os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu with open(args.topology, "r") as topology: num_filters = tuple(map(int, topology.readline()[1:-1].split(', '))) files = glob.glob(os.path.join(args.file_dir, "*.png")) input_shape = (None, None, 3) # Reconstruct model from saved weights model = Autoencoder(input_shape=input_shape, num_filters=num_filters) model = model.build() print(model.summary()) model.load_weights(args.weights) model.compile(optimizer="adam", loss="MSE", metrics=["accuracy"]) # Generate time stamp for unique id of the result time_stamp = "{date:%Y-%m-%d-%H-%M-%S}".format(date=datetime.datetime.now()) # Pass images to network for file, i in zip(files, range(len(files))): inp_img = cv2.imread(file) / 255 inp_img = np.expand_dims(inp_img, axis=0) out_img = model.predict(inp_img)
trainX = np.reshape(trainX, (len(trainX), 64, 64, 3)) testX = np.reshape(testX, (len(testX), 64, 64, 3)) # Шумы trainNoise = np.random.normal(loc=0.5, scale=0.5, size=trainX.shape) testNoise = np.random.normal(loc=0.5, scale=0.5, size=testX.shape) trainXNoisy = np.clip(trainX + trainNoise, 0, 1) testXNoisy = np.clip(testX + testNoise, 0, 1) print("[INFO] building autoencoder...") opt = 'adadelta' autoencoder = Autoencoder().build(IMAGE_HEIGHT, IMAGE_WIDTH, 3) autoencoder.compile(loss="mse", optimizer=opt, metrics=["accuracy"]) autoencoder.summary() H = autoencoder.fit(trainXNoisy, trainX, validation_data=(testXNoisy, testX), epochs=EPOCHS, batch_size=BS) N = np.arange(0, EPOCHS) plt.style.use("ggplot") plt.figure() plt.plot(N, H.history["loss"], label="train_loss") plt.plot(N, H.history["val_loss"], label="val_loss") plt.title("Training Loss and Accuracy") plt.xlabel("Epoch") plt.ylabel("Loss/Accuracy")