fast_adamax:
        # Fast adamax has the same functionality as torch.optim.Adamax, except it is faster.
        cnn_optimizer = Adamax(model.parameters(),
                               args.learning_rate,
                               weight_decay=args.weight_decay,
                               eps=1e-3)
    else:
        cnn_optimizer = torch.optim.Adamax(model.parameters(),
                                           args.learning_rate,
                                           weight_decay=args.weight_decay,
                                           eps=1e-3)

    cnn_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
        cnn_optimizer,
        float(args.epochs - args.warmup_epochs - 1),
        eta_min=args.learning_rate_min)
    grad_scalar = GradScaler(2**10)

    num_output = utils.num_output(args.dataset, args)
    bpd_coeff = 1. / np.log(2.) / num_output

    # if load
    checkpoint_file = os.path.join(args.save, 'checkpoint.pt')
    if args.cont_training:
        logging.info('loading the model.')
        checkpoint = torch.load(checkpoint_file, map_location='cpu')
        init_epoch = checkpoint['epoch']
        model.load_state_dict(checkpoint['state_dict'])
        model = model.cuda()
        cnn_optimizer.load_state_dict(checkpoint['optimizer'])
        grad_scalar.load_state_dict(checkpoint['grad_scalar'])
        cnn_scheduler.load_state_dict(checkpoint['scheduler'])
        global_step = checkpoint['global_step']
    else:
        global_step, init_epoch = 0, 0

    for epoch in range(init_epoch, args.epochs):
        # update lrs.
        if args.distributed:
            train_queue.sampler.set_epoch(global_step + args.seed)
            valid_queue.sampler.set_epoch(0)

        if epoch > args.warmup_epochs:
            cnn_scheduler.step()

        # Logging.
        logging.info('epoch %d', epoch)

        # Training.
        train_nelbo, global_step = train(train_queue, model, cnn_optimizer,
                                         grad_scalar, global_step,
                                         warmup_iters, writer, logging)
        logging.info('train_nelbo %f', train_nelbo)
        writer.add_scalar('train/nelbo', train_nelbo, global_step)

        model.eval()
        # generate samples less frequently
        eval_freq = 1 if args.epochs <= 50 else 20
        if epoch % eval_freq == 0 or epoch == (args.epochs - 1):
            with torch.no_grad():
                num_samples = 16
                n = int(np.floor(np.sqrt(num_samples)))
                for t in [0.7, 0.8, 0.9, 1.0]:
                    logits = model.sample(num_samples, t)
                    output = model.decoder_output(logits)
                    output_img = output.mean if isinstance(
                        output, torch.distributions.bernoulli.Bernoulli
                    ) else output.sample(t)
                    output_tiled = utils.tile_image(output_img, n)
                    writer.add_image('generated_%0.1f' % t, output_tiled,
                                     global_step)

            valid_neg_log_p, valid_nelbo = test(valid_queue,
                                                model,
                                                num_samples=10,
                                                args=args,
                                                logging=logging)
            logging.info('valid_nelbo %f', valid_nelbo)
            logging.info('valid neg log p %f', valid_neg_log_p)
            logging.info('valid bpd elbo %f', valid_nelbo * bpd_coeff)
            logging.info('valid bpd log p %f', valid_neg_log_p * bpd_coeff)
            writer.add_scalar('val/neg_log_p', valid_neg_log_p, epoch)
            writer.add_scalar('val/nelbo', valid_nelbo, epoch)
            writer.add_scalar('val/bpd_log_p', valid_neg_log_p * bpd_coeff,
                              epoch)
            writer.add_scalar('val/bpd_elbo', valid_nelbo * bpd_coeff, epoch)

        save_freq = int(np.ceil(args.epochs / 100))
        if epoch % save_freq == 0 or epoch == (args.epochs - 1):
            if args.global_rank == 0:
                logging.info('saving the model.')
                torch.save(
                    {
                        'epoch': epoch + 1,
                        'state_dict': model.state_dict(),
                        'optimizer': cnn_optimizer.state_dict(),
                        'global_step': global_step,
                        'args': args,
                        'arch_instance': arch_instance,
                        'scheduler': cnn_scheduler.state_dict(),
                        'grad_scalar': grad_scalar.state_dict()
                    }, checkpoint_file)

    # Final validation
    valid_neg_log_p, valid_nelbo = test(valid_queue,
                                        model,
                                        num_samples=1000,
                                        args=args,
                                        logging=logging)
    logging.info('final valid nelbo %f', valid_nelbo)
    logging.info('final valid neg log p %f', valid_neg_log_p)
    writer.add_scalar('val/neg_log_p', valid_neg_log_p, epoch + 1)
    writer.add_scalar('val/nelbo', valid_nelbo, epoch + 1)
    writer.add_scalar('val/bpd_log_p', valid_neg_log_p * bpd_coeff, epoch + 1)
    writer.add_scalar('val/bpd_elbo', valid_nelbo * bpd_coeff, epoch + 1)
    writer.close()
class trainAE(object):

    def __init__(self, path, k, lr= 0.1, batch_size=1, loss='bce', n_epochs=50):
        '''
        Arguments:
            path : path to training data
            k : hidde unit's dimension
            lr : learning rate
            batch_size : batch_size for training, currently set to 1
            loss : loss function (bce, rmse) to train AutoEncoder
            n_epochs : number of epochs for training
        '''
        self.AE = AutoEncoder(path, k)
        # Definne the autoencoder model
        #self.AE.model()
        self.AE.model_batch()
        self.epochs = n_epochs


    def sigmoid(self, x):
        return 1.0 / (1.0 + np.exp(-x))

    def train(self):
        T = self.AE.T
        # COnverting to csr format for indexing
        T = T.tocsr()
        #pdb.set_trace()
        nonzero_indices = T.nonzero()
        for epoch in xrange(self.epochs):
            print("Running epoch %d"%(epoch))
            for i in np.unique(nonzero_indices[0]):
                # get indices of observed values from the user 'i' 's vector
                indices = T[i, :].nonzero()[1]
                #print indices
                #indices = indices.reshape(indices.shape[0],)
                # Get correspoding ratings
                ratings = T[i, indices].toarray()
                #print ratings
                ratings = ratings.reshape(ratings.shape[1],)
                # Convert inputs to theano datatype
                indices = indices.astype(np.int32)
                ratings = ratings.astype(np.int32)
                #pdb.set_trace()
                loss = self.AE.ae(indices, ratings)
                print("Loss at epoch %d is %f"%(epoch, loss))
            print("RMSE after one epoch is %f"%(self.RMSE()))

    # Batch training method
    def train_batch(self, batch_size):
        T = self.AE.T
        T = T.tocsr()
        nonzero_indices = T.nonzero()
        #pdb.set_trace()
        n_users = len(np.unique(nonzero_indices[0]))
        indices = np.unique(nonzero_indices[0])
        for epoch in xrange(self.epochs):
            for ind, i in enumerate(xrange(0, n_users, batch_size)):
                # CHECK : SEEMS BUGGY. 
                #------------------------
                #ratings = T[indices[i:(i + batch_size)], :].toarray().astype(np.float32)
                ratings = T[indices[i:(i + batch_size)], :].toarray().astype(np.float32)

                #------------------------
                #print ratings
                #pdb.set_trace()
                loss = self.AE.ae_batch(ratings)
                #loss = self.AE.debug(ratings)
                #print loss
                #pdb.set_trace()
                print("Loss for epoch %d  batch %d is %f"%(epoch, ind, loss))
            print("RMSE after one epoch is %f"%(self.RMSE()))

    def RMSE(self):
        W, V, b, mu = self.AE.get_params()
        print("testing process starts")
        test = self.AE.test_ind
        rat = []
        pred = []
        rmse = 0
        for i,j in test:
            Rt = self.AE.T[i, :].todense()
            Rt1 = np.zeros(Rt.shape[1] +1)
            Rt1[:6541] = Rt
            #pdb.set_trace()
            p = expit(np.dot(W, expit(np.dot(V, Rt1) + mu)) + b)
            #p = np.tanh(np.dot(W, np.tanh(np.dot(V, Rt1) + mu)) + b)
            p = p[j]
            pred.append(p)
            rat.append(self.AE.t[i, j])
        try:
            rat = np.array(rat)
            pred = np.array(pred)
            rmse = np.sqrt(np.mean((pred-rat)**2))
        except:
            print "exception"
            pdb.set_trace()
        np.save('test', test)
        np.save('W', W)
        np.save('V', V)
        np.save('mu', mu)
        np.save('b', b)
        return rmse
        #pdb.set_trace()

    def RMSE_sparse(self):
        W, V, mu, b = self.AE.get_params()
        print("testing process starts")
        test = self.AE.test_ind
        rat = []
        pred = []
        for i,j in test:
            Rt = self.AE.T[i, :].todense()
            #pdb.set_trace()
            ind = self.AE.T[i, :].nonzero()[1]
            #pdb.set_trace()
            Rt = Rt.T
            temp = np.tanh(np.dot(V[:, ind], Rt[ind]) + mu.reshape(100,1))
            p = np.tanh(np.dot(W, temp) + b)
            p = p[j]
            pred.append(p)
            rat.append(self.AE.t[i, j])
        try:
            rat = np.array(rat)
            pred = np.array(pred)
            print np.sqrt(np.mean((pred-rat)*2))
        except:
            print "exception"
            pdb.set_trace()
        np.save('test', test)
        np.save('W', W)
        np.save('V', V)
        np.save('mu', mu)
        np.save('b', b)
        pdb.set_trace()